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Abstract

The examination of morphological features is used as a universal procedure by pathologists to determine whether cells are cancerous.
Generally speaking, the shapes of normal cells are more standard (either circular or oval) than those of cancerous cells. The objective of
this study was to construct an autonomous feature detection system, with the hope of finding some feature patterns, based on morpho-
logical shapes (contours), that could be used to separate cancerous cells from normal cells. A number of feature detectors (FDs) were
initially generated at random. Then they were modified through evolutionary learning and cellular automata. The experimental result
showed that this system was able to search appropriate FDs to identify cancerous cells in a self-organizing manner. It also showed that
these FDs were general so that each of them could be used to identify more than one cancerous cell, and that there existed some common
patterns of cell deformity among cancerous cells. This system was also applied to two other domains, and achieved satisfactory experi-
mental results.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The smear test, a cytological diagnostic method, was ini-
tiated a century ago and is still one of the common diag-
nostic tools that pathologists use to detect malignant
cells. It is conducted by removing a small quantity of tissue
or body fluid from living body, which is then thinly spread
on a slide for microscopic image analysis. Generally speak-
ing, the contours of normal and benign cells are typically
uniform (or smooth). More specifically, they are either cir-
cular or oval. In contrast, the shapes of malignant cells are
more irregular than those of normal and benign cells. This
is because cancerous cells are active due to the reproductive
and mitotic behaviors occurring inside the nucleus, which
might cause anisonucleosis (uneven or unequal nuclei),
nuclear enlargement, multi-nuclei, nuclear deformity (or
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cytoplasmic deformity), various cell sizes, large nucleocyto-
plasmic ratio, irregular chromatin distribution, and prolif-
eration of malignant cells.

However, it is not necessarily true that all cancerous
cells do possess all of these noticeable cellular changes.
And a cell with any of these changes does not absolutely
indicate that it is cancerous. The task is thus difficult
because there is not a single mechanism that can be used
to distinguish between normal and cancerous cells unam-
biguously. As a consequence, it is strictly dependent on
personal experience. However, human error is sometimes
inevitable. Image analysis using autonomous, computer-
based methods is getting more important as it may provide
a second opinion to pathologists.

The studies of applying computer on microscopic cell
image analysis can be roughly divided into three stages:
contour identification (including segmentation), feature
extraction, and classification. The first stage is to find out
the boundary (contour) of a cell and its nucleus, including
noise removal and image enhancement (Thiran & Macq,
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1996; Leung, Chan, Lam, Kwok, & Chen, 2000; Schnor-
renberg, Pattichis, Kyriacou, & Schizas, 1997; Schnorren-
berg et al., 2000). However, in some cases, cells tend to
be clustered together so that it is not easy to separate them
on a two-dimensional image. An extra effort must be made
on image segmentation and shape discrimination (e.g.
Anoraganingrum, 1999; Wang, Zeng, Yu, Wang, & Xia,
2001; Wu, Barba, & Gil, 1996).

Feature extraction is the next stage after cell identifica-
tion. As there are several prominent features that can be
extracted from a cell, a number of studies on feature extrac-
tion have been carried out (Bisconte & Margules, 1980;
Travo, Bodin, Burnstock, & Stoclet, 1987), shape (Thiran
& Macq, 1996), color hue (Garbay, Chassery, & Brugal,
1986; Gauvain, Seigneurin, & Brugal, 1987), gray-scale
and gradient (Chen, Xie, Zhang, & Xia, 2001), and texture
(Hu et al., 1994; Liu, Zhao, & Zhang, 2002; Schnorrenberg
et al., 1997).

The last stage is to differentiate between cancerous cells
and normal cells. Artificial neural network approaches are
used by several investigators (Chen et al., 2001; Hu et al.,
1994; Kim, 1999; Moallemi, 1991; Naguib et al., 1999;
Wang et al., 2001). In these models, they directly apply
the features (or parameters) obtained in the previous stage
to perform cell classification. We note that some of these
models, to some extent, do demonstrate satisfactory results
in differentiating these two types of cells. However, little
information is provided about what specific patterns of cell
deformity are more tentative for cells to be cancerous than
being normal. And there are very few models that combine
feature extraction and cell differentiation into a system.
Thiran & Macq (1996) propose a model that includes both
feature extraction and cell differentiation. They organize a
set of rules in order to help extract the features that most
pathologists use to decide whether the tissue is cancerous
or not. The features extracted include nucleocytoplasmic
ratio, anisonucleosis, nuclear deformity, and hyperchroma-
sia. Then, they apply a grading rule that takes these four
features into account so as to make a diagnosis. However,
strictly speaking, this dedicated system is rigid in a sense
that the mechanisms of feature extractions, including its
cell differentiation rules, are set up in a predetermined
manner.

The objective of this study was to find some feature
detectors (FDs) that could be used to separate between
cancerous cells and normal cells, and to investigate what
patterns of cell deformity were more likely to be cancerous.
The ultimate goal was that we could use each of these FDs
to identify a number of cancerous cells, instead of just one
cell. The existence of such FDs implied that there existed
some common patterns among cancerous cells. From these
patterns, people might gain an insight into the commonal-
ity of cancerous cells. Moreover, it might provide valuable
information for those people who were interested in the
formation and development of cancerous tissue.

It was absolutely not an easy job to find such FDs. Let
us take an 8 · 8 grid of binary feature detectors as an exam-
ple. The number of possible FDs was substantially large
(i.e., 264). Indeed, it grew combinatorial with the size of a
feature detector. The goal of this study was to construct
a system that could generate and modify FDs for specific
pattern recognition domains in a self-organizing manner.
The evolutionary learning algorithm was used (Bremer-
mann, 1962; Rechenberg, 1973; Conrad, 1974; Fogel,
1995; Fogel, Owens, & Walsh, 1966). The Darwinian vari-
ation–selection mechanism had two major operators: vari-
ation and selection. In this study, we used the variation
operator to explore the FD repertoire on the one hand
and the selection operator to confine the search space on
the other. Cellular automata (CA) proposed by Ulam
and von Neumann in 1950 was used to vary FDs. The
details will be described in Section 2. The application
domains and the experimental results are presented in
Section 3. Finally, Section 4 provides discussion and con-
clusions.

2. Materials and methods

In this section, we first explained how to obtain the con-
tour of each cell from the microscopic images of cytological
specimens. Then, we illustrated how to determine the sim-
ilarity between an FD and a cell pattern. Finally, we
showed the evolutionary learning algorithm that we used
in this model, including the cellular automata rules.

2.1. Image pre-processing

Our experimental data include the microscopic cell
images of pleural effusion. They were taken from one of
the major hospitals in Taiwan. To obtain such an image,
pathologists took a small amount of pleural effusion from
a patient and concentrated the cells on a glass surface by
cytospin. The next step was to dye the cells. Finally, a di-
gital camera was used to digitize the images of dyed cells.

Fig. 1 shows two of these microscopic images that we
used in this study. For each of these microscopic images,
our first step was to identify the contour of each cell. In
the present study, only isolated cells were considered (i.e.,
we ignored the aggregated cells). We used Photo Impact

(version 7.0), an image editing tool, to remove noises, to
get rid of undesired components, and to find the contour
of each cell. Fig. 2 shows some of these cancerous cells
and normal cells. Note that these Photo Impact files were
saved in the bit mapped format. These files were then con-
verted into ASCII format using ASCII Pic (an application
system for transforming a file in bit mapped format into
ASCII format). Fig. 3 shows an example of a cell image
in ASCII format, consisting of 32 · 32 bits. Lastly, we
wrote a small program to find the contour of each cell
(Fig. 4).

Note that at the present time we use a number of com-
mercial tools to pre-process the microscopic images,
instead of developing our own system. The pre-processing
work includes the removal of noises and undesired compo-



Fig. 1. Microscopic cell images. (i) Normal cells and (ii) cancerous cells.

Fig. 2. Cancerous cells (left) and normal cells (right).

Fig. 3. A cell in ASCII format. Fig. 4. A cell contour.
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nents and the segmentation of overlapped cells. Our inter-
est in this study was to develop a system that could find fea-
ture detectors in a self-organizing manner (through
evolutionary learning) for assisting pathologists in cor-
rectly separating cancerous cells from normal cells. Elimi-
nating the image pre-processing work allowed us to put
the emphasis on feature detection and pattern recognition.
2.2. Pattern matching

In this system, FDs served as an arbiter that would be
used to separate cancerous cells from normal cells. A cell
was diagnosed as cancerous if part of its pattern matched
any one of the FDs in this system. On the contrary, a cell
was diagnosed as normal if none of the FDs matched it.
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We assumed that the size of an FD was comparatively
smaller than that of a cell pattern. As there was no preli-
minary information regarding which part of a cell might
match an FD, we had to search every possible portion of
a cell pattern. It was implemented by decomposing a cell
pattern into a number of sub-patterns, based on the size
of the FD. We compared every FD with each of these
sub-patterns to determine their similarity. For example, a
pattern with a size of 32 · 32 bits would be decomposed
into 625 sub-patterns (i.e., ((32 � 8) + 1) * ((32 � 8) + 1))
Fig. 5. Decomposition of a cell pattern.

Fig. 6. Horizontally divide an FD and a sub-pattern.

Table 1
Encoded vectors for Fig. 6

FD (top) 1 2 3
FD (bottom) 0 1 2
Sub-pattern (top) 0 1 2
Sub-pattern (bottom) 0 2 3

MSDtop = (1 � 0)2 + (2 � 1)2 + (3 � 2)2 + (4 � 2)2 + (3 � 3)2 + (2 � 3)2 + (3
MSDbottom = (0 � 0)2 + (1 � 2)2 + (2 � 3)2 + (3 � 4)2 + (4 � 0)2 + (3 � 0)2 +
if an FD with a size of 8 · 8 bits was used (Fig. 5). We
noted that it was possible that an FD might match a sub-
pattern in other orientations. Thereby, we also tested the
similarity of a sub-pattern with an FD rotated at 90�,
180�, and 270�, respectively. The fitness on its best fit
sub-pattern was assigned as the fitness of an FD on a cell
pattern.

The next step was to measure the similarity between a
sub-pattern and an FD. The performance parameter we
used was the minimum square of difference (MSD). Each
sub-pattern, including each FD, was encoded with two
pairs of vectors: horizontal and vertical. The similarity
between an FD and a sub-pattern was determined by the
sum of the MSDs on their horizontal and vertical pairs
of vectors. The lower the sum of MSDs, the higher the sim-
ilarity was.

The following explained how to encode the horizontal
pair of vectors. First, we horizontally divided a pattern into
two halves: top and bottom. For each half, we numbered
each row in sequence from the inner-most (the one closest
to the center line) to the outer-most row (Fig. 6). Two
vectors were used, one for each half. The first element of
a vector encoded the bit information of the first column, the
second number the second column, and so on. The value
assigned to each element was the row number of the
4 3 2 3 2
3 4 3 2 1
2 3 3 4 3
4 0 0 0 0

� 4)2 + (2 � 3)2

(2 � 0)2 + (1 � 0)2

Fig. 7. Vertically divide an FD and a sub-pattern.



Table 2
Cellular automata rules

Si,j at time t + 1 [Si�1,jSi+1,jSi,j�1Si,j+1Si,j] at time t

Rule number [11111] [. . .] [00010] [00001] [00000]

1 0 . . . 0 0 0
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outer-most bit in its corresponding column. The vec-
tors encoded for Fig. 6 are shown in Table 1. Fig. 7 shows
how to vertically divide a pattern into two halves: left and
right. The encoding mechanism of the vertical pair of vec-
tors was similar to that of the horizontal pair.
2 0 . . . 0 0 1
3 0 . . . 0 1 0
4 0 . . . 0 1 1
5 0 . . . 1 0 0
6 0 . . . 1 0 1
7 0 . . . 1 1 0
8 0 . . . 1 1 1
. . . . . . . . . . . . . . . . . .

4,294,967,296 1 . . . 1 1 1

1. Choose a subset of cellular automata rules (ψs) atrandom. 

2. Evaluate the fitness of each rule. 

3. Select three best-performing rules.

4. Copy the best-performing rules to the lesser-performing rules.

5. Mutate the lesser-performing rules.

6. Go to Step 2 unless the stopping criteria are satisfied.

Fig. 9. Evolutionary learning of cellular automata rules.
2.3. Evolutionary algorithm

To separate cancerous cells from normal cells, we placed
three hypotheses. The first was possible to identify (detect)
a cancerous cell from its partial pattern. In other words, to
decide whether a cell was cancerous or not, it was not nec-
essary to examine an entire pattern. Without this hypothe-
sis, it would not be possible to find FDs that could be used
to separate cancerous cells from normal cells. This was why
we assumed that the size of an FD was comparatively smal-
ler than that of a cell pattern. The second hypothesis was
that we could separate these two types of cells by their con-
tours (not including cell size, nucleus contour, nucleocyto-
plasmic ratio, chromatin distribution, etc.). The third
hypothesis was that there existed some common patterns
among cancerous cells. This was important as we hoped
to find general FDs that each of them could be used to
identify a number of cancerous cells, not just one.

The fitness of an FD was determined by how well we
could use it to separate cancerous cells from normal cells.
Note that a good FD was defined as it had a good match
with at least one of the cancerous cells but did not match
any of the normal cells. FDs were generated at random
in the beginning and modified through evolutionary learn-
ing. The algorithm is shown in Fig. 8. After evaluating the
fitness of each FD, we copied them with the variation from
best-performing to lesser-performing. Cellular automata
(CA) were used to modify (vary) the lesser-performing
FDs. That is, the change of an FD was based on a specific
cellular automata rule.

The following explained how to use CA to evolve FDs.
Cellular automaton consisted of a lattice of sites. Each site
had a number of states. The state of each site was updated
in discrete time steps, depending on its present state and the
states of its neighboring sites. Each FD was represented
with a two-dimensional grid of bits. To vary FDs, we used
two-dimensional cellular automata. There were several
possible lattices and neighborhood structures for two-
dimensional cellular automata. In the present implementa-
1. Generate a group of feature detectors FDs at random. 

2. Evaluate the fitness of each FD.

3. Select three best-performing FDs for reproduction. 

4. Copy the best-performing FDs to the lesser-performing FDs. 

5. Mutate the lesser-performing FDs. It was implemented by randomly
choosing some pixels and then applying each of these with a specific cellular 
automata rule. 

6. Go to Step 2 unless the stopping criteria are satisfied. 

Fig. 8. Evolutionary learning of FDs.
tion, we used five-neighbor (i.e., ‘‘above’’, ‘‘below’’, ‘‘left’’,
‘‘right’’, and itself) cellular automata with values 0 and 1.
The next state of a site at location (i, j) depended on its
present state and the states of its four neighbors at loca-
tions (i � 1, j), (i + 1, j), (i, j � 1), and (i, j + 1). The rule of
state transition w was denoted by

Si;jðt þ 1Þ ¼ w½Si�1;jðtÞ; Siþ1;jðtÞ; Si;j�1ðtÞ; Si;jþ1ðtÞ; Si;jðtÞ�
ð1Þ

Without any doubt, the chances of finding more appropri-
ate FDs would be higher if a large number of neighbors
(e.g., eight neighbors) were considered for each state tran-
sition used. But, in the meantime, the number of rules grew
combinatorial. In contrast, too small a number of neigh-
bors (e.g., only two neighbors) would not be sufficient to
provide an appropriate search of FDs. The number that
we chose (i.e., 4) was a compromise. We noted that the rule
set was still very large even though only four neighbors
were taken into account in the present implementation.
The number was about 4 billion (i.e., 4,294,967,296), as
shown in Table 2. In this study, evolutionary learning algo-
rithm was applied to select an appropriate subset of rules.
They were selected at random initially and varied through
evolutionary learning (Fig. 9).
3. Application domains and experimental results

The first experiment was to test the differentiation capa-
bility of this system. Then, we examined whether there
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existed some common patterns among cancerous cells. In
addition to the above domain, the system was also applied
to two other problem domains. One was to differentiate
two different types of maple leaves, which had similar mor-
phological contours. The other domain was to separate
water lilies from maple leaves, parts of which had similar
morphological contours.
Fig. 11. Portion of a cancerous cell that FD2 matched.
3.1. Cell differentiation

Our data set consisted of 80 cell patterns, each com-
prised of 32 · 32 bits. We trained this system with forty
of these patterns and then tested it with the remaining 40
patterns. Ten FDs were used, each consisting of 8 · 8 bits.
For each FD, the initial value of each bit was decided at
random (i.e., either 0 or 1). Simulation was terminated
after 500 cycles. At that stage, the system was able to dif-
ferentiate the training set completely (note that one day
was required to perform the above experiment using a Pen-
tium-IV PC).

During the course of evolutionary learning, we kept a
record of best-performing FDs for each learning cycle.
Three best-performing FDs were selected, as shown in
Fig. 10 (to be referred to as FD1, FD2, and FD3, respec-
tively). The following was to examine how well we could
use these three FDs to discriminate between cancerous
cells and normal cells. Note that an FD was promising
if it had a good match with at least one of these cancerous
cells, and in the meantime it should not match any of nor-
Table 3
Test rates of each FD

Correctly judge cancerous
cells (true positive)

Misjudge normal cells as cancerous
cells (false positive)

FD1 20/20 (100%) 4/20 (20%)
FD2 18/20 (90%) 3/20 (15%)
FD3 17/20 (85%) 5/20 (25%)

Table 4
Number of FDs that could be used to identify each cancerous cell

Cell pattern A B C D E F G H I

Number of FDs 2 3 3 1 2 3 3 1 1

Fig. 10. Best-performing FDs.
mal cells. As mentioned above, the test set consisted of 40
patterns. One half of these patterns were normal cells and
the other half was of cancerous cells (see Appendix A). We
tested every cell pattern with each of these three FDs in
sequence.

The experimental result showed that FD1 could success-
fully identify each of these twenty cancerous cell patterns.
That is, it did not misjudge a cancerous cell as a normal
cell. The existence of such an FD indicated that there
existed a common pattern among these cancerous cells.
As to normal cells, sixteen out of these 20 patterns did
not match FD1. In other words, FD1 did correctly identify
most of them as normal cells. And only four out of these 20
patterns were mistaken for cancerous cells (false positive).
We performed the same experiments for the other two
FDs (FD2 and FD3). As shown in Table 3, FD2 and FD3

could successfully identify 18 and 17 out of these 20 cancer-
ous cells, respectively. That is, only two and three out of
these 20 cells were misjudged as normal cells. As to normal
cells, three and five out of these twenty were misjudged as
cancerous cells when we used FD2 and FD3 to test them,
respectively.

Table 4 shows the number of these three FDs that we
could use to identify each of these cancerous cells. Notice
that, except patterns D, H, and I, there were more than
one FD that could be used to detect a cancerous cell pat-
tern. This suggested that there was more than one portion
of a pattern that we could use to identify a cancerous cell.
We further looked into the portion of a cell pattern that
each FD matched (i.e., the portion identified as a cancerous
cell). Fig. 11 shows such an example. The result showed
J K L M N O P Q R S T

3 3 2 3 3 3 2 3 3 3 3



Table 5
Number of FDs that served to identify each pattern

Pattern A B C D E F G H I J

Number of FDs 4 3 4 4 4 2 4 4 3 4

Table 6
Four best-performing FDs

Fig. 12. Red and green maple leaves.

Fig. 13. Four best-performing FDs.

Fig. 14. Maple leaves and water lilies.

Fig. 15. An example of similar partial contours between a water lily and a
maple leave.
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that different FDs detected different portions of a pattern
(see Appendix B).
3.2. Other application domains

3.2.1. Red and green maple leaves

Our goal in this experiment was to test the system’s
capability in differentiating similar patterns. Maple (Acer
Palmatum) was one of the trees with leaves shaped like
an open palm. Different types of maples might possess dif-
ferent shapes of leaves. Fig. 12 shows two of these types.
Their leaves looked similar but still had slight difference.
Roughly speaking, the leaves on the left of the figure (red
maple leaves) were comparatively thinner, but longer, than
those on the right (green maple leaves).

Twenty maple leaves were used, of which one half was
green and the other half red. Each leaf pattern consisted
of 64 · 64 bits. Ten FDs were used, each consisting of
16 · 16 bits. The task was to evolve these FDs so that they
could separate red maple leaves from green maple leaves.
Simulation was terminated when the system was able to
differentiate these two types of leaves correctly. As
mentioned above, the system’s performance improved
continuously when the simulation proceeded. Four best-
performing FDs were selected (Fig. 13).

Then, we tested the performance of each of these FDs.
The test set consisted of another 20 maple leaves, of which
one half was green and the other half red. Each of these
four FDs was able to correctly identify at least nine out
of these 10 red maple leaves. In the meantime, they success-
fully identified each of these 10 green maple leaves. The sys-
tem achieved a higher correct classification rate (i.e., more
than 90%). Table 5 shows the number of FDs that served
to identify each pattern, indicating that there existed sev-
eral feature patterns for separating these two types of
leaves. It also showed that each FD was general (not a
specific feature detector) that could be used to detect
several patterns.
3.2.2. Maple and water lily

The following experiment was to separate maple
leaves from water lilies. The former was like an open palm
whereas the latter was like an egg with an opening
(Fig. 14). At our first glance, it seemed like an easier task,
as their morphological appearances were apparently differ-
ent. Indeed, it was not easy when we tried to use FDs to
separate them, as parts of their contours were quite similar,
as shown in Fig. 15.

Our training set consisted of 20 maple leaves and 20
water lilies. Each of these patterns consisted of 64 · 64 bits.
Simulation was terminated when the system was able to
differentiate these two types of leaves correctly. Four
best-performing FDs were selected (Table 6). As above,
we tested each of these FDs. The test set consisted of
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another 20 maple leaves and 16 water lilies. Note that this
system achieved an acceptable classification rate of maple
leaves (more than 85%), whereas it did pretty well in iden-
tifying each of these 20 water lilies.
4. Conclusions

Cell deformity (irregular shape), including nuclear
deformity, has been one of the major methods used by
pathologists to decide whether a cell is cancerous or not.
Little is known about the patterns of cell deformity that
can provide a definitive answer in diagnosing cancerous
cells. And yet, in some cases, a normal cell may also exhibit
some extents of cell deformity for some known or unknown
reasons.

In this study, we constructed a system that was able to
search for some basic feature detectors (through self-
organizing learning) for separating cancerous cells from
normal cells. The search was implemented by a combina-
tion of evolutionary learning algorithm and cellular
automata. Our experimental result showed that this system
demonstrated a high differentiation capability in separating
these two types of cells. It also showed that there existed
some common patterns among these cancerous cells,
implying that cells with specific patterns of deformity were
tentative to be cancerous. In most cases, there were two or
more different patterns of deformity found within a cell.
This allowed us to cross-validate a cancerous cell.
Moreover, these feature detectors were general so that each
of these could be used to detect a number of cancerous
cells.

Different training sets might possess different feature
detectors. The significance of each detector was strictly
dependent upon the pattern structure of that training set.
This system was also applied to two other problem
domains. The experimental result showed that this system
was capable of finding appropriate feature detectors for
different training sets in a self-organizing manner.

The above result has implications for both clinical stud-
ies and computational intelligence. This system can be used
as an additional tool to pathologists in making medical
judgments about cancerous cells. In addition, it may pro-
vide information about what patterns of cell deformity
are more likely to be cancerous. This information is impor-
tant as it may also help people understand the development
and formation of cancerous tissues. More importantly, the
ability to search for feature detectors in a self-organizing
manner opens up a possibility of exploring some known
or unknown patterns of cell deformity in cancerous cells.
This feature is significant for computational intelligence.
By altering its input–output interfaces, the model may be
applied to a number of other problem domains. Future
work with this model may help us indicate its power as
an analytical tool.
Appendix A

Cancerous cells
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Different types of squares represent different FDs
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