
Proben1 | A Set of Neural NetworkBenchmark Problems andBenchmarking RulesLutz Prechelt (prechelt@ira.uka.de)Fakult�at f�ur InformatikUniversit�at Karlsruhe76128 Karlsruhe, Germany++49/721/608-4068, Fax: ++49/721/694092September 30, 1994Technical Report 21/94
AbstractProben1 is a collection of problems for neural network learning in the realm of pattern classi�-cation and function approximation plus a set of rules and conventions for carrying out benchmarktests with these or similar problems. Proben1 contains 15 data sets from 12 di�erent domains. Alldatasets represent realistic problems which could be called diagnosis tasks and all but one consist ofreal world data. The datasets are all presented in the same simple format, using an attribute repre-sentation that can directly be used for neural network training. Along with the datasets, Proben1de�nes a set of rules for how to conduct and how to document neural network benchmarking.The purpose of the problem and rule collection is to give researchers easy access to data for theevaluation of their algorithms and networks and to make direct comparison of the published resultsfeasible. This report describes the datasets and the benchmarking rules. It also gives some basicperformance measures indicating the di�culty of the various problems. These measures can beused as baselines for comparison.

1

2 CONTENTSContents1 Introduction 41.1 Why a benchmark set? : 41.2 Why benchmarking rules? : 51.3 Scope of Proben1 : 51.4 Why no arti�cial benchmarks? : 61.5 Related work : 72 Benchmarking rules 82.1 General principles : 82.2 Benchmark problem used : 92.3 Training set, validation set, test set : 92.4 Input and output representation : 112.5 Training algorithm : 122.6 Error measures : 132.7 Network used : 142.8 Training results : 152.9 Training times : 162.10 Important details : 162.11 Author's quick reference : 173 Benchmarking problems 173.1 Classi�cation problems : 183.1.1 Cancer : 183.1.2 Card : 183.1.3 Diabetes : 183.1.4 Gene : 193.1.5 Glass : 193.1.6 Heart : 193.1.7 Horse : 203.1.8 Mushroom : 203.1.9 Soybean : 213.1.10 Thyroid : 213.1.11 Summary : 213.2 Approximation problems : 213.2.1 Building : 213.2.2 Flare : 223.2.3 Hearta : 223.2.4 Summary : 233.3 Some learning results : 233.3.1 Linear networks : 243.3.2 Choosing multilayer architectures : 263.3.3 Multilayer networks : 273.3.4 Comparison of multilayer results : 33A Availability of Proben1, Acknowledgements 34B Structure of the Proben1 directory tree 35

LIST OF TABLES 3C Proben1 �le format and data encoding 35D Architecture ordering 36Bibliography 37List of Tables1 Attribute structure of classi�cation problems : 222 Attribute structure of approximation problems : 233 Linear network results of classi�cation problems : 254 Linear network results of approximation problems : 265 Architecture �nding results of classi�cation problems : : : : : : : : : : : : : : : : : : : 286 Architecture �nding results of approximation problems : : : : : : : : : : : : : : : : : : 297 Pivot architectures for the datasets : 298 Pivot architecture results of classi�cation problems : 309 Pivot architecture results of approximation problems : : : : : : : : : : : : : : : : : : : 3110 No-shortcut architecture results of classi�cation problems : : : : : : : : : : : : : : : : 3211 No-shortcut architecture results of approximation problems : : : : : : : : : : : : : : : 3312 t-test comparison of pivot and no-shortcut results : 33

4 1 INTRODUCTION1 IntroductionThis section discusses why standardized datasets and benchmarking rules for neural network learningare necessary at all, what the scope of Proben1 is, and why real data should be used instead of or inaddition to arti�cial problems as they are often used today.1.1 Why a benchmark set?A recent study of the evaluation performed in journal papers about neural network learning algorithms[15] showed that this aspect of neural network research is a rather poor one. Most papers presentperformance results for the new algorithm only for a very small number of problems | rarely morethan three. In most cases, one or several of these problems are meaningless synthetic problems, forinstance from the parity/symmetry/encoder family. Comparisons to algorithms suggested by otherresearchers are in many cases not done at all (exception: standard backpropagation).Why is this so? Several explanations (read: excuses) are possible:1. Since training a neural network usually takes quite long, a thorough evaluation takes a very largeamount of CPU time.2. The algorithms of other researchers are often not available as programs at all or their implemen-tations are not stable or are based on some exotic environment.3. It is di�cult to get data for real problems.4. It is much work to prepare data for neural network training.5. Even results obtained for the same problem can often not be compared directly because of di�erentproblem representations or di�erent experimental setups.None of these arguments, however, is still a valid one today. I discuss them in order:1. Not really a problem. Our machines are fast enough now to do a signi�cant amount of trainingruns within a few days | at least for small or moderately large datasets. And, hey!, it's yourcomputer that must do the work, not you!2. Yes, often true. And probably nothing that we can easily avoid. However, it would not be aproblem if we could just compare against the results of other researchers directly by making thecorresponding experiment with a new algorithm.3. Only partially true. Many researchers who have used real data in their research are willing togive it to others upon request. There are also publicly accessible collections of such data; mostnotably the UCI machine learning databases repository.4. Correct. It really is. But not everybody needs to make that data preparation again. We as aresearch community can and should share the results of such work.5. This is a real problem that comes in three variants: First, sometimes experimental setups arejust plain wrong, giving invalid results. Second, often experimental setups are not documentedproperly in the papers published, making reproduction or exact comparison impossible. Third,often the documentation just looks obscure, because the same things are expressed in very di�erentways by di�erent people. We need a standard set of conventions for our experiments and theirdocumentation in order to �ght this problem.As we see from this discussion, there is a need for standard sets of problems and rules or conventionsfor applying them to be used in learning algorithm evaluations. Proben1 is meant as a �rst steptowards a set of standard benchmarks for some areas of neural network training algorithm research.

1.2 Why benchmarking rules? 5Its availability lays ground for better algorithm evaluations (by enabling easy access to example dataof real problems) and for better comparability of the results (if everybody uses the same problems andsetup) | while at the same time reducing the workload for the individual researcher.Aspects of learning algorithms that can be studied using Proben1 are for example learning speed,resulting generalization ability, ease of user parameter selection, and network resource consumption.What cannot be assessed well using a set of problems with �xed representation (such as Proben1)are all those aspects of learning that have to do with the selection or creation of a suitable problemrepresentation.Lack of standard problems is widespread in many areas of computer science. At least in some �elds,though, standard benchmark problems exist and are used frequently. The most notable of thesepositive examples are performance evaluation for computing hardware and for compilers. For manyother �elds it is clear that de�ning a reasonable set of such standard problems is a very di�cult task| but neural network training is not one of them.1.2 Why benchmarking rules?It is clear from the discussion above that having a standard set of benchmark problems is, although nec-essary, not su�cient to improve the de-facto scienti�c quality of our evaluations. A real improvementis made only if the results published for these benchmark problems are comparable and reproducible.This is not trivial, though, since every application of a neural network training algorithm to a particu-lar problem involves a signi�cant number of user selectable parameters of various kinds | often morethan a dozen. If but one of these parameters is not published along with the result, the experimentbecomes irreproducible and the comparability of the results is hampered. Even if all parameters arepublished, comparability might still be an issue due to the fact that many descriptions are ambiguoussince we are lacking a standard terminology.Thus, a set of benchmark problems should be complemented by a set of benchmarking rules (orbenchmarking conventions, if you want) that describe and standardize ways of setting up experiments,documenting these setups, measuring results, and documenting these results. Such rules need notreduce the freedom of choosing among several possible experimental setups | they just suggest a corestandard that should be used in order to maximize comparability of experimental results and showwhat should be documented in which way when one deviates from that standard.As a side-e�ect, thoroughly documented benchmarking rules reduce the danger that a researcher makesa major fault in his or her experimental setup, thereby producing invalid results.1.3 Scope of Proben1Neural network learning algorithm research is a wide �eld trying to tackle many di�erent classes ofproblems. Many sub�elds, such as machine vision, optical character recognition, or speech recognition,are quite specialized and hence also require specialized benchmarks. Other �elds require or forbidcertain properties to be present in any benchmark problem to be used. Thus, no single set of benchmarkproblems can be usable for the evaluation of research in the whole �eld.The scope of the Proben1 problems can be characterized as follows. All problems are suited forsupervised learning, since input and output values are separated. All problems are suited for use withnetworks that do not maintain an internal state, since all examples within a problem are independentof each other. Most of the problems can be tackled by pattern classi�cation algorithms, while a few

6 1 INTRODUCTIONothers need the capability of continuous multivariate function approximation. Most problems haveboth continuous and binary input values. All problems are presented as static problems in the sensethat all data to learn from is present at once and does not change during learning. All problems exceptone (the mushroom problem) consist of real data from real problem domains.The common properties of the learning tasks themselves are characterized by them all being what Icall diagnosis tasks . Such tasks can be described as follows:1. The input attributes used are similar to those that a human being would use in order to solvethe same problem.2. The outputs represent either a classi�cation into a small number of understandable classes or theprediction of a small set of understandable quantities.3. In practice, the same problems are in fact often solved by human beings.4. Examples are expensive to get. This has the consequence that the training sets are not very large.5. Often some of the attribute values are missing.The scope of the Proben1 rules can be characterized as follows. The rules are meant to apply toall supervised training algorithms. Their presentation, however, is biased towards the training of feedforward networks with gradient descent or similar algorithms. Hence, some of the aspects mentionedin the rules do not apply to all algorithms and some of the aspects relevant to certain algorithmshave been left out. The rules suggest certain choices for particular aspects of experimental setups asstandard choices and say how to report such choices and the results of the experiments.Both parts of Proben1, problems as well as rules, cover only a small part of neural network learningalgorithm research. Additional collections of benchmark problems are needed to cover more domainsof learning (e.g. application domains such as vision, speech recognition, character recognition, control,time series prediction; learning paradigms such as reinforcement learning, unsupervised learning; net-work types such as recurrent networks, analog continuous-time networks, pulse frequency networks.Su�cient benchmarks available today for only a few of these �elds). Additions and changes to therules will also be needed for most of these new domains, learning paradigms, and network types.This is why the digit 1 was included in the name of Proben1; maybe some day Proben100 will bepublished and the �eld will be mature.1.4 Why no arti�cial benchmarks?In the early days of the current era of neural network research (i.e., during the second half of the1980s), most benchmark problems used were arti�cial. The most famous one of these is the XORproblem. Its popularity originates from the fact that being able to solve it was the great breakthrough(achieved by the error back-propagation algorithm), compared to the situation faced during the �rstera of neural network research in the 1960s when no learning algorithm was known to solve a notlinearly separable classi�cation task such as XOR.Other training problems that were often used in the 1980s are the generalized XOR problem (n-bitparity), the n-bit encoder, the symmetry problem, the T-C problem, the 2-clumps problem, and others[3, 18]. Their de�ciencies are known: all of these problems are purely synthetic and have strong a-priori regularities in their structure; for some of them it is unclear how to measure in a meaningfulway the generalization capabilities of a network with respect to the problem; most of the problemscan be solved 100% correct, which is untypical for realistic settings.Later works used still other synthetic problems which can not be exactly solved so easily. Instancesare the two spirals problem [4, 5, 10] or the three discs problem [19]. The problem with these problems

1.5 Related work 7is, similar to the ones mentioned above, that we know a-priori that a simple exact solution exists |at least when using the right framework to express it. It is unclear, how this property inuences theobserved capability of a learning algorithm or network to �nd a good solution: some algorithms maybe biased towards the kind of regularity needed for a good solution of these problems and will do verygood on these benchmarks, although other algorithms not having such bias would be better in morerealistic domains.Summing up, we can conclude that the main problem with the early arti�cial benchmarks is that wedo not know what the results obtained for them tell us about the behavior of our systems on realworld tasks.One way to transcend this limitation is to make the data generation process for the arti�cial problemsresemble realistic phenomena. The usual way to do that is to replace or complement the data gener-ation based on a simple logic or arithmetic formula by stochastic noise processes and/or by realisticmodels of physical phenomena. Compared to the use of real world data this has the advantage thatthe properties of each dataset are known, making it easier to characterize for what kinds of problems(i.e., dataset characteristics) a particular algorithm works better or worse than another.Two problems are left by this approach. First, there is still the danger to prefer algorithms that happento be biased towards the particular kind of data generation process used. Imagine classi�cation ofdatasets of point clouds generated by multidimensional gaussian noise using a gaussian-based radialbasis function classi�er. This can be expected to work very well, since the class of models used by thelearning algorithm is exactly the same as the class of models employed in the data generation.1Second, it is often unclear what parameters for the data generation process are representative ofreal problems in any particular domain. When overlaying a functional and a noise component, thequestions to be answered are how strong the non-linear components of the function should be, howstrong and of what type the non-linearities in that components should be, and what amount of noiseof which type should be added. Choosing the wrong parameters may create a dataset that does notresemble any real problem domain.Clearly arti�cial datasets based on realistic models and real data sets both have their place in algorithmdevelopment and evaluation. A reason for prefering real data over arti�cially generated data is thatthe former choice guarantees to get results that are relevant for at least a few real domains, namelythe ones being tested. Multiple domains must be used in order to increase the con�dence that theresults obtained did not occur due to a particular domain selection only.1.5 Related workDespite the high importance of benchmarks, little is done on the �eld for neural networks. Theonly public benchmark collection available that is speci�cally meant for neural network research is theNeural Bench collection at Carnegie Mellon University maintained by Scott Fahlman and collaborators(anonymous ftp to ftp.cs.cmu.edu, directory /afs/cs/project/connect/bench). Although it wascreated years ago, it still contains only four sets of data from real world problems.The only larger collection of benchmark learning problems is the UCI machine learning databas-es archive (anonymous ftp to ics.uci.edu, directory /pub/machine-learning-databases). Thisarchive is maintained at the University of California, Irvine, by Patrick M. Murphy and David W. Aha.It contains several dozens of problems, some in multiple variants. The problems in this archive are1My personal impression is that some researchers do this consciously: they make the data generation �t to the knownbias of the algorithm they advocate in order to get better results.

8 2 BENCHMARKING RULESmeant for general machine learning programs; most of them cannot readily be learned by neuralnetworks because an encoding of nominal attributes and missing attribute values has to be chosen�rst.In both collections, the individual datasets themselves were donated by various researchers. With afew exceptions, no partitioning of the dataset into training and test data is de�ned in the archives. Inno case a sub-partitioning of training data into training set and validation set is de�ned. The di�erentvariants that exist for some of the datasets in the UCI archive create a lot of confusion, because it isoften not clear which one was used in an experiment. The Proben1 benchmark collection containsdatasets that are taken from the UCI archive (with one exception). The data is, however, encodedfor direct neural network use, is pre-partitioned into training, validation, and test examples, and ispresented in a very exactly documented and reproducible form.Zheng's benchmark [23], which I recommend everybody to read, does not include its own data, butde�nes a set of 13 problems, predominantly from the UCI archive, to be used as a benchmark collec-tion for classi�er learning algorithms. The selection of the problems is made for good coverage of ataxonomy of classi�cation problems with 16 two- or three-valued features, namely type of attributes,number of attributes, number of di�erent nominal attribute values, number of irrelevant attributes,dataset size, dataset density, level of attribute value noise, level of class value noise, frequency ofmissing values, number of classes, default accuracy, entropy, predictive accuracy, relative accuracy,average information score, relative information score. The Proben1 benchmark problems have notexplicitly been selected for good coverage of all of these aspects. Nevertheless, for most of the aspectsa good diversity of problems is present in the collection.2 Benchmarking rulesThis section describes� how to conduct valid benchmark tests and� how to publish them and their results.The purpose of the rules is to ensure the validity of the results and reproducibility by other researchers.An additional bene�t of standardized benchmark setups is that results will more often be directlycomparable.2.1 General principlesThe following general principles guide the formulation of the benchmarking rules:Validity: We need a minimum standard of experimentation that guarantees that the results obtainedare valid in the sense that they are not artifacts created by random factors or by a faulty experimentalsetup. Invalid results are useless. The Proben1 benchmarking rules thus contain a number of DOsand DON'Ts to follow in order to avoid invalid results (although following the rules cannot guaranteevalidity of the results).Reproducibility: The rules prescribe to specify all those aspects of the experimental setup that areneeded for other researchers to repeat the experiments. Results that cannot be reproduced are noscienti�c results. The Proben1 benchmarking rules thus attempt to list the relevant aspects of a

2.2 Benchmark problem used 9benchmarking setup that need to be published to attain reproducibility. For many of these aspects,standard formulations are suggested in order to simplify presentation and comprehension.Comparability: It is very useful if one can compare results obtained by di�erent researchers directly.This is possible if the same experimental setup is used. The rules hence suggest a number of so calledstandard choices for experimental setups that are recommended to be used unless speci�c reasonsstand against it. The use of such standard choices reduces the variability of benchmarking setups andthus improves comparability of results across di�erent publications.In the rules below, phrases typeset in sans serif font like this indicate suggested formulations to be usedin publications in order to reduce the ambiguity of setup descriptions. The following sections presentthe Proben1 benchmarking rules.2.2 Benchmark problem usedFor each benchmark problem X that you use, indicate exactly what X is. In the case of a Proben1problem, just give its name, e.g. hearta. In other cases, specify how and where other researcherscan get the problem dataset. Sometimes this can be done by giving a reference to a paper publishedearlier. Otherwise a �le containing the dataset should be available for anonymous FTP somewhereand you should give the FTP address that must be used to get the dataset. If you prepare your owndatasets, make them available publicly by FTP if possible. If you use problems from Proben1, justcite this report.Often researchers use a problem that has been used several times before and refer to it by a naturallanguage name, for instance \A test was made using Michalski's soybean data". Such kinds of refer-ences often result in confusion, because several di�erent versions of the data exist. So please eitherrefer to a named problem from a well-documented benchmark collection such as Proben1 or give theaddress of a data �le available by FTP or reference a paper that does so.2.3 Training set, validation set, test setThe data used for performing benchmarks on neural network learning algorithms must be split intoat least two parts: one part on which the training is performed, called the training data, and anotherpart on which the performance of the resulting network is measured, called the test set. The idea isthat the performance of a network on the test set estimates its performance in real use. This meansthat absolutely no information about the test set examples or the test set performance of the networkmust be available during the training process; otherwise the benchmark is invalid.In many cases the training data is further subdivided. Some examples are put into the actual trainingset, others into a so-called validation set. The latter is used as a pseudo test set in order to evaluate thequality of a network during training. Such an evaluation is called cross validation; it is necessary dueto the over�tting (overtraining) phenomenon: For two networks trained on the same problem, the onewith larger training set error may actually be better , since the other has concentrated on peculiaritiesof the training set at the cost of losing much of the regularities needed for good generalization [7].This is a problem in particular when not very many training examples are available.A popular and very powerful form to use cross validation in neural networks is early stopping: Trainingproceeds not until a minimum of the error on the training set is reached, but only until a minimumof the error on the validation set is reached during training. Training is stopped at this point and thecurrent network state is the result of the training run. Note that the actual procedure is a bit more

10 2 BENCHMARKING RULEScomplicated since there may be many local minima in the validation set error curve and since in orderto recognize a minimum one has to train until the error rises again, so that resetting the network to anearlier state is needed in order to actually stop at the minimum. See section 3.3 for a more concretedescription. Other forms of cross validation besides early stopping are also possible. The data of thevalidation set could be used in any way during training since it is part of the training data. Theactual name `validation set', however, is only appropriate if the set is used to assess the generalizationperformance of the network. Note the di�erentiation: training data is the union of training set andvalidation set.Be sure to specify exactly which examples of a dataset are used for the training, validation, and testset. It is insu�cient to indicate the number of examples used for each set, because it might make asigni�cant di�erence which ones are used where. As a drastic example think of a binary classi�cationproblem where only examples of one class happen to be in the training data.For Proben1, a suggested partitioning into training, validation, and test set is given for each dataset.The size of the training, validation, and test set in all Proben1 data �les is 50%, 25%, and 25%of all examples, respectively. Note that this percentage information is not su�cient for an exactdetermination of the sets unless the total number of examples is divisible by four. Hence, the headerof each Proben1 data �le lists explicitly the number of examples to be used for each set. Assumethat these numbers are X , Y , and Z. Then the standard partitioning is to use the �rst X examplesfor the training set, the following Y examples for the validation set and the �nal Z examples for thetest set. If no validation set is needed, the training set consists of the �rst X + Y examples instead.As said before, for problems with only a small number of examples, results may vary signi�cantlyfor di�erent partitionings (see also the results presented below in section 3.3). Hence it improves thesigni�cance of a benchmark result when di�erent partitionings are used during the measurements andresults are reported for each partitioning separately. Proben1 supports this approach. It containsthree di�erent permutations of each dataset. For instance the problem glass is available in threedatasets glass1, glass2, and glass3, which di�er only in the ordering of examples, thereby de�ningthree di�erent partitionings of the glass problem data. Additional partitionings (although not com-pletely independent ones) are de�ned by the following rules for the order of examples in the dataset�le:a training set, validation set, test set.b training set, test set, validation set.c validation set, training set, test set.d validation set, test set, training set.e test set, validation set, training set.f test set, training set, validation set.This list is to be read as follows: From a partitioning, say glass1, six partitionings can be createdby re-interpreting the data into a di�erent order of training, validation, and test set. For instanceglass1d means to take the data �le of glass1 and use the �rst 25% of the examples for the validationset, the next 25% for the test set, and the �nal 50% for the training set. Obviously, when no validationset is used, a is the same as c and e is the same as f, thus only a, b, d, and e are available. glass1ais identical to glass1. The latter is the preferred name when none of b to f are used in the samecontext.Note that these partitionings are of lower quality than those created by the permutations 1 to 3,since the latter are independent of each other while the former are not. Therefore, the additionalpartitionings should be used only when necessary; in most cases, just using xx1, xx2, and xx3 foreach problem xx will su�ce.If you want to use a di�erent partitioning than these standard ones for a Proben1 problem, specify

2.4 Input and output representation 11exactly how many examples for each set you use. If you do not take them from the data �le in theorder training examples, validation examples, test examples, specify the rule used to determine whichexamples are in which set. Examples: glass1 with 107 examples used for the training set and 107 examplesused for the test set for a standard order but nonstandard size of the sets or glass1 with even-numberedexamples used for the training set and odd-numbered examples used for the test set, the �rst examplebeing number 0 for a nonstandard size and order of sets. If you use the Proben1 conventions, justsay glass1 and mention somewhere in your article that your benchmarks conform to the Proben1conventions, e.g. All benchmark problems were taken from the Proben1 benchmark set; the standardProben1 benchmarking rules were applied.An imprecise speci�cation of the partitioning of a known data set into training, validation and testset is probably the most frequent (and the worst) obstacle to reproducibility and comparability ofpublished neural network learning results.2.4 Input and output representationHow to represent the input and output attributes of a learning problem in a neural network imple-mentation of the problem is one of the key decisions inuencing the quality of the solutions one canobtain. Depending on the kind of problem, there may be several di�erent kinds of attributes thatmust be represented. For all of these attribute kinds, multiple plausible methods of neural networkrepresentation exist. We will now discuss each attribute kind and some common methods to representsuch an attribute.Real-valued attributes are usually rescaled by some function that maps the value into the range0 : : :1 or �1 : : :1 in a way that makes a roughly even distribution within that range. They arerepresented either by a single network input or by a range of inputs using a topological encoding (e.g.overlapping gaussian receptive �elds). Proben1 always uses a single input for a real-valued attribute,the rescaling function is always linear (with only one exception where the logarithm is used).Integer-valued attributes are most often handled as if they were real-valued. If the number ofdi�erent values is only small, one of the representations used for ordinal attributes may also beappropriate. Note that often attributes whose values are integer numbers are not really integer-valuedbut are ordinal or cardinal instead. Proben1 treats all integer-valued attributes as real-valued.Ordinal attributes with m di�erent values are either mapped onto an equidistant scale makingthem pseudo-real-valued or are represented by m � 1 inputs of which the leftmost k have value 1 torepresent the k-th attribute value while all others are 0. A binary code using only dlog2me inputscan also be used. There are only few ordinal attributes in the Proben1 problems. For these, eitherpseudo-real-valued or pseudo-nominal representation is used.Nominal attributes with m di�erent values are usually either represented using a 1-of-m code or abinary code. With the exception of gene, which uses a 2-bit binary code, Proben1 always employs1-of-m representation for nominal attributes.Missing attribute values can be replaced by a �xed value (e.g. the mean of the non-missing valuesof this attribute or a value found using an EM algorithm [8]) or can be represented explicitly byadding another input for the attribute that is 1 i� the attribute value is missing. Proben1 uses bothmethods; the �xed value method is used only when but a few of the values are missing. Other methodsare possible if one extends the training regime away from static examples, e.g. by using a Boltzmannmachine [18].

12 2 BENCHMARKING RULESMost of the above discussion applies to outputs as well, except for the fact that there never are missingoutputs. Most Proben1 problems are classi�cation problems; all of these are encoded using a 1-of-moutput representation for the m classes, even for m = 2.The problem representation in Proben1 is �xed. This improves the comparability of results andreduces the work needed run benchmarks. The Proben1 datasets are meant to be used exactly asthey are. The �xed neural network input and output representation is actually one of the majorimprovements of Proben1 over the previous situation. In the past, most benchmarks consistingof real data were publicly available only in a symbolic representation which can be encoded intoa representation suitable for neural networks in many di�erent ways. This fact made comparisonsdi�cult.When you perform benchmarks that do not use problems from a well-de�ned benchmark collection,be sure to specify exactly which input and output representation you use. Since such a descriptionconsumes a lot of space, the only feasible way will usually be to make the data �le used for the actualbenchmark runs available publicly.Should you make small changes to the representation of Proben1 problems used in your benchmarks,specify these changes exactly. The most common cases of such changes will be concerned with theoutput representation. If you want to use only a single output for binary classi�cation problems, saycard1, using only one output or something similar. You may also want to ignore one of the outputsfor problems having more than two classes, since one output is theoretically redundant since theoutputs always sum to one. If you ignore an output, you should always ignore the last output fromthe given representation. If you want to use outputs in the range �1 : : :1 instead of 0 : : :1 or in asomewhat reduced range in order to avoid saturation of the output nodes, say for example with thetarget outputs rescaled to the range �0:9 : : :0:9. It will be assumed that the rescaling was done using alinear transformation of the form y0 = ay + b. Other possibilities include for instance with the outputsrescaled to mean 0 and standard deviation 1, which will also be assumed to be made using a lineartransformation. Of course, all these rescaling modi�cations can be done for inputs as well, but tell usif you make such changes. I do not recommend to use Proben1 problems with representations thatdi�er substantially from the standard ones unless �nding good representations an important part ofyour work.The input and output representations used in Proben1 are certainly not optimal, but they are meantto be good or at least reasonable ones. Di�erences in problem representation, though, can makefor large di�erences in the performance obtained (see for instance [2]), so be sure to specify yourrepresentation precisely.2.5 Training algorithmObviously, an exact speci�cation of the training algorithm used is essential. When you use a knownalgorithm, specify it by giving a reference to a paper that describes it and then either use the algorithmexactly as speci�ed in that paper or describe precisely all alterations that you make. If you introducea new algorithm, give the algorithm a name to make it easier for other authors to refer to youralgorithm. If there are several variants of your algorithm, give each variant its own name, perhaps byjust appending a digit or letter to the primary name.Whether new algorithm or not, clearly specify the values of all free parameters of the algorithmthat you used. When introducing a new algorithm you should clearly indicate a prototype parametervector (including parameter names) that must be speci�ed to document each use of the algorithm.It is a common error that some of the parameter values used for an algorithm remain unspeci�ed.

2.6 Error measures 13These parameters may include (depending on the algorithm) learning rate, momentum, weight decay,initialization, temperature, etc. For each such parameter there should be a clearly indicated uniquename and perhaps also a symbol. For all of the parameters that are adaptive, the adaption rule andits parameters have to be speci�ed as well. A particularly important aspect of a training algorithm isits stopping criterion, so do not forget to specify that as well (see section 3.3 for an example).For all user-selectable parameters, specify how you found the values used and try to characterize howsensitive the algorithm is to their choice. Note that you must not in any way use the performance onthe test set while searching for good parameter values; this would invalidate your results! In particular,choosing parameters based on test set results is an error.2.6 Error measuresMany di�erent error measures (also called error functions, objective functions, cost functions, orloss functions) can be used for network training. The most commonly used is the squared error:E(o; t) = Pi (oi � ti)2 for actual output values oi at the i-th output node and target output valuesti for one example. Note that some researchers multiply this by 1/2 in order to make the derivativesimpler2; this is considered non-standard. The above measure gives one error value per example |obviously too much data to report. Thus one usually reports either the sum or the average of thesevalues over the set of all examples. The average is called the mean squared error. It has the advantageof being independent of the size of the dataset and is thus preferred. Note that mean squared errorstill depends on the number of output coe�cients in the problem representation and on the range ofoutput values used. I thus suggest to normalize for these factors as well and report a squared errorpercentage as follows E = 100 � omax � ominN � P PXp=1 NXi=1 (opi � tpi)2where omin and omax are the minimum and maximum values of output coe�cients in the problemrepresentation (assuming these are the same for all output nodes), N is the number of output nodesof the network, and P is the number of patterns (examples) in the data set considered. Note thatnetworks can (and in early training phases often will) produce more than 100% squared error if theyuse output nodes whose activation is not restricted to the range omin : : :omax.Other error measures include the softmax error, the cross entropy, the classi�cation �gure of merit,linear error, exponential error, minimum variance error, and others [20]. If you use any of these, statethe error term explicitly. For some of them, the above idea of error percentages is applicable as well.The actual target function for classi�cation problems is usually not the continuous error measure usedduring training, but the classi�cation performance. However, since neural networks with continuousoutputs are able to approximate a-posteriori probabilities [16], which are often useful if the networkoutputs are to be used for further processing steps, the classi�cation performance is not the onlymeasure we are interested in. If space permits, you should thus report the actual error values inaddition to the classi�cation performance. Classi�cation performance should be reported in percent ofincorrectly classi�ed examples, the classi�cation error . This is better than reporting the percentage ofcorrectly classi�ed examples, the classi�cation accuracy , because the latter makes important di�erencesinsu�ciently clear: An accuracy of 98% is actually twice as good as one of 96%, which is easier tosee if the errors are reported (2% compared to 4%). If classi�cation accuracy was far below 50%instead of being far above 50%, the accuracy would better be report instead of the error, but this is an2without the factor 1/2 in the error function, the correct derivative is twice as large as the one that is usually usedin formulations of backpropagation. Using the common derivative thus amounts to using halved learning rates.

14 2 BENCHMARKING RULESuncommon case. Avoid the term classi�cation performance, use classi�cation accuracy and classi�cationerror instead.There are several possibilities to determine the classi�cation a network has computed from the outputsof the network. We assume a 1-of-m encoding for m classes using output values 0 and 1. The simplestclassi�cation method is the winner-takes-all, i.e., the output with the highest activation designates theclass. Other methods involve the possibility of rejection, too. For instance one could require thatthere is exactly one output that is larger than 0.5, which designates the class if it exists and leadsto rejection otherwise. To put an even stronger requirement on the credibility of the network outputone can set thresholds, e.g. accept an output as 0 if it is below 0.3 and as 1 if it is above 0.7, andreject unless there is exactly one output that is 1 while all others are 0 by this interpretation. Thereare several other possibilities. When no rejection capability is needed, the winner-takes-all method isconsidered standard. In all other cases, describe your classi�cation decision function explicitly.2.7 Network usedSpecify exactly the topology of the neural network used in any benchmark test. The topology of anetwork is described by the graph of the nodes (units, vertices, neurons) and connections (weights,edges, synapses). Avoid the terms `neuron' and `synapse', because they are inappropriate for arti�cialneural networks. The term `weight' should be used to refer to the parameter attached to a connection,but not to the connection itself.To describe the topology, try to refer to common topology models. For instance for the common caseof the so-called fully connected layered feed forward networks, the numbers of nodes in each layer frominput to output can be given as a sequence: a 5-4-6 network refers to a network with 5 input, 4 hidden,and 6 output nodes. There is confusion how to count the number of layers in a network, so do not calla network like the one above a \three layer network" (counting all groups of nodes) nor a \two layernetwork" (counting only the groups of nodes with input connections). Instead, call it a network withone hidden layer. This generalizes to arbitrary numbers of layers. For instance, a 5-10-3-5-6 is a threehidden layer network.Specifying the number of nodes is not su�cient even for the \fully connected" networks, because by thisterm, some people mean that all connections between adjacent layers are present, while others meanthat all connections are present, even those that skip intermediate layers (shortcut connections). Thus,use formulations like with all feed forward connections between adjacent layers or with all feed forwardconnections, including all shortcut connections as a complement to the speci�cation of the size of thelayers. Examples: a 5-4-6 network with all feed forward connections, including all shortcut connections ornetworks with one hidden layer (having between 2 and 20 hidden nodes) and all feed forward connectionsbetween adjacent layers.Most networks also have a bias (or threshold) for all hidden and output nodes. This bias can beimplemented either as an incoming connection from a node with constant non-zero output (the biasnode) or as an adaptable parameter of the node activation function. Since the style of implementationis usually irrelevant and networks without bias are the exception, bias need not be mentioned. Ifsome nodes do not use bias, specify which (and why). Note that if you compute the number of freeparameters in a network, the bias parameter of each hidden and output node has to be included. Sincethis may confuse the reader, you should mention the bias in this case.For recurrent networks use standard names such as Jordan or Elman network where appropriate andback it up by a reference or further explanation. Non-standard network topologies or non-standardnetwork models such as networks with shared weights [14] have to be described in detail.

2.8 Training results 15Other properties of the network architecture also have to be speci�ed: the range and resolution ofthe weight parameters (unless plain 32-bit oating point is used), the activation function of each nodein the network (except for the input nodes which are assumed to use the identity function; see alsosection 2.10), and any other free parameters associated with the network.2.8 Training resultsUsually what one is interested in when training a neural network is its generalization performance.The value that is usually used to characterize generalization performance is the error on a test set.A test set is a set of examples that was not used in any way whatsoever during the training process(see section 2.3 above). This test set error is thus the primary result to be presented for any learningproblem used. The corresponding errors on the training and validation set, if any, are of only marginalinterest and need thus not be reported.Since training a neural network usually involves some kind of random initialization, the results ofseveral training runs of the same algorithm on the same dataset will di�er. In order to make reliablestatements about the performance of an algorithm it is thus necessary to make several runs and reportstatistics on the distribution of results obtained. If possible, use either 10 runs or 30 runs or somepower of ten of these numbers, because if many researchers use the same numbers of runs directcomparisons are easier. If these numbers don't seem appropriate for some reason, try to use either 20or 60 runs or some power of ten of these numbers. The commonly used statistics to report about theresults of the runs should be primarily the mean and n�1 standard deviation3 of test set error (and/ortest set classi�cation error) and the `best' run (see below), secondarily the minimum, maximum, andmedian, and if still more data shall be presented, all �ve quartiles or even a �ne-grained distributionhistogram.The meaning of the `best' run result is to characterize what one could get using a method of modelselection that trained several networks and then picked that one of them that \looked best". Incontrast, all other statistics characterize the quality one can expect if one trains just one network.The selection of the `best' run must thus not be based on the results of the test set, because thatwould mean to use the test set error during the model selection process whereas the test set erroris conceptually the result of the model selection process. Instead, training set error or validation seterror or some other quality measure computed exclusively from the network and the training datamust be used. This means that the `best' network will often not have the minimum test error! So forinstance if your selection criterion is validation set error, you should report something like the networkwith lowest validation set error in 30 runs had a test set classi�cation error of 2.34%.If for some reason you want to exclude some of the runs from the results presented, for instancebecause these runs are considered to have not converged (whatever that may mean), always excludeexactly half of all runs. This allows for easier comparison with the results of other researchers. Theruns to be excluded are the worst runs in the inverse sense of `best' from above, i.e., you must notexclude those runs that have the worst test set error.You may want to apply methods of statistical inference to your training results, for instance in orderto test whether one algorithm is signi�cantly better than another. In this case, it may be necessary toremove a small number of outliers from the samples to be compared in order to make the data satisfysome requirement of the statistical procedure. For instance in order to apply a t-test, the samplesto be compared must have a normal distribution. If a sample (of, say, the test errors from 30 runs)is approximately normal except for, say, two outliers with very much larger (or smaller) errors than3That is, standard deviation computed based on the degrees of freedom, which is one less than the number n of runs.

16 2 BENCHMARKING RULESall the rest, you can remove these two outliers from the sample. Never remove more than 10% of thevalues from any one sample; usually one should remove much less. Never remove an outlier unlessthe resulting distribution satis�es the requirement well enough. Other data transformations thanremoving outliers may be more appropriate to satisfy the requirements of the statistical procedure;for instance test errors are often log-normally distributed, so one must use the logarithm of the testerror instead of the test error itself in order to produce valid results. See also section 3.3.4.2.9 Training timesUnless your algorithm does perform a lot of additional work besides propagating data through aneural network, the most sensible measure of training time is the number of connection traversals(connection crossings, sometimes misleadingly called connection updates) needed. This measure isuseful because it is independent of a particular machine and implementation. Forward and backwardpropagation counts individually, for certain algorithms that require more than one quantity to bebackwardly propagated through each connection such as [1, 13], each quantity counts as one traversalat each connection. Actual weight update steps also count as one traversal per updated connection.If possible report your training times using the connection traversal measure.If your algorithm performs much work besides traversing the network, the actual CPU time spent isthe best measure to give. The disadvantage of this measure is that it leaves two free parameters: thespeed of the machine used and the e�ciency of the software implementation. Thus, the measure isdirectly comparable only for the same software on the same machine. When reporting CPU times, givethe precise brand and model number of the machine you used and its nominal performance in SPECmarks; give a hint as to whether the software used should be regarded e�cient or not so e�cient.However, CPU time is certainly always useful as a ballpark �gure for the computational size of thetackled problem.A less useful measure is the number of epochs used, i.e., the number of times each example wasprocessed. This value can be misleading, because the computational cost of one epoch can di�ersigni�cantly from one algorithm or network to another. It is nevertheless �ne to present the epochcounts in addition to other measures.Regarding non-converging runs [3], the values you report should reect the actual amount of compu-tation time that was spent. This means that your algorithm should de�ne some stopping or restartingcriterion and the sum of all computation actually performed before and after the restart(s) should bereported as the training time. It is important to report the precise stopping or restarting criterionthat was used.2.10 Important detailsFinally, some important details are often forgotten; all of them were already shortly mentioned above.Activation function. Exactly specify the activation function used in the nodes (units) of your network.You can say standard sigmoid to mean 1=(1 + e�x) and you can say tanh to mean the tangens hyper-bolicus, which is 2=(1 + e�2x) � 1; these two are the standard choices. All other activation functionsshould be given explicitly. Specify whether the output nodes of the network also use this activationfunction or use the identity function instead. If the nodes of the input layer (fan-out nodes) performany computation on the input values, specify this computation.

2.11 Author's quick reference 17Network initialization. Specify the initialization conditions of the network. The most important pointis the initialization of the network's weights, which must be done with random values for most algo-rithms in order to break the symmetry among the hidden nodes. Common choices for the initializationare for instance �xed methods such as random weights from range �0:1 : : :0:1, where the distribution isassumed to be even unless stated otherwise, or methods that adapt to the network topology used suchas random weights from range �1=pN : : :1=pN for connections into nodes with N input connections.Just like the termination criterion, the initialization can have signi�cant impact on the results ob-tained, so it is important to specify it precisely. Specifying the exact sets of weights used is hopelesslydi�cult and should usually not be tried.Termination and phase transition criteria. Specify exactly the criteria used to determine when trainingshould stop, or when training should switch from one phase to the next, if any. For most algorithms,the results are very sensitive to these criteria. Nevertheless, in most publications the criteria arespeci�ed only roughly, if at all. This is one of the major weaknesses of many articles on neuralnetwork learning algorithms. See section 3.3 for an example of how to report stopping criteria; theGL� family of stopping criteria, which is de�ned in that section, is recommended when using the earlystopping method.2.11 Author's quick referenceThe following is a quick reference check list of all the points that should be mentioned in a publicationreporting a benchmark test. Remember that peculiar points not listed here may apply additionally tothe particular benchmarks you want to report.1. Problem: name, address, version/variant.2. Training set, validation set, test set.3. Network: nodes, connections, activation functions.4. Initialization.5. Algorithm parameters and parameter adaption rules.6. Termination, phase transition, and restarting criteria.7. Error function and its normalization on the results reported.8. Number of runs, rules for including or excluding runs in results reported.3 Benchmarking problemsThe following subsections each describe one of the problems of the Proben1 benchmark set. Foreach problem, a rough description of the semantics of the dataset is given, plus some informationabout the size of the dataset, its origin, and special properties, if any. For most of the problems,results have previously been published in the literature. Since these results never use exactly the samerepresentation and training set/test set splitting as the Proben1 versions, the references are not givenhere; some of them can, however, be found in the documentation supplied with the original dataset,which is part of Proben1. The �nal section reports on the results of some learning runs with theProben1 datasets.

18 3 BENCHMARKING PROBLEMS3.1 Classi�cation problems3.1.1 CancerDiagnosis of breast cancer. Try to classify a tumor as either benign or malignant based on cell de-scriptions gathered by microscopic examination. Input attributes are for instance the clump thickness,the uniformity of cell size and cell shape, the amount of marginal adhesion, and the frequency of barenuclei.9 inputs, 2 outputs, 699 examples. All inputs are continuous; 65.5% of the examples are benign. Thismakes for an entropy of 0.93 bits per example4.This dataset was created based on the \breast cancer Wisconsin" problem dataset from the UCIrepository of machine learning databases. Please mention in any publication presenting results for thisdata set that the data was originally obtained from the University of Wisconsin Hospitals, Madison,from Dr. William H. Wolberg. Also please cite one or more of the four publications mentioned in thedetailed documentation of the original dataset in the proben1/cancer directory.3.1.2 CardPredict the approval or non-approval of a credit card to a customer. Each example represents a realcredit card application and the output describes whether the bank (or similar institution) granted thecredit card or not. The meaning of the individual attributes is unexplained for con�dence reasons.51 inputs, 2 outputs 690 examples. This dataset has a good mix of attributes: continuous, nominalwith small numbers of values, and nominal with larger numbers of values. There are also a few missingvalues in 5% of the examples. 44% of the examples are positive; entropy 0.99 bits per example.This dataset was created based on the \crx" data of the \Credit screening" problem dataset from theUCI repository of machine learning databases.3.1.3 DiabetesDiagnose diabetes of Pima indians. Based on personal data (age, number of times pregnant) and theresults of medical examinations (e.g. blood pressure, body mass index, result of glucose tolerance test,etc.), try to decide whether a Pima indian individual is diabetes positive or not.8 inputs, 2 outputs, 768 examples. All inputs are continuous. 65.1% of the examples are diabetesnegative; entropy 0.93 bits per example. Although there are no missing values in this dataset accordingto its documentation, there are several senseless 0 values. These most probably indicate missing data.Nevertheless, we handle this data as if it was real, thereby introducing some errors (or noise, if youwant) into the dataset.This dataset was created based on the \Pima indians diabetes" problem dataset from the UCI repos-itory of machine learning databases.4Entropy E =PClasses c P (c) log2(P (c)) for class probabilities P (c)

3.1 Classi�cation problems 193.1.4 GeneDetect intron/exon boundaries (splice junctions) in nucleotide sequences. From a window of 60 DNAsequence elements (nucleotides) decide whether the middle is either an intron/exon boundary (adonor), or an exon/intron boundary (an acceptor), or none of these.120 inputs, 3 outputs, 3175 examples. Each nucleotide, which is a four-valued nominal attribute, isenoded binary by two binary inputs (The input values used are �1 and 1, therefore the inputs are notdeclared as boolean. This is the only dataset that has input values not restricted to the range 0 : : :1).There are 25% donors and 25% acceptors in the dataset; entropy 1.5 bits per example.This dataset was created based on the \splice junction" problem dataset from the UCI repository ofmachine learning databases.3.1.5 GlassClassify glass types. The results of a chemical analysis of glass splinters (percent content of 8 di�erentelements) plus the refractive index are used to classify the sample to be either oat processed or nonoat processed building windows, vehicle windows, containers, tableware, or head lamps. This task ismotivated by forensic needs in criminal investigation.9 inputs, 6 outputs, 214 examples. All inputs are continuous, two of them have hardly any correlationwith the result. As the number of examples is quite small, the problem is sensitive to algorithms thatwaste information. The sizes of the 6 classes are 70, 76, 17, 13, 9, and 29 instances, respectively;entropy 2.18 bits per example.This dataset was created based on the \glass" problem dataset from the UCI repository of machinelearning databases.3.1.6 HeartPredict heart disease. Decide whether at least one of four major vessels is reduced in diameter bymore than 50%. The binary decision is made based on personal data such as age, sex, smokinghabits, subjective patient pain descriptions, and results of various medical examinations such as bloodpressure and electro cardiogram results.35 inputs, 2 outputs, 920 examples. Most of the attributes have missing values, some quite many: Forattributes 10, 12, and 11, there are 309, 486, and 611 values missing, respectively. Most other attributeshave around 60 missing values. Additional boolean inputs are used to represent the \missingness" ofthese values. The data is the union of four datasets: from Cleveland Clinic Foundation, HungarianInstitute of Cardiology, V.A. Medical Center Long Beach, and University Hospital Zurich. There isan alternate version of the dataset heart, called heartc, which contains only the Cleveland data (303examples). This dataset represents the cleanest part of the heart data; it has only twomissing attributevalues overall, which makes the \value is missing" inputs of the neural network input representationalmost redundant. Furthermore, there are still another two versions of the same data, hearta andheartac, corresponding to heart and heartc, respectively. The di�erence to the datasets describedabove is the representation of the output. Instead of using two binary outputs to represent the two-class decision \no vessel is reduced" against \at least one vessel is reduced", hearta and heartac usea single continuous output that represents by the magnitude of its activation the number of vesselsthat are reduced (zero to four). Thus, these versions of the heart problem are approximation tasks.

20 3 BENCHMARKING PROBLEMSThe heart and hearta datasets have 45% patients with \no vessel is reduced" (entropy 0.99 bits perexample), for heartc and heartac the value is 54% (entropy 1.00 bit per example).These datasets were created based on the \heart disease" problem datasets from the UCI repositoryof machine learning databases. Note that using these datasets requires to include in any publicationof the results the name of the institutions and persons who have collected the data in the �rst place,namely (1) Hungarian Institute of Cardiology, Budapest; Andras Janosi, M.D., (2) University Hospital,Zurich, Switzerland; William Steinbrunn, M.D., (3) University Hospital, Basel, Switzerland; MatthiasP�sterer, M.D., (4) V.A. Medical Center, Long Beach and Cleveland Clinic Foundation; RobertDetrano, M.D., Ph.D. All four of these should be mentioned for the heart and hearta datasets,only the last one for the heartc and heartac datasets. See the detailed documentation of the originaldatasets in the proben1/heart directory.3.1.7 HorsePredict the fate of a horse that has a colic. The results of a veterinary examination of a horse havingcolic are used to predict whether the horse will survive, will die, or will be euthanized.58 inputs, 3 outputs, 364 examples. In 62% of the examples the horse survived, in 24% it died, andin 14% it was euthanized; entropy 1.32 bits per example. This problem has very many missing values(about 30% overall of the original attribute values), which are all represented as missing explicitlyusing additional inputs.This dataset was created based on the \horse colic" problem dataset from the UCI repository ofmachine learning databases.3.1.8 MushroomDiscriminate edible from poisonous mushrooms. The decision is made based on a description of themushroom's shape, color, odor, and habitat.125 inputs, 2 outputs, 8124 examples. Only one attribute has missing values (30% missing). Thisdataset is special within the benchmark set in several respects: it is the one with the most inputs,the one with the most examples, the easiest one5, and it is the only one that is not real in the sensethat its examples are not actual observations made in the real world, but instead are hypotheticalobservations based on descriptions of species in a book (\The Audubon Society Field Guide to NorthAmerican Mushrooms"). The examples correspond to 23 species of gilled mushrooms in the Agaricusand Lepiota Family. In the book, each species is identi�ed as de�nitely edible, de�nitely poisonous,or of unknown edibility and not recommended. This latter class was combined with the poisonousone. 52% of the examples are edible (ahem, I mean, have class attribute `edible'); entropy 1.00 bitper example.This dataset was created based on the \agaricus lepiota" dataset in the \mushroom" directory fromthe UCI repository of machine learning databases.5The mushroom dataset is so simple that a net that performs only a linear combination of the inputs can learn itreliably to 0 classi�cation error on the test set!

3.2 Approximation problems 213.1.9 SoybeanRecognize 19 di�erent diseases of soybeans. The discrimination is done based on a description ofthe bean (e.g. whether its size and color are normal) and the plant (e.g. the size of spots on theleafs, whether these spots have a halo, whether plant growth is normal, whether roots are rotted) plusinformation about the history of the plant's life (e.g. whether changes in crop occurred in the lastyear or last two years, whether seeds were treated, how the environment temperature is).35 inputs, 19 outputs, 683 examples. This is the problem with the highest number of classes in thebenchmark set. Most attributes have a signi�cant number of missing values. The soybean problem hasbeen used often in the machine learning literature, although with several di�erent datasets, makingcomparisons di�cult. Most of the past uses use only 15 of the 19 classes, because the other four haveonly few instances. In this dataset, these are 8, 14, 15, 16 instances versus 20 for most of the otherclasses; entropy 3.84 bits per example.This dataset was created based on the \soybean large" problem dataset from the UCI repositoryof machine learning databases. Many results for this learning problem have been reported in theliterature, but these were based on a large number of di�erent versions of the data.3.1.10 ThyroidDiagnose thyroid hyper- or hypofunction. Based on patient query data and patient examination data,the task is to decide whether the patient's thyroid has overfunction, normal function, or underfunction.21 inputs, 3 outputs, 7200 examples. For various attributes there are missing values which are alwaysencoded using a separate input. Since some results for this dataset using the same encoding arereported in the literature, thyroid1 is not a permutation of the original data, but retains the originalorder instead. The class probabilities are 5.1%, 92.6%, and 2.3%, respectively; entropy 0.45 bits perexample.This dataset was created based on the \ann" version of the \thyroid disease" problem dataset fromthe UCI repository of machine learning databases.3.1.11 SummaryFor a quick overview of the classi�cation problems, have a look at table 1. The table summarizes theexternal aspects of the training problems that you have already seen in the individual descriptionsabove. It does also discriminate inputs that take on only two di�erent values (binary inputs), inputsthat have more than two (\continuous" inputs), and inputs that are present only to indicate thatvalues at some other inputs are missing. In addition, the table indicates the number of attributesof the original problem formulation that were used in the input representation, discriminated to beeither binary attributes, \continuous" attributes, or nominal attributes with more than two values.3.2 Approximation problems3.2.1 BuildingPrediction of energy consumption in a building. Try to predict the hourly consumption of electricalenergy, hot water, and cold water, based on the date, time of day, outside temperature, outside airhumidity, solar radiation, and wind speed.

22 3 BENCHMARKING PROBLEMSProblem Problem attributes Input values Classes Examples Eb c n tot. b c m tot. bcancer 0 9 0 9 0 9 0 9 2 699 0.93card 4 6 5 15 40 6 5 51 2 690 0.99diabetes 0 8 0 8 0 8 0 8 2 768 0.93gene 0 0 60 60 120 0 0 120 3 3175 1.50glass 0 9 0 9 0 9 0 9 6 214 2.18heart 1 6 6 13 18 6 11 35 2 920 0.99heartc 1 6 6 13 18 6 11 35 2 303 1.00horse 2 13 5 20 25 14 19 58 3 364 1.32mushroom 0 0 22 22 125 0 0 125 2 8124 1.00soybean 16 6 13 35 46 9 27 82 19 683 3.84thyroid 9 6 0 21 9 6 6 21 3 7200 0.45Problems and the number of binary, continuous, and nominal attributes in the original dataset, number ofbinary and continuous network inputs, number of network inputs used to represent missing values, number ofclasses, number of examples, class entropy E in bits per example. (Continuous means more than two di�erentordered values). Table 1: Attribute structure of classi�cation problems14 inputs, 3 outputs, 4208 examples. This problem is in its original formulation an extrapolationtask. Complete hourly data for four consecutive months was given for training, and output data forthe following two months should be predicted. The dataset building1 reects this formulation of thetask: its examples are in chronological order. The other two versions, building2 and building3 arerandom permutations of the examples, simplifying the problem to be an interpolation problem.The dataset was created based on problem A of \The Great Energy Predictor Shootout | the �rstbuilding data analysis and prediction problem" contest, organized in 1993 for the ASHRAE meetingin Denver, Colorado.3.2.2 FlarePrediction of solar ares. Try to guess the number of solar ares of small, medium, and large size thatwill happen during the next 24-hour period in a �xed active region of the sun surface. Input valuesdescribe previous are activity and the type and history of the active region.24 inputs, 3 outputs, 1066 examples. 81% of the examples are zero in all three output values.This dataset was created based on the \solar are" problem dataset from the UCI repository ofmachine learning databases.3.2.3 HeartaThe analog version of the heart disease diagnosis problem. See section 3.1.6 on page 19 for thedescription. For hearta, 44.7%, 28.8%, 11.8%, 11.6%, 3.0% of all examples have 0, 1, 2, 3, 4 vesselsreduced, respectively. For heartac these values are 54.1%, 18.2%, 11.9%, 11.6%, and 4.3%.

3.3 Some learning results 233.2.4 SummaryFor a quick overview of the approximation problems, have a look at table 2. The table summarizesProblem Problem attribs. Input values Outputs Examplesb c n tot. b c m tot. cbuilding 0 6 0 6 8 6 0 14 3 4208are 5 2 3 10 22 2 0 24 3 1066hearta 1 6 6 13 18 6 11 35 1 920heartac 1 6 6 13 18 6 11 35 1 303Problems and the number of binary, continuous, and nominal attributes of the original problem representationused, number of binary and continuous network inputs, number of network inputs used to represent missingvalues, number of outputs, number of examples. (Continuous means more than two di�erent ordered values).Table 2: Attribute structure of approximation problemsthe external aspects of the training problems that you have already seen in the individual descriptionsabove. It does also discriminate inputs that take on only two di�erent values (binary inputs), inputsthat have more than two (\continuous" inputs), and inputs that are present only to indicate thatvalues at some other inputs are missing. In addition, the table indicates the number of attributesof the original problem formulation that were used in the input representation, discriminated to beeither binary attributes, \continuous" attributes, or nominal attributes with more than two values.The outputs have continuous values.3.3 Some learning resultsIn this section we will see a few results of neural network learning runs on the datasets describedabove. The runs were made with linear networks, having only direct connections from the inputsto the outputs, and with various fully connected multi layer perceptrons with one or two layers ofsigmoidal hidden nodes.The method applied for training was the same in all cases and can be summarized as follows: Trainingwas performed using the RPROP algorithm [17] with parameters as indicated below. RPROP is afast backpropagation variant similar in spirit to Quickprop. It is about as fast as Quickprop butrequires less adjustment of the parameters to be stable. The parameters used were not determinedby a trial-and-error search, but are just educated guesses instead. RPROP requires epoch learning,i.e., the weights are updated only once per epoch. While epoch updates are is not desirable for verylarge training sets, it is a good method for small and medium training sets such as those of Proben1,because it allows the use of acceleration techniques as those used in RPROP. Conjugate gradientoptimization methods would be another class of useful algorithms for this kind of training problems[11].The squared error function was used. For each dataset, training used the training set and the erroron the validation set was measured after every �fth epoch (this interval between two measurementsof the validation set error is called the strip length, see below). Training was stopped as soon as theGL5 stopping criterion was ful�lled (see below) or when training progress sank below 0.1 per thousand(see below) or when a maximum of 3000 epochs had been trained. The test set performance was thencomputed for that state of the network which had minimum validation set error during the trainingprocess.

24 3 BENCHMARKING PROBLEMSThis method, called early stopping [6, 9, 12], is a good way to avoid over�tting [7] of the network to theparticular training examples used, which would reduce the generalization performance. For optimalperformance, the examples of the validation set should be used for further training afterwards, in ordernot to waste valuable data. Since the optimal stopping point for this additional training is not clear,it was not performed in the experiments reported here.The GL5 stopping criterion is de�ned as follows. Let E be the squared error function. Let Etr(t) bethe average error per example over the training set, measured during epoch t. Eva(t) is the error onthe validation set after epoch t and is used by the stopping criterion. Ete(t) is the error on the testset; it is not known to the training algorithm but characterizes the quality of the network resultingfrom training.The value Eopt(t) is de�ned to be the lowest validation set error obtained in epochs up to t:Eopt(t) = mint0�t Eva(t0)Now we de�ne the generalization loss at epoch t to be the relative increase of the validation error overthe minimum-so-far (in percent): GL(t) = 100 � �Eva(t)Eopt(t) � 1�A high generalization loss is one candidate reason to stop training. This leads us to a class of stoppingcriteria: Stop as soon as the generalization loss exceeds a certain threshold �. We de�ne the classGL� as GL� : stop after �rst epoch t with GL(t) > �To formalize the notion of training progress, we de�ne a training strip of length k to be a sequence ofk epochs numbered n+1 : : :n+ k where n is divisible by k. The training progress (measured in partsper thousand) measured after such a training strip is thenPk(t) = 1000 � � Pt02t�k+1:::tEtr(t0)k �mint02t�k+1:::tEtr(t0) � 1�that is, \how much was the average training error during the strip larger than the minimum trainingerror during the strip?" Note that this progress measure is high for instable phases of training, wherethe training set error goes up instead of down. The progress is, however, guaranteed to approach zeroin the long run unless the training is globally unstable (e.g. oscillating). Just like the progress, GL isalso evaluated only at the end of each training strip.3.3.1 Linear networksA �rst set of results is shown in the tables 3 (classi�cation problems) and 4 (approximation problems).These tables contain the results of 10 runs training a linear neural network for each of the datasets.The network had no hidden nodes, just direct connections from each input to each output. The outputunits used the identity activation function, i.e., their output is just the summed input. The RPROPalgorithm used the following parameters: �+ = 1:2, �� = 0:5, �0 2 0:005 : : :0:02 randomly per weight,�max = 50, �min = 0, initial weights from�0:01 : : :0:01 randomly. Training was terminated accordingto the GL5 stopping criterion using a strip length of 5 epochs.The results of these training runs give a �rst impression of how di�cult the problems are. There aresome interesting observations to be made:

3.3 Some learning results 25Problem Training Validation Test Test set Over�t Total Relevantset set set classi�cation epochs epochsmean stddev mean stddev mean stddev mean stddev mean stddev mean stddev mean stddevcancer1 4.25 0.00 2.91 0.01 3.52 0.04 2.93 0.18 0.55 0.59 129 13 104 31cancer2 3.95 0.52 3.77 0.47 4.77 0.39 5.00 0.61 5.36 10.21 87 51 79 51cancer3 3.30 0.00 4.23 0.04 4.11 0.03 5.17 0.00 0.35 0.64 115 18 92 29card1 9.82 0.01 8.89 0.11 10.61 0.11 13.37 0.67 4.57 1.05 62 9 26 3card2 8.24 0.01 10.80 0.16 14.91 0.55 19.24 0.43 4.22 1.08 65 10 23 5card3 9.47 0.00 8.39 0.07 12.67 0.17 14.42 0.46 1.52 0.69 102 9 44 12diabetes1 15.39 0.01 16.30 0.04 17.22 0.06 25.83 0.56 0.05 0.07 209 50 203 47diabetes2 14.93 0.01 17.47 0.02 17.69 0.04 24.69 0.61 0.02 0.02 209 32 204 34diabetes3 14.78 0.02 18.21 0.04 16.50 0.05 22.92 0.35 0.12 0.17 214 22 185 46gene1 8.42 0.00 9.58 0.01 9.92 0.01 13.64 0.10 0.03 0.07 47 6 43 10gene2 8.39 0.00 9.90 0.00 9.51 0.00 12.30 0.14 0.02 0.03 46 4 40 6gene3 8.21 0.00 9.36 0.01 10.61 0.01 15.41 0.13 0.03 0.06 42 4 39 6glass1 8.83 0.01 9.70 0.04 9.98 0.10 46.04 2.21 3.81 0.42 129 13 23 5glass2 8.71 0.09 10.28 0.19 10.34 0.15 55.28 1.27 5.74 0.67 34 6 14 2glass3 8.71 0.02 9.37 0.06 11.07 0.15 60.57 3.82 1.76 0.57 135 30 27 11heart1 11.19 0.01 13.28 0.06 14.29 0.05 20.65 0.31 1.14 0.45 134 15 41 5heart2 11.66 0.01 12.22 0.02 13.52 0.06 16.43 0.40 0.13 0.09 184 14 146 48heart3 11.11 0.01 10.77 0.02 16.39 0.18 22.65 0.69 0.14 0.23 142 15 113 53heartc1 10.17 0.01 9.65 0.03 16.12 0.04 19.73 0.56 0.15 0.11 128 10 114 23heartc2 11.23 0.03 16.51 0.08 6.34 0.25 3.20 1.56 3.98 0.56 136 22 25 10heartc3 10.48 0.31 13.88 0.33 12.53 0.44 14.27 1.67 6.23 1.15 26 9 12 3horse1 11.31 0.16 15.53 0.29 12.93 0.38 26.70 1.87 6.22 0.57 27 7 9 2horse2 8.62 0.28 15.99 0.21 17.43 0.45 34.84 1.38 5.54 0.47 42 16 13 3horse3 10.43 0.27 15.59 0.30 15.50 0.45 32.42 2.65 6.34 1.07 26 6 8 3mushroom1 0.014 | 0.014 | 0.011 | 0.00 | 0.00 | 3000 | 3000 |soybean1 0.65 0.00 0.98 0.00 1.16 0.00 9.47 0.51 0.28 0.18 553 11 418 41soybean2 0.80 0.00 0.81 0.00 1.05 0.00 4.24 0.25 0.02 0.02 509 19 504 18soybean3 0.78 0.00 0.96 0.00 1.03 0.00 7.00 0.19 0.03 0.04 533 27 522 28thyroid1 3.76 0.00 3.78 0.01 3.84 0.01 6.56 0.00 0.01 0.03 104 16 99 22thyroid2 3.93 0.00 3.55 0.01 3.71 0.01 6.56 0.00 0.01 0.02 98 16 96 16thyroid3 3.85 0.00 3.39 0.00 4.02 0.00 7.23 0.02 0.02 0.02 114 22 109 21Training set: mean and standard deviation (stddev) of minimum squared error percentage on training setreached at any time during training.Validation set: ditto, on validation set.Test set: mean and stddev of squared test set error percentage at point of minimum validation set error.Test set classi�cation: mean and stddev of corresponding test set classi�cation error.Over�t: mean and stddev of GL value at end of training.Total epochs: mean and stddev of number of epochs trained.Relevant epochs: mean and stddev of number of epochs until minimum validation error.Table 3: Linear network results of classi�cation problems

26 3 BENCHMARKING PROBLEMSProblem Training Validation Test Over�t Total Relevantset set set epochs epochsmean stddev mean stddev mean stddev mean stddev mean stddev mean stddevbuilding1 0.21 0.01 0.92 0.06 0.78 0.02 2.15 4.64 407 138 401 142building2 0.34 0.00 0.37 0.00 0.35 0.00 0.00 0.01 298 23 297 23building3 0.37 0.04 0.38 0.07 0.38 0.08 1.99 4.45 229 107 217 102are1 0.37 0.00 0.34 0.01 0.52 0.01 2.17 1.61 41 5 12 4are2 0.42 0.00 0.46 0.00 0.31 0.02 0.72 0.90 37 3 16 10are3 0.39 0.00 0.46 0.00 0.35 0.00 0.57 0.73 35 6 18 12hearta1 3.82 0.00 4.42 0.03 4.47 0.06 1.68 0.68 118 12 27 10hearta2 4.17 0.00 4.28 0.02 4.19 0.01 0.06 0.13 112 10 107 15hearta3 4.06 0.00 4.14 0.02 4.54 0.01 0.05 0.05 116 8 110 10heartac1 4.05 0.00 4.70 0.02 2.69 0.02 0.01 0.02 98 10 96 11heartac2 3.37 0.11 5.21 0.21 3.87 0.16 6.99 2.27 19 4 13 4heartac3 2.85 0.09 5.66 0.16 5.43 0.23 6.06 0.99 29 9 14 3(The explanation from table 3 applies, except that the test set classi�cation error data is not present here.)Table 4: Linear network results of approximation problems1. Some of the problems seem to be very sensitive to over�tting. They over�t heavily even with onlya linear network (e.g. card1, card2, glass1, glass2, heartac2, heartac3, heartc2, heartc3, horse1,horse2, horse3). This suggests that using a cross validation technique such as early stopping isvery useful for the Proben1 problems.2. For some problems, there are quite large di�erences of behavior between the three permutationsof the dataset (e.g. test errors of card, heartc, heartac; training times of heartc; over�tting ofglass). This illustrates how dangerous it is to compare results for which the splitting of the datainto training and test data was not the same.3. Some of the problems can be solved pretty well with a linear network. So one should be awarethat sometimes a 'real' neural network might be an overkill.4. The mushroom problem is boring. Therefore, only a single run was made. It reached zero test setclassi�cation error after only 80 epochs and zero validation set error after 1550 epochs. However,training stopped only because of the 3000 epoch limit; the errors themselves fell and fell and fell.Due to these results, the mushroom problem was excluded from the other experiments. Using themushroom problem may be interesting, however, if one wants to explore the scaling behavior ofan algorithm with respect to the number of available training examples.5. Some problems exhibit an interesting \inverse" behavior of errors. Their validation error is lowerthan the minimum training error (e.g. cancer1, cancer2, card1, card3, heart3, heartc1, thyroid2,thyroid3). In a few cases, this even extends to the test error (cancer1, thyroid2).3.3.2 Choosing multilayer architecturesAs a baseline for further comparison, a number of runs was made using multilayer networks withsigmoidal hidden nodes. For each problem, 12 di�erent network topologies were used: one-hidden-layer networks with 2, 4, 8, 16, 24, or 32 hidden nodes and two-hidden-layer networks with 2+2, 4+2,4+4, 8+4, 8+8, and 16+8 hidden nodes on the �rst and second hidden layer, respectively. All of thesenetworks had all possible feed forward connections, including all shortcut connections. The sigmoidactivation function used was y = x=(1 + jxj).

3.3 Some learning results 27For each of these topologies, three runs were performed; two with linear output nodes and one withoutput nodes using the sigmoidal activation function. Note that in this case the sigmoid output nodesperform only a one-sided squashing of the outputs, because the sigmoid range is �1 : : :1 whereas thetarget output range is only 0 : : :1. The parameters for the RPROP procedure used in all these runswere �+ = 1:1, �� = 0:5, �0 2 0:05 : : :0:2 randomly per weight, �max = 50, �min = 0, initial weights-0.5: : :0.5 randomly. Exchanging this with the parameter set used for the linear networks would,however, not make much of a di�erence. Training was stopped when either P5(t) < 0:1 or more than3000 epochs trained or the following condition was satis�ed: The GL5 stopping criterion was ful�lledat least once and the validation error had increased for at least 8 successive strips at least once andthe quotient GL(t)=P5(t) had been larger than 3 at least once6.The tables in tables 5 and 6 present the topology and results of the network that produced the lowestvalidation set error of all these runs for each dataset. The tables also contain some indication of theperformance of other topologies by giving the number of other runs that were at most 5% (or 10%)worse than the best run, with respect to the validation set error. The range of test set errors obtainedfor these other topologies is also indicated.The architectures presented in these tables are probably not the optimal ones, even among thoseconsidered in the set of runs presented. Due to the small number of runs per architecture for eachproblem, a suboptimal architecture has a decent probability of producing the lowest validation set errorjust by chance. Experience with the early stopping method suggests that using a network considerablylarger than necessary often leads to the best results. As a consequence, the architectures presented inthe table shown in table 7 were computed from the results of the runs as the suggested architecturesfor the various datasets to be used for training of fully connected multi layer perceptrons. Thesearchitectures are called the pivot architectures of the respective problems. The rule for computingwhich architecture is the pivot architecture uses all runs from the within-5%-of-best category ascandidates. From these, the largest architecture is chosen. Should the same largest topology appearamong the candidates with both linear and sigmoidal output units, the one with smaller validationset error is chosen, unless the linear architecture appears twice, in which case it is preferred regardlessof its validation set error. The raw data used for this architecture selection is listed in appendix D.It should be noted that these pivot architectures are still not necessarily very good. In particularfor some of the problems it might be appropriate to train networks without shortcut connections inorder to use networks with a much smaller number of parameters. For instance in the glass problems,the shortcut connections amount for as many as 60 weights, which is about the same number as areneeded for a complete network using 4 hidden nodes but no shortcut connections. Since the problemhas only 107 examples in the training set, it may be a good idea to start without shortcut connections.Similar argumentation applies for several other problems as well. Furthermore, since many of the pivotarchitectures are one of the two largest architectures available in the selection runs, namely 32+0 or16+8, networks with still more hidden nodes may produce superior results for some of the problems.The following section presents results for multiple runs using the pivot architectures, a subsequentsection presents results for multiple runs with the same architectures except for the shortcut connec-tions.3.3.3 Multilayer networksTables 8 (classi�cation problems) and 9 (approximation problems) show the results of training withthe pivot architectures. For each variant of each problem, 60 runs were performed. The training6The only reason for this complicated criterion is that the same set of runs was also used to investigate the behavior

28 3 BENCHMARKING PROBLEMSProblem Arch Validation set Test set 5% 10% Epochs Test rangeerr classif.err err classif.errcancer1 4+2 l 1.53 1.714 1.053 1.149 0 3 75-205 1.176-1.352cancer2 8+4 l 1.284 1.143 4.013 5.747 0 0 95 |cancer3 4+4 l 2.679 2.857 2.145 2.299 2 12 55-360 2.112-2.791card1 4+4 l 8.251 9.827 10.35 13.95 15 23 20-65 10.02-11.02card2 4+0 l 10.30 10.98 14.88 18.02 6 20 20-50 14.27-16.25card3 16+8 l 7.236 8.092 13.00 18.02 0 1 50-55 14.52-14.52diabetes1 2+2 l 15.07 19.79 16.47 25.00 11 23 65-525 16.3-17.52diabetes2 16+8 l 16.22 21.35 17.46 23.44 4 23 85-335 17.17-18.4diabetes3 4+4 l 17.26 25.00 15.55 21.35 8 33 65-400 15.65-18.15gene1 2+0 l 9.708 12.72 10.11 13.37 7 13 30-1245 9.979-11.25gene2 4+2 s 7.669 11.71 7.967 12.11 0 0 1680 |gene3 4+2 s 8.371 10.96 9.413 13.62 0 1 1170-1645 9.702-9.702glass1 8+0 l 8.604 31.48 9.184 32.08 4 21 40-510 8.539-10.32glass2 32+0 l 9.766 38.89 10.17 52.83 12 31 15-40 9.913-10.66glass3 16+8 l 8.622 33.33 8.987 33.96 9 35 20-1425 8.795-11.84heart1 8+0 l 12.58 15.65 14.53 20.00 17 23 40-80 13.64-15.25heart2 4+0 l 12.02 16.09 13.67 14.78 20 23 25-85 13.03-14.39heart3 16+8 l 10.27 12.61 16.35 23.91 18 23 40-65 16.25-17.21heartc1 4+2 l 8.057 16.82 21.33 2 7 35-75 15.60-17.87heartc2 8+8 l 15.17 5.950 4.000 2 12 15-90 5.257-7.989heartc3 24+0 l 13.09 12.71 16.00 3 10 10-105 12.95-16.55horse1 4+0 l 15.02 28.57 13.38 26.37 8 29 15-45 12.7-14.97horse2 4+4 l 15.92 30.77 17.96 38.46 21 34 15-45 16.55-19.85horse3 8+4 l 15.52 29.67 15.81 29.67 14 31 15-35 15.63-17.88soybean1 16+8 l 0.6715 4.094 0.9111 8.824 0 0 1045 |soybean2 32+0 l 0.5512 2.924 0.7509 4.706 0 1 895-2185 0.8051-0.8051soybean3 16+0 l 0.7147 4.678 0.9341 7.647 0 3 565-945 0.9539-0.9809thyroid1 16+8 l 0.7933 1.167 1.152 2.000 1 1 480-1170 1.194-1.194thyroid2 8+4 l 0.6174 1.000 0.7113 1.278 0 0 2280 |thyroid3 16+8 l 0.7998 1.278 0.8712 1.500 2 3 590-2055 0.9349-1.1Arch: nodes in �rst hidden layer + nodes in second hidden layer, sigmoidal or linear output nodes for `best'network, i.e., network used in the run with lowest validation set error.Validation set: squared error percentage on validation set, classi�cation error on validation set of `best' run(missing values are due to technical-historical reasons).Test set: squared error percentage on test set, classi�cation error on test set of `best' run.5%: number of other runs with validation squared error at most 5 percent worse than that of best run (asshown in second column).10%: ditto, at most 10% worse.Epochs: Range of number of epochs trained for best run and within-10-percent-best runs.Test range: Range of squared test set error percentages for within-10-percent-best runs excluding the `best' run.Table 5: Architecture �nding results of classi�cation problems

3.3 Some learning results 29Problem Arch Validation set Test set 5% 10% Epochs Test rangebuilding1 2+2 l 0.7583 0.6450 4 13 625-2625 0.6371-0.6841building2 16+8 s 0.2629 0.2509 5 20 1100-2960 0.246-0.2731building3 8+8 s 0.2460 0.2475 5 16 600-2995 0.2526-0.2739are1 4+0 s 0.3349 0.5283 10 30 35-160 0.5232-0.5687are2 2+0 s 0.4587 0.3214 14 30 35-135 0.3167-0.3695are3 2+0 l 0.4541 0.3568 14 32 40-155 0.3493-0.3772hearta1 32+0 s 4.199 4.428 19 33 35-180 4.249-4.733hearta2 2+0 l 3.940 4.164 3 23 20-120 3.948-4.527hearta3 4+0 s 3.928 4.961 15 31 20-105 4.337-5.089heartac1 2+0 l 4.174 2.665 0 3 50-95 2.613-3.328heartac2 8+4 l 4.589 4.514 0 2 15 4.346-4.741heartac3 4+4 l 5.031 5.904 8 16 10-55 4.825-6.540(The explanation from table 5 applies, except that the test set classi�cation error data is not present here.)Table 6: Architecture �nding results of approximation problemsProblem pivot arch w Problem pivot arch w Problem pivot arch wbuilding1 16+0 l 333 building2 16+8 l 605 building3 16+8 s 605cancer1 4+2 l 100 cancer2 8+4 l 196 cancer3 16+8 l 436card1 32+0 l 1832 card2 24+0 l 1400 card3 16+8 l 1528diabetes1 32+0 l 370 diabetes2 16+8 l 410 diabetes3 32+0 l 370are1 32+0 s 971 are2 32+0 s 971 are3 24+0 s 747gene1 4+2 l 1115 gene2 4+2 s 1115 gene3 4+2 s 1115glass1 16+8 l 572 glass2 16+8 l 572 glass3 16+8 l 572heart1 32+0 l 1288 heart2 32+0 l 1288 heart3 32+0 l 1288hearta1 32+0 l 1220 hearta2 16+0 l 628 hearta3 32+0 l 1220heartac1 2+0 l 110 heartac2 8+4 l 512 heartac3 16+8 s 1052heartc1 16+8 l 1112 heartc2 8+8 l 744 heartc3 32+0 l 1288horse1 16+8 l 1793 horse2 16+8 l 1793 horse3 32+0 l 2161soybean1 16+8 l 4153 soybean2 32+0 l 4841 soybean3 16+0 l 3209thyroid1 16+8 l 794 thyroid2 8+4 l 398 thyroid3 16+8 l 794Pivot architecture and the corresponding number w of connections for each data set.Table 7: Pivot architectures for the datasetsparameters used are the same as for the linear networks as indicated in section 3.3.1. Several interestingobservations can be made (please compare also with the discussion of the linear network results insection 3.3.1):1. The results for some of the problems are worse than those obtained using linear networks. Thisis most notable for the gene problems and less severe for the horse problems and many of theheart disease problems.2. Not surprisingly, the standard deviations of validation and test set errors and the the tendencyto over�t are much higher than for linear networks in most of the cases.3. The correlation of validation set errors with test set errors is quite small for some of the problems(less than 0.5 for cancer3, card3, are3, glass1, heartac1, heartc1, horse1, horse2, soybean3). Inof di�erent stopping criteria. Those results, however, are not reported here.

30 3 BENCHMARKING PROBLEMSProblem Training Validation Test � Test set Over�t Total Relevantset set set classi�cation epochs epochsmean stddev mean stddev mean stddev mean stddev mean stddev mean stddev mean stddevcancer1 2.87 0.27 1.96 0.25 1.60 0.41 0.81 1.47 0.60 4.48 4.87 152 111 133 97cancer2 2.08 0.35 1.77 0.32 3.40 0.33 0.51 4.52 0.70 5.76 6.70 93 75 81 72cancer3 1.73 0.19 2.86 0.11 2.57 0.24 0.28 3.37 0.71 3.37 1.32 66 20 51 16card1 8.92 0.54 8.89 0.59 10.53 0.57 0.92 13.64 0.85 3.77 4.47 33 7 25 5card2 7.12 0.55 11.11 0.32 15.47 0.75 0.53 19.23 0.80 3.32 1.03 32 8 22 6card3 7.58 0.87 8.42 0.37 13.03 0.50 -0.03 17.36 1.61 3.52 1.46 37 10 28 9diabetes1 14.74 2.03 16.36 2.14 17.30 1.91 0.99 24.57 3.53 2.31 0.67 196 98 118 72diabetes2 13.12 1.35 17.10 0.91 18.20 1.08 0.77 25.91 2.50 2.75 2.54 119 42 85 31diabetes3 13.34 1.11 17.98 0.62 16.68 0.67 0.55 23.06 1.91 2.34 0.65 307 193 200 132gene1 6.45 0.42 10.27 0.31 10.72 0.31 0.76 15.05 0.89 2.67 0.49 46 9 29 6gene2 7.56 1.81 11.80 1.19 11.39 1.28 0.97 15.59 1.83 2.12 0.44 321 698 222 595gene3 6.88 1.76 11.18 1.06 12.14 0.95 0.95 17.79 1.73 2.06 0.50 435 637 289 508glass1 7.68 0.79 9.48 0.24 9.75 0.41 0.33 39.03 8.14 2.76 0.71 67 44 45 39glass2 8.43 0.53 10.44 0.48 10.27 0.40 0.72 55.60 2.83 4.27 1.75 29 9 20 7glass3 7.56 0.98 9.23 0.25 10.91 0.48 0.54 59.25 7.83 2.68 0.47 66 46 45 41heart1 9.25 1.07 13.22 1.32 14.33 1.26 0.97 19.89 2.27 2.83 1.89 65 16 43 12heart2 9.85 1.68 13.06 3.29 14.43 3.29 0.98 17.88 1.57 3.27 2.34 57 19 38 13heart3 9.43 0.64 10.71 0.78 16.58 0.39 0.67 23.43 1.29 3.35 3.72 51 10 37 9heartc1 6.82 1.20 8.75 0.71 17.18 0.79 0.10 21.13 1.49 4.04 2.98 45 12 36 11heartc2 10.41 1.76 17.02 1.12 6.47 2.86 0.83 5.07 3.37 4.05 1.89 29 14 21 11heartc3 10.30 1.79 15.17 1.83 14.57 2.82 0.85 15.93 2.93 8.22 18.67 24 13 17 11horse1 9.91 1.06 16.52 0.67 13.95 0.60 0.30 26.65 2.52 4.66 2.28 28 5 20 4horse2 7.32 1.52 16.76 0.64 18.99 1.21 0.30 36.89 2.12 3.87 1.49 31 8 22 8horse3 9.25 2.36 17.25 2.41 17.79 2.45 0.92 34.60 2.84 3.48 1.26 30 10 21 7soybean1 0.32 0.08 0.85 0.07 1.03 0.05 0.54 9.06 0.80 2.55 1.37 665 259 551 218soybean2 0.42 0.06 0.67 0.06 0.90 0.08 0.77 5.84 0.87 2.17 0.16 792 281 675 243soybean3 0.40 0.07 0.82 0.06 1.05 0.09 0.33 7.27 1.16 2.16 0.13 759 233 639 205thyroid1 0.60 0.53 1.04 0.61 1.31 0.55 0.99 2.32 0.67 3.06 3.16 491 319 432 266thyroid2 0.59 0.24 0.88 0.19 1.02 0.18 0.85 1.86 0.41 2.58 1.07 660 460 598 417thyroid3 0.69 0.20 0.97 0.13 1.16 0.16 0.91 2.09 0.31 2.39 0.43 598 624 531 564Training set: mean and standard deviation (stddev) of minimum squared error percentage on training setreached at any time during training.Validation set: ditto, on validation set.Test set: mean and stddev of squared test set error percentage at point of minimum validation set error.�: Correlation between validation set error and test set error.Test set classi�cation: mean and stddev of corresponding test set classi�cation error.Over�t: mean and stddev of GL value at end of training.Total epochs: mean and stddev of number of epochs trained.Relevant epochs: mean and stddev of number of epochs until minimum validation error.Table 8: Pivot architecture results of classi�cation problems

3.3 Some learning results 31Problem Training Validation Test � Over�t Total Relevantset set set epochs epochsmean stddev mean stddev mean stddev mean stddev mean stddev mean stddevbuilding1 0.63 0.50 2.43 1.50 1.70 1.01 0.96 31.93 44.07 394 602 329 529building2 0.23 0.02 0.28 0.02 0.26 0.02 0.98 0.11 0.70 1183 302 1175 303building3 0.22 0.02 0.26 0.01 0.26 0.01 0.93 0.42 1.09 1540 466 1408 505are1 0.39 0.26 0.55 0.81 0.74 0.80 1.00 3.13 2.48 71 28 52 21are2 0.42 0.16 0.55 0.43 0.41 0.47 1.00 3.20 3.73 60 15 42 10are3 0.36 0.01 0.49 0.01 0.37 0.01 0.32 2.58 0.58 76 28 51 18hearta1 3.75 0.76 4.58 0.81 4.76 1.14 0.95 4.98 7.85 46 16 34 13hearta2 3.69 0.87 4.47 1.00 4.52 1.10 0.97 7.18 24.23 59 21 45 19hearta3 3.84 0.66 4.29 0.73 4.81 0.87 0.97 5.34 14.19 45 13 35 13heartac1 3.86 0.32 4.87 0.23 2.82 0.22 -0.06 3.98 2.25 44 23 34 21heartac2 3.41 0.42 5.51 0.65 4.54 0.87 0.79 7.53 5.27 22 9 16 7heartac3 2.23 0.57 5.38 0.37 5.37 0.56 0.80 4.64 2.96 38 10 30 10(The explanation from table 8 applies, except that the test set classi�cation error data is not present here.)Table 9: Pivot architecture results of approximation problemstwo cases it is even slightly negative (card3, heartac1).4. The correlation value also di�ers dramatically between the three variants of some of the problems(card, are, heartac, heartc, horse).5. However, low correlation does not necessary imply bad overall test error results (see cancer, card,are, heartac, horse).6. The training times exhibit dramatic uctuations in a few of the cases (building1, gene2, gene3,thyroid3, and less severely cancer1, cancer2, diabetes3, glass1, glass3, thyroid1, thyroid2).7. The other numbers of training epochs tend to be of the same order as for linear networks, with afew exceptions that are much faster (most of the heart disease problems) or much slower (thyroid,building2, building3).8. The \inverse" error behavior observed for some of the linear networks is no longer present formost of them (except cancer1, cancer2, card1).As mentioned above, for some of the problems it might be more appropriate to work without shortcutconnections. To quantify the e�ect of training without shortcut connections, another series of 60 runsper dataset was conducted using the same parameters as above. This time, however, the networkarchitecture used was modi�ed to include only connections between adjacent layers, i.e., no directconnections from the inputs to the outputs and for networks with two hidden layers also no connectionsfrom the inputs to the second hidden layer and from the �rst hidden layer to the outputs. I call thesearchitectures the no-shortcut architectures.The results of these runs are shown in tables 10 (classi�cation problems) and 11 (approximationproblems). Once again, a few interesting observations can be made (compare also with the abovediscussions of linear network and pivot architecture results):1. Leaving out the shortcut connections seems to be appropriate more often than expected (see alsosection 3.3.4).2. The test error results for the gene problems are better than for linear networks (for pivot architec-tures they were worse than the for linear networks). However, the classi�cation errors are worseeven than for the pivot architectures.

32 3 BENCHMARKING PROBLEMSProblem Training Validation Test � Test set Over�t Total Relevantset set set classi�cation epochs epochsmean stddev mean stddev mean stddev mean stddev mean stddev mean stddev mean stddevcancer1 2.83 0.15 1.89 0.12 1.32 0.13 0.64 1.38 0.49 3.10 2.54 116 123 95 115cancer2 2.14 0.23 1.76 0.14 3.47 0.28 0.14 4.77 0.94 3.82 1.90 54 31 44 28cancer3 1.83 0.26 2.83 0.13 2.60 0.22 0.59 3.70 0.52 3.33 1.64 54 20 41 17card1 8.86 0.41 8.69 0.26 10.35 0.29 0.25 14.05 1.03 3.54 1.25 30 7 22 5card2 7.18 0.51 10.87 0.27 14.94 0.64 0.44 18.91 0.86 3.99 1.52 26 7 17 5card3 7.13 0.62 8.62 0.46 13.47 0.51 0.41 18.84 1.19 4.81 3.24 29 7 22 6diabetes1 14.36 1.14 15.93 1.04 16.99 0.91 0.95 24.10 1.91 2.23 0.53 201 119 117 83diabetes2 13.04 1.27 16.94 0.91 18.43 1.00 0.76 26.42 2.26 2.50 0.50 102 46 70 26diabetes3 13.52 1.46 17.89 0.90 16.48 1.16 0.91 22.59 2.23 2.32 0.59 251 132 164 85gene1 2.70 1.52 8.19 1.33 8.66 1.28 0.91 16.67 3.75 2.46 0.53 124 58 101 53gene2 4.55 2.60 9.46 1.95 9.54 1.91 0.97 18.41 6.93 2.29 0.28 321 284 250 255gene3 4.99 2.79 9.45 2.17 10.84 1.93 0.97 21.82 7.53 2.33 0.39 262 183 199 163glass1 7.16 0.65 9.15 0.21 9.24 0.32 0.13 32.70 5.34 2.69 0.64 71 31 52 27glass2 8.42 0.66 10.03 0.27 10.09 0.28 0.37 55.57 3.70 4.00 1.80 30 9 22 8glass3 7.54 1.06 9.14 0.24 10.74 0.52 0.73 58.40 7.82 2.97 1.17 60 30 46 26heart1 9.24 0.82 13.10 0.65 14.19 0.64 0.89 19.72 0.96 3.16 2.38 57 15 38 12heart2 9.73 1.24 12.32 1.09 13.61 0.89 0.88 17.52 1.14 3.56 3.47 51 15 36 12heart3 9.46 0.88 10.85 1.39 16.79 0.77 0.93 24.08 1.12 3.91 4.42 46 13 32 10heartc1 5.98 1.33 8.08 0.49 16.99 0.77 0.22 20.82 1.47 5.08 2.64 38 10 30 9heartc2 9.85 1.16 16.86 0.70 5.05 1.36 0.40 5.13 1.63 4.83 2.34 25 10 18 9heartc3 10.35 1.07 14.30 1.21 13.79 2.62 0.75 15.40 3.20 9.73 10.48 17 6 11 5horse1 10.43 1.23 15.47 0.37 13.32 0.48 0.24 29.19 2.62 6.09 2.53 19 3 13 3horse2 6.68 1.85 16.07 0.79 17.68 1.41 -0.19 35.86 2.46 4.28 1.67 25 7 18 6horse3 10.54 1.68 15.91 1.19 15.86 1.17 0.88 34.16 2.32 5.51 3.89 20 5 14 5soybean1 1.53 0.09 1.94 0.06 2.10 0.07 0.58 29.40 2.50 3.14 1.99 219 112 159 79soybean2 0.46 0.19 0.59 0.13 0.79 0.22 0.96 5.14 1.05 5.06 6.49 417 222 362 202soybean3 0.61 0.21 0.93 0.21 1.25 0.15 0.76 11.54 2.32 6.12 7.99 450 273 382 228thyroid1 0.59 0.20 1.01 0.16 1.28 0.12 0.84 2.38 0.35 3.99 7.14 377 308 341 280thyroid2 0.60 0.13 0.89 0.11 1.02 0.11 0.59 1.91 0.24 4.71 6.86 421 269 388 246thyroid3 0.74 0.18 0.98 0.13 1.26 0.14 0.92 2.27 0.32 3.91 9.18 324 234 298 223(The explanation from table 8 applies)Table 10: No-shortcut architecture results of classi�cation problems3. The test error results for the horse problems have also improved, yet are still worse than for linearnetworks.4. The correlations of validation and test error are sometimes very di�erent than for the pivotarchitectures (see for example card, are, glass, heartac).5. For are2 and are3, although the correlation is much lower, the standard deviations of test errorsare very much smaller, compared to pivot architectures.

3.3 Some learning results 33Problem Training Validation Test � Over�t Total Relevantset set set epochs epochsmean stddev mean stddev mean stddev mean stddev mean stddev mean stddevbuilding1 0.47 0.28 2.07 1.04 1.36 0.63 0.88 33.93 49.93 307 544 248 457building2 0.24 0.15 0.30 0.19 0.28 0.20 1.00 0.14 0.78 1074 338 1044 330building3 0.22 0.01 0.26 0.01 0.26 0.01 0.74 0.25 0.58 1380 350 1304 360are1 0.35 0.02 0.35 0.01 0.54 0.01 0.10 3.02 0.90 48 20 35 16are2 0.40 0.01 0.47 0.01 0.32 0.01 0.43 2.93 0.99 47 11 32 8are3 0.37 0.01 0.47 0.01 0.36 0.01 0.34 2.53 0.47 57 21 32 11hearta1 3.55 0.53 4.48 0.35 4.55 0.41 0.93 4.17 7.53 47 18 35 16hearta2 3.45 0.56 4.41 0.21 4.33 0.15 0.55 2.91 0.75 54 22 41 20hearta3 3.74 0.72 4.46 1.01 4.89 0.91 0.99 5.35 9.90 46 17 34 15heartac1 3.59 0.24 4.77 0.32 2.47 0.38 0.21 3.78 1.85 42 22 32 18heartac2 2.58 0.42 5.16 0.32 4.41 0.56 -0.15 6.43 4.43 24 7 18 7heartac3 2.45 0.46 5.74 0.36 5.55 0.52 0.84 5.52 4.02 31 12 23 10(The explanation from table 8 applies, except that the test set classi�cation error data is not present here.)Table 11: No-shortcut architecture results of approximation problems3.3.4 Comparison of multilayer resultsTable 12 shows a comparison of the pivot architecture and no-shortcut architecture results presentedabove. The comparison was performed with the ttest procedure of the SAS statistical softwareProblem 1 2 3building (|) N 2.1 P 7.8cancer N 0.0 | |card N 0.1 N 0.0 P 0.0diabetes | P 2.9 N 2.1are N 0.0 N 0.0 N 0.0gene N 0.0 (N 0.0) (N 0.0)glass N 0.0 N 0.1 N 3.2heart N 1.6 N 0.6 |hearta | | P 0.0heartac N 0.0 | (P 0.0)heartc | N 0.0 N 2.6horse N 0.0 N 0.0 N 0.0soybean P 0.0 (N 0.0) P 0.0thyroid P 6.9 | P 0.1
Results of statistical signi�cance test performed fordi�erences of mean logarithmic test error betweenpivot architectures (P) and no-shortcut architectures(N). Entries show di�erences that are signi�cant on a90% con�dence level plus the corresponding p-value(in percent); the letter indicates which architectureis better. Dashes indicate non-signi�cant di�erences.Parentheses indicate unreliable test results due tonon-normality of at least one of the two samples. Thetest employed was a t-test using the Cochran/Coxapproximation for the unequal variance case. 2.6%of the data points were removed as outliers.Table 12: t-test comparison of pivot and no-shortcut resultspackage. Since a t-test assumes that the samples to be compared have normal distributions, thelogarithm of the test errors was compared instead of the test errors themselves, because test errorsusually have an approximately log-normal distribution. This logarithmic transformation does notchange the test result, since the logarithm is strictly monotone; log-normal distributions occur quiteoften and log-transformations are a very common statistical technique. Since a further assumption ofthe t-test is equal variance of the samples, the Cochran/Cox approximation for the unequal variance

34 A AVAILABILITY OF PROBEN1, ACKNOWLEDGEMENTScase had to be used, because at least for some of the sample pairs (cancer1, gene1, hearta1) thestandard deviations di�ered by more than factor 2. Furthermore, a few outliers had to be removedin order to achieve an approximate normal distribution of the log-errors: In the 2520 runs for thepivot architectures, there were 4 outliers with too low errors and 61 with too high errors. For theno-shortcut architectures, there were no outliers with too low errors and 66 outliers with too higherrors. Altogether this makes for 2.6% of outliers. At most 10% outliers, i.e., 6 of 60, were removedfrom any single sample, namely from heartac2 and heartc3 (pivot) and from horse3 (no-shortcut).A few of the samples deviated so signi�cantly from a log-normal distribution that the results of thetest are unreliable and thus must be interpreted with care. For the pivot architectures, these non-normal samples were those of building1, gene2, and gene3, for the no-shortcut architectures they werebuilding1, gene3, heartac3, and soybean2. No outliers were removed from the non-normal samples.The respective test results are shown in parentheses in the table in order to indicate that they areunreliable. This discussion demonstrates how important it is to work very carefully when applyingstatistical methods to neural network training results. When applied carelessly, statistical methodscan produce results that may look very impressive but in fact are just garbage.For 10 of the sample pairs no signi�cant di�erence of test set errors is found at the 90% con�dencelevel (i.e., signi�cance level 0.1). In 9 cases the pivot architecture was better while in 23 cases theno-shortcut architecture was better. This result suggests that further search for a good networkarchitecture may be worthwhile for most of the problems, since the architectures used here were allfound using candidate architectures with shortcut connections only and just removing the shortcutconnections is probably not the best way to improve on them.Summing up, the network architectures and performance �gures presented above provide a startingpoint for exploration and comparison using the Proben1 benchmark collection datasets. It must benoted that none of the above results used the validation set for training. Surely, improvements of theresults are possible by using the validation set for training in a suitable way. The properties of thebenchmark problems seem to be diverse enough to make Proben1 a useful basis for improved exper-imental evaluation of neural network learning algorithms. Hopefully, many more similar collectionswill follow.A Availability of Proben1, AcknowledgementsThe Proben1 benchmark set (including this report) is available for anonymous FTP fromthe Neural Bench archive7 at Carnegie Mellon University (machine ftp.cs.cmu.edu, directory/afs/cs/project/connect/bench/contrib/prechelt) and from machine ftp.ira.uka.de in direc-tory /pub/neuron. The �le name in both cases is proben1.tar.gz. This �le contains the completedirectory tree, including all data, documentation, and the techreport. The size of the �le is about2 MB8. When unpacked, the Proben1 benchmark set needs about 20 MB disk space. Of these, theactual data �les consume about 15 MB.The present report alone is available for anonymous FTP from machine ftp.ira.uka.de in directory/pub/papers/techreports/1994 as �le 1994-21.ps.Z.The original datasets on which the Proben1 datasets are based are included in the tar �les.Their sources are the UCI machine learning databases repository and the energy predictor shootout7Maintained by Scott Fahlman and collaborators. Many thanks to them for their service.8The �le is a GNU gzip'ed Unix tar format �le. The GNU gzip compression utility is needed to uncompress it.

35archive. The UCI machine learning databases repository is available by anonymous FTP on machineics.uci.edu in directory /pub/machine-learning-databases. This archive is maintained at theUniversity of California, Irvine, by Patrick M. Murphy and David W. Aha. Many thanks to themfor their valuable service. The databases themselves were donated by various researchers; thanksto them as well. See the documentation �les in the individual dataset directories for details. Thebuilding problem is from the energy predictor shootout archive at ftp.cs.colorado.edu in directory/pub/distribs/energy-shootout.If you publish an article about work that used Proben1, it would be great if you dropped me a notewith the reference to prechelt@ira.uka.de.B Structure of the Proben1 directory treeThe Proben1 directory tree that results from unpacking the archive �le has the following structure.The top directory is called proben1; it contains a README �le for a quick overview, a Doc subdirectory,a Scripts subdirectory, and one subdirectory per problem, named like the problem itself.The Doc directory contains this report as both a TEX dvi �le and as a Postscript �le.The Scripts directory contains a number of small Perl scripts that I have used during the preparationof the datasets. I include them in the Proben1 distribution for all those people who want to generateadditional datasets in the Proben1 �le format or who want to change the representation used inone of the original Proben1 problems. These scripts are not needed for normal use of the Proben1datasets.Each problem subdirectory for a problem xx contains the following �les: README gives an overviewof the �les in the directory plus a short description of the attribute encoding used in the Proben1representation of the problem compared to the original representation. xx1.dt, xx2.dt, and xx3.dtare the actual data �les. The only di�erence between them is that the examples are in a di�erentorder (which is always a random permutation, except for building1 and thyroid1). raw2cod is thePerl script that was used to convert the original data �le into the Proben1 data �le. This script isthe de�nitive documentation of the problem representation used (with respect to the original data).The problems heart, hearta, heartac, and heartc are all in the directory heart.C Proben1 �le format and data encodingThe following is what a data �le looks like (example from glass1.dt):bool_in=0real_in=9bool_out=6real_out=0training_examples=107validation_examples=54test_examples=530.281387 0.36391 0.804009 0.23676 0.643527 0.0917874 0.261152 0 0 1 0 0 0 0 00.260755 0.341353 0.772829 0.46729 0.545966 0.10628 0.255576 0 0 0 1 0 0 0 0[further data lines deleted]

36 D ARCHITECTURE ORDERINGEach line after the header lines represents one example; �rst the examples of the training set, thenthose of the validation set, then those of the test set. The sizes of these sets are given in the lastthree header lines (the partitioning is always 50%/25%/25% of the total number of examples). The�rst four header lines describe the number of input coe�cients and output coe�cients per example. Aboolean coe�cient is always represented as either 0 (false) or 1 (true). A real coe�cient is representedas a decimal number between 0 and 1. For all datasets, either bool in or real in is 0 and eitherbool out or real out is 0. Coe�cients are separated by one or multiple spaces; examples (including thelast) are terminated by a single newline character. First on each line are the input coe�cients, thenfollow the output coe�cients (i.e., each line contains bool in + real in + bool out + real outcoe�cients). Thus, lines can be quite long.That's all.The encoding used in the data �les has all inputs and outputs scaled to the range 0 : : :1. The scalingwas chosen so that the range is at least almost (but not always completely) used by the examplesoccurring in the dataset. The gene datasets are an exception in that they use binary inputs encodedas �1 and 1.D Architecture orderingThe following list gives for each problem the order of architectures according to increasing squaredtest set error. Of all architectures tried (as listed in section 3.3.2) only those are listed whose testset error was at most 5% larger than the smallest test set error found in any run. Architectures withlinear output units can occur twice, because two runs were made for them and each run is consideredseparately.building1 : 2+2l, 4+2l, 4+4l, 4+0l, 16+0l.building2 : 16+8s, 16+8l, 8+4s, 16+8l, 32+0s, 32+0l.building3 : 8+8s, 32+0s, 4+4l, 32+0l, 16+8s, 8+4s.cancer1 : 4+2l.cancer2 : 8+4l.cancer3 : 4+4l, 16+8l, 16+0l.card1 : 4+4l, 8+8l, 8+8l, 16+0l, 8+4l, 8+0l, 16+8l, 4+2l, 4+4l, 32+0l, 4+2l, 8+4l, 16+0l, 2+0l, 4+0l,24+0l.card2 : 4+0l, 16+0l, 16+8l, 24+0l, 2+2l, 8+4l, 4+4l.card3 : 16+8l.diabetes1 : 2+2l, 2+2l, 4+4l, 4+4l, 32+0l, 8+4l, 16+0l, 4+0l, 16+8l, 8+0l, 24+0l, 16+0l.diabetes2 : 16+8l, 24+0l, 8+0l, 8+4l, 4+4l.diabetes3 : 4+4l, 8+0l, 32+0l, 24+0l, 8+8l, 24+0s, 2+2l, 32+0l, 8+8l.are1 : 4+0s, 2+2l, 4+0l, 2+2s, 2+0l, 32+0s, 4+2l, 2+2l, 2+0s, 4+0l, 16+0s.are2 : 2+0s, 4+0s, 8+0s, 8+8s, 16+0s, 2+2s, 24+0s, 2+0l, 4+0l, 32+0s, 4+0l, 2+0l, 4+2s, 4+4l,8+4s.are3 : 2+0l, 2+0l, 2+0s, 4+0s, 2+2s, 2+2l, 2+2l, 4+4s, 16+0s, 16+0l, 4+0l, 4+4l, 8+0l, 24+0s,8+8l.gene1 : 2+0l, 2+0s, 4+0l, 2+2l, 2+0l, 2+2l, 4+0l, 4+2l.gene2 : 4+2s.gene3 : 4+2s.glass1 : 8+0l, 16+8l, 4+0l, 32+0s, 8+4l.glass2 : 32+0l, 2+2s, 16+0s, 32+0s, 2+0l, 16+8l, 4+4s, 8+0s, 16+8s, 4+0s, 16+8l, 16+0l, 2+0s.glass3 : 16+8l, 2+0s, 16+0l, 16+0l, 8+4s, 16+8s, 8+8s, 8+4l, 2+0l, 16+8l.

REFERENCES 37heart1 : 8+0l, 24+0l, 4+0l, 32+0l, 16+8l, 8+4l, 32+0l, 8+8l, 16+0l, 4+2l, 4+0l, 4+4l, 8+4l, 24+0l,2+2l, 4+4l, 8+0l, 16+8l.heart2 : 4+0l, 16+0l, 32+0l, 4+0l, 8+0l, 32+0l, 4+4l, 8+8l, 2+2l, 8+4l, 16+8l, 2+0l, 2+2l, 24+0l,2+0l, 4+2l, 4+2l, 16+0l, 24+0l, 8+8l, 4+4l.heart3 : 16+8l, 2+0l, 32+0l, 4+0l, 8+0l, 2+2l, 32+0l, 8+8l, 16+0l, 4+2l, 4+4l, 16+0l, 16+8l, 4+4l,8+4l, 8+4l, 4+2l, 24+0l, 24+0l.hearta1 : 32+0s, 8+4l, 4+0l, 4+4s, 32+0l, 2+0l, 8+0l, 8+4l, 8+8l, 16+8l, 8+0l, 4+0l, 2+2l, 32+0l,24+0l, 4+2l, 4+4l, 16+0l, 16+8s, 8+8s.hearta2 : 2+0l, 8+4l, 16+0l, 4+2s.hearta3 : 4+0s, 16+0l, 4+4l, 4+0l, 8+0l, 4+4l, 8+4l, 8+0l, 2+0l, 32+0l, 4+2s, 24+0l, 8+8l, 16+8l,4+2l, 16+8l.heartac1 : 2+0l.heartac2 : 8+4l.heartac3 : 4+4l, 8+4s, 8+0l, 4+0l, 24+0l, 16+8s, 4+0s, 16+0s, 8+0s.heartc1 : 4+2l, 8+8l, 16+8l.heartc2 : 8+8l, 2+2l, 4+0l.heartc3 : 24+0l, 32+0l, 8+8l, 16+8l.horse1 : 4+0l, 4+4l, 4+4l, 4+2s, 2+2l, 8+0s, 16+8l, 4+0s, 16+0l.horse2 : 4+4l, 4+0l, 8+0s, 2+2s, 8+4l, 4+4s, 8+0l, 2+2l, 8+8l, 4+4l, 2+0l, 4+2l, 16+0l, 16+8l, 8+0l,16+8l, 2+0s, 16+8s, 4+0l, 8+8s, 4+2s, 8+4s.horse3 : 8+4l, 8+0l, 8+4s, 4+0l, 4+4s, 2+0l, 8+8l, 16+0l, 4+4l, 4+4l, 32+0l, 24+0s, 4+2s, 8+0l,16+8l.soybean1 : 16+8l.soybean2 : 32+0l.soybean3 : 16+0l.thyroid1 : 16+8l, 8+8l.thyroid2 : 8+4l.thyroid3 : 16+8l, 8+4l, 8+8l.References[1] Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal brain damage. In [22], pages 598{605,1990.[2] T.G. Dietterich and G. Bakiri. Error-correcting output codes: A general method for improvingmulticlass inductive learning programs. In Proc. of the 9th National Conference of Arti�cialIntelligence (AAAI), pages 572{577, Anaheim, CA, 1991. AAAI Press.[3] Scott E. Fahlman. An empirical study of learning speed in back-propagation networks. TechnicalReport CMU-CS-88-162, School of Computer Science, Carnegie Mellon University, Pittsburgh,PA 15213, September 1988.[4] Scott E. Fahlman and Christian Lebiere. The cascade-correlation learning architecture. TechnicalReport CMU-CS-90-100, School of Computer Science, Carnegie Mellon University, Pittsburgh,PA 15213, February 1990.[5] Scott E. Fahlman and Christian Lebiere. The Cascade-Correlation learning architecture. In [22],pages 524{532, 1990.

38 REFERENCES[6] William Finno�, Ferdinand Hergert, and Hans Georg Zimmermann. Improving model selectionby nonconvergent methods. Neural Networks, 6:771{783, 1993.[7] Stuart Geman, Elie Bienenstock, and Ren�e Doursat. Neural networks and the bias/variancedilemma. Neural Computation, 4:1{58, 1992.[8] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.Neural Computation, 6:181{214, 1994.[9] K.J. Lang, A.H. Waibel, and G.E. Hinton. A time-delay neural network architecture for isolatedword recognition. Neural Networks, 3(1):33{43, 1990.[10] K.J. Lang and M.J. Witbrock. Learning to tell two spirals apart. In Proc. of the 1988 Connec-tionist Summer School. Morgan Kaufmann, 1988.[11] Martin M�ller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Net-works, 6(4):525{533, June 1993.[12] N. Morgan and H. Bourlard. Generalization and parameter estimation in feedforward nets: Someexperiments. In [22], pages 630{637, 1990.[13] Michael C. Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat froma network via relevance assessment. In [21], pages 107{115, 1989.[14] Steven J. Nowlan and Geo�ry E. Hinton. Simplifying neural networks by soft weight-sharing.Neural Computation, 4(4):473{493, 1992.[15] Lutz Prechelt. A study of experimental evaluations of neural network learning algorithms: Currentresearch practice. Technical Report 19/94, Fakult�at f�ur Informatik, Universit�at Karlsruhe, D-76128 Karlsruhe, Germany, August 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-19.ps.Z on ftp.ira.uka.de.[16] Michael D. Richard and Richard P. Lippmann. Neural network classi�ers estimate bayesiana-posteriori probabilities. Neural Computation, 3:461{483, 1991.[17] Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagationlearning: The RPROP algorithm. In Proceedings of the IEEE International Conference on NeuralNetworks, San Francisco, CA, April 1993. IEEE.[18] David Rumelhart and John McClelland, editors. Parallel Distributed Processing: Explorations inthe Microstructure of Cognition, volume Volume 1. MIT Press, Cambridge, MA, 1986.[19] Steen Sj�gaard. A Conceptual Approach to Generalisation in Dynamic Neural Networks. PhDthesis, Aarhus University, Aarhus, Danmark, 1991.[20] Brian A. Telfer and Harold H. Szu. Energy functions for minimizing misclassi�cation error withminimum-complexity networks. Neural Networks, 7(5):809{818, 1994.[21] David S. Touretzky, editor. Advances in Neural Information Processing Systems 1, San Mateo,California, 1989. Morgan Kaufman Publishers Inc.[22] David S. Touretzky, editor. Advances in Neural Information Processing Systems 2, San Mateo,California, 1990. Morgan Kaufman Publishers Inc.[23] Zijian Zheng. A benchmark for classi�er learning. Technical Report TR474, Basser Departmentof Computer Science, University of Sydney, N.S.W Australia 2006, November 1993. anonymousftp from ftp.cs.su.oz.au in /pub/tr.

