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Abstract This paper presents a new evolutionary artificial neural network (ANN) algo-
rithm named IPSONet that is based on an improved particle swarm optimization (PSO).
The improved PSO employs parameter automation strategy, velocity resetting, and crossover
and mutations to significantly improve the performance of the original PSO algorithm in
global search and fine-tuning of the solutions. IPSONet uses the improved PSO to address
the design problem of feedforward ANN. Unlike most previous studies on only using PSO
to evolve weights of ANNs, this study puts its emphasis on using the improved PSO to
evolve simultaneously structure and weights of ANNs by a specific individual representa-
tion and evolutionary scheme. The performance of IPSONet has been evaluated on several
benchmarks. The results demonstrate that IPSONet can produce compact ANNs with good
generalization ability.

Keywords Artificial neural network · Evolutionary algorithm ·
Particle swarm optimization · Generalization

1 Introduction

Artificial neural networks (ANNs) have been applied widely in many application domains
in recent years. Most applications use feedforward ANNs that use the standard back-propo-
gation (BP) learning algorithm or some improved BP algorithms [1]. The BP algorithm is a
gradient-based method, hence some inherent problems are frequently encountered in the use
of this algorithm, e.g., very slow convergence speed in training, easily to get stuck in a local
minimum, etc. In addition, the BP learning needs to predetermine some important learning
parameters such as learning rate, momentum and a predetermined structure. Moreover, the
BP algorithm assumes a fixed ANN structure and only trains its weights in the fixed ANN
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structure. Thus, the problem of designing a near optimal ANN structure for an application
remains unsolved.

Evolutionary algorithms (EAs) are non-gradient approaches, and are very promising ap-
proaches for training ANNs. Since EAs are heuristic and stochastic based on populations
made up of individuals with a specified behavior similar to biological phenomenon, they are
robust and efficient at exploring an entire solution space of optimization problems. Thus, EAs
are less likely to get stuck in local optima. These characteristics result in the development of
evolutionary computation as an increasing important field. EAs have been successfully used
to evolve weights, structure, and learning parameters of ANNs in recent years [2–8]. EAs are
considered to be capable to reduce the ill effect of the BP algorithm, because they do not re-
quire gradient and differentiable information. In general, evolutionary methodologies can be
categorized as genetic algorithm (GA), evolution strategies (ES), evolutionary programming
(EP), etc. Among existing EAs, the most well-known branch is GA. One attractive feature
of GA is its support for generic implementation of some major operators such as crossover,
mutation or selection operators. However, GA still suffers from some drawbacks such as
competing conventions, premature convergence problem, and lengthy local searches near a
local optima.

Recently, a new evolutionary computation technique, the particle swarm optimization
(PSO), is proposed by Kennedy and Eberhart [9] as an alternative to GA. The PSO was
inspired by insect swarms and has proven to be a competitor to GA when it comes to optimi-
zation problems. In comparison with GA, PSO has some attractive characteristics. It retains
the good knowledge studied by all particles; whereas GA destroys the previous knowledge
of the problems once the population changes. PSO encourages constructive cooperation and
information sharing between particles, which enhance the search for a global optimal solution.
Successful applications of PSO to some optimization problems such as function minimiza-
tion [9] and ANN design, have demonstrated its potential. Salerno [10] used a PSO to evolve
weights of ANNs for solving the XOR problem and parsing natural language. Juang [11]
proposed a hybrid of GA and PSO (HGAPSO) for training recurrent networks. HGAPSO
used PSO to enhance the elites generated by GA to generate higher quality individuals. The
performance of HGAPSO is compared to both GA and PSO in recurrent network design
problems, demonstrating its superiority. Da and Ge [12] proposed an improved PSO-based
ANN with simulated annealing (SA) technique for solving a rock engineering problem. Their
results showed that SAPSO-based ANN has a better training and generalization performance
than PSO-based ANN. Comparisons between PSO and GA for evolving recurrent networks
were done analytically by Settles et al. [13]. Their comparisons indicated that the GA is more
successful on larger networks and the PSO is more successful on smaller networks. However,
in comparison with the wide applications of GA in evolutionary ANNs, the applications of
PSO for evolving ANNs are sparse.

These reported work indicated that PSO-based ANN algorithms were successful in evolv-
ing ANNs and achieved the generalization performance comparable to or better than those
of standard BPNs or GA-based ANNs. However, they used PSO to evolve the weights of
ANNs without considering the optimization of structure of the ANNs. Thus, the problem
of designing a near optimal ANN structure by only using PSO for an application remains
unsolved. However, this is an important issue because the information processing capability
of an ANN is determined by its structure.

Although these researches have shown that PSO performs well for global search because
it is capable of quickly finding and exploring promising regions in the search space, they take
relative inefficiency in fine tuning solutions. Moreover, a potentially dangerous property in
PSO still exists: stagnation due to the lack of momentum, which makes it impossible to arrive
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at the global optimum. To avoid these drawbacks of the basic PSO, some improvements such
as the time-varying parameters and random perturbation (e.g., velocity resetting) [14] have
been proposed. These improvements can enhance convergence of PSO toward the global
optimum, to find the optimum solution efficiently.

Therefore, our approach proposes an improved PSO for the evolutionary design of three-
layer feedforward ANNs, and is thus named IPSONet. Unlike some previous work that only
used PSO to evolve weights under the condition of fixed-structure ANNs, IPSONet evolves
simultaneously the structure and weights of ANNs by using the improved PSO, which could
improve the probability to find ANNs with good generalization ability and compact struc-
ture. In order to evaluate the performance of IPSONet, it has been tested on some benchmark
classification problems.

The rest of this paper is organized as follows: an improved PSO algorithm is developed in
Sect. 2. Section 3 describes IPSONet in detail and gives motivations and ideas behind various
design schemes. The experimental results on IPSONet and some discussions are presented
in Sect. 4. Finally, Sect. 5 provides the conclusion and a few remarks.

2 An Improved Particle Swarm Optimization Algorithm

2.1 Basic PSO

The PSO algorithm [9] is an adaptive algorithm based on a social-psychological metaphor.
It has proven to be a useful global optimization algorithm and competitor to the standard
GA when it comes to function optimization. The traditional PSO conducts searches using
a population of particles that correspond to individuals in GA. Each particle i represents a
possible solution and has a position vector xi , a velocity vector vi , and the best personal
position pi (i.e., cognitive component) encountered so far by the particle. In each iteration,
each particle moves in the direction of its own personal best position pi , as well as in the
direction of the global best position pg (i.e., social component) discovered so far by any
of the particles in the population. As a result, pi and pg can be used to adjust their own
velocities and positions. This means that if a particle discovers a promising new solution,
all other particles will move closer to it, exploring the problem region more roughly in the
process. At each time step t , the velocity of a particle i is updated using Eq. 1:

vi (t + 1) = wvi (t) + c1r1(pi (t) − xi (t)) + c2r2(pg(t) − xi (t)) (1)

where w is the inertia weight and typically setup to vary linearly from 1 to near 0 during
the course of an iteration run; c1 and c2 are acceleration coefficients; r1 ∼ U (0, 1) and
r2 ∼ U (0, 1) are uniformly distributed random numbers in the range (0,1). The velocity vi

is limited to the range [vmin, vmax]. Updating velocity in this way enables the particle i to
search around its individual best position pi , and the global best position pg . Based on the
updated velocities, the new position of the particle i is calculated using

xi (t + 1) = xi (t) + vi (t + 1). (2)

Based on (1) and (2), the population of particles tend to cluster together with each particle
moving randomly in a random direction.
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2.2 Improved PSO

2.2.1 Parameter Automation Strategy

In population-based optimization approaches, proper control of global exploration and local
exploitation is crucial in searching the optimum solution efficiently [14,15]. Shi and Eber-
hart [16] introduced the concept of inertia weight to the original version of PSO, in order to
balance the local and global search during the evolutionary process. For EAs, high diversity
of individuals is necessary during the early search to allow use of the full range of the search
space. In contrast, during the latter part of the search, when the algorithm is converging to
the optimal solution, fine-tuning of the solutions is important to find the global optima effi-
ciently. Shi and Eberhart [17] proposed a linearly varying inertia weight (w) over the course
of generations, which significantly improves the performance of PSO.

w = (w1 − w2) × M AX I T E R − i ter

M AX I T E R
+ w2 (3)

where w1 and w2 are the initial and final values of the inertia weight, respectively, i ter is the
current iteration number and M AX I T E R is the maximum number of allowable iterations.
The empirical studies in [17] indicated that the optimal solution can be improved by varying
the value of w from 0.9 at the beginning of the evolutionary process to 0.4 at the end of the
evolutionary process for most problems.

Although the version of PSO based on the time-varying inertia weight is capable of locat-
ing a good solution at a significantly faster rate, its ability to fine tune the optimum solution is
comparatively weak, mainly due to the lack of diversity at the end of the evolutionary process
[14,15]. It can be observed that, in PSO, the search toward the optimum solution is guided by
the two stochastic components (the cognitive component and the social component). Thus,
proper control of these two components is effective for finding optimum solution. Ratnawe-
era et al. [14] proposed a version of PSO based on time-varying acceleration coefficients,
which reduces the cognitive component and increases the social component by changing the
acceleration coefficients c1 and c2 with time. It encourages a large cognitive component and
small social component at the beginning of the search to guarantee particles’ moving around
the search space and to avoid particles’ moving toward the population best position. On the
other hand, a small cognitive component and a large social component allow the particles to
converge to the global optima in the latter of the search. The varying scheme of c1 and c2 is
given as follows:

c1 = (c1 f − c1i )
i ter

M AX I T E R
+ c1i

c2 = (c2 f − c2i )
i ter

M AX I T E R
+ c2i

(4)

where c1i , c1 f , c2i and c2 f are constants, iter is the current iteration number and MAXITER
is the maximum number of allowable iterations. Through empirical studies, Ratnaweera et
al. [14] have observed that the optimal solutions on most of the benchmarks can be improved
by changing c1 from 2.5 to 0.5 and changing c2 from 0.5 to 2.5 over the full range of the
search.
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2.2.2 Velocity Resetting

PSO can quickly find a good local solution but it sometimes suffers from stagnation without an
improvement [14]. Therefore, to avoid this drawback of basic PSO, the velocity of particles is
reset in order to enable particles to have a new momentum. Under this new strategy, when the
global best position is not improving with the increasing number of generations, each particle
i will be selected by a predefined probability (0.5 in this study) from the population, and then
a random perturbation is added to each dimension vid (selected by a predefined probability
0.5 in this study) of the velocity vector vi of the selected particle i . The velocity resetting
is presented as follows: where r_1, r_2 and r_3 are separately generated, uniformly distrib-

For (i=1 to number of particles)
If r_1 > 0.5

Particle i is selected for velocity resetting
For d=1 to number of dimensions of velocity vector vi

If r_2 > 0.5
vid = vid + (2 ∗ r_3 − 1) ∗ vmax

End if
End if

uted random numbers in range (0, 1), and vmax is the maximum magnitude of the random
perturbation to each dimension of the selected particle.

2.2.3 Crossover and Mutation

Based on some evolutionary schemes of GA, several effective mutation and crossover oper-
ators have been proposed for PSO. Lovbjerg et al. [18] proposed a crossover operator, and
Higashi and Iba [19] proposed a Gaussian mutation operator to improve the performance of
PSO. Utilizations of these operators in PSO have potential to achieve faster convergence and
to find better solutions.

The crossover operator is conducted by the Eq. 5 for position crossover and the Eq. 6 for
velocity crossover in terms of a certain crossover rate (α). The position of the offspring is
generated for each dimension by arithmetic crossover on the position of two parents selected
randomly from the population.

child1(xi ) = ri ∗ parent1(xi ) + (1 − ri ) ∗ parent2(xi )

child2(xi ) = ri ∗ parent2(xi ) + (1 − ri ) ∗ parent1(xi )

}
(5)

where ri is a uniformly distributed random value in the range (0,1) and is separately generated
for each dimension (xi ) of the selected particles, parent1 and parent2 are the two parents
selected randomly from the population, and child1 and child2 are the offspring.

The velocity of the offspring is calculated as the sum of the velocity vectors of the two
parents normalized to the original length of each parent velocity vector.

child1(vi ) = parent1(vi )+parent2(vi )|parent1(vi )+parent2(vi )| |parent1(vi )|
child2(vi ) = parent1(vi )+parent2(vi )|parent1(vi )+parent2(vi )| |parent2(vi )|

}
(6)

In each generation, the mutation operator is conducted by the Eq. 7 in terms of a certain
mutation rate (β), which is realized by Gaussian perturbation with N (0, σ ).

child(xi ) = parent (xi ) + M AX I T E R − i ter

M AX I T E R
∗ N (0, σ ) (7)
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where parent (xi ) is the parent selected randomly from the population, child(xi ) is the off-
spring, i ter is the current iteration number and M AX I T E R is the maximum number of
allowable iterations.

In this study, the varying schemes of inertia weight (w) and acceleration coefficients
(c1 and c2), velocity resetting, and crossover and mutation operators have been used in the
original version of PSO, and thus the improved PSO is named PVMCPSO. Then, it is used
to evolve simultaneously structure and weights of three-layer feedforward ANNs.

3 IPSONet Algorithm

A typical feedforward ANN topology that takes the form of three-layer perceptrons is depicted
in Fig. 1(a), where X (x1, x2, . . . , xl) and Y (y1, y2, . . . , ym) are the inputs with l elements
and outputs with m nodes, respectively. The neurons are connected by weights and output
signals. The output values of the nodes in the hidden layer and in the output layer can be
formulated as

Fig. 1 (a) Three-layer feedforward ANN and (b) Encoding scheme
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h j = f

(
l∑

i=1

w j i xi + b j

)
, 1 ≤ j ≤ q (8)

and

yk = f

⎛
⎝ q∑

j=1

wk j h j + bk

⎞
⎠ , 1 ≤ k ≤ m (9)

respectively, where f is the following sigmoid function:

f (x) = (1 + exp(−x))−1 (10)

where w j i denotes the connection weights between the input nodes and hidden nodes, wk j

denotes the connection weights between the hidden nodes and output nodes, b j and bk denote
the bias of the hidden node and the outputs node, respectively, and q is the number of hidden
nodes in the hidden-layer.

The detailed design algorithm of three-layer feedforward ANNs by IPSONet is described
as follows:

Coding scheme: When constructing an ANN, the core problem lies upon the optimization
procedures to obtain an optimal ANN structure. In this study, IPSONet evolves simulta-
neously the structure and weights of ANNs and needs information about each connection in
the ANN. Thus, particles are represented by its hierarchy structure, in which each particle
consists of multilevel dimensions. Figure 1(b) shows the individual representation in the
trained ANN. Each particle consists of two types of dimensions, i.e., the control dimensions
in the form of real numbers, are the hidden neurons and connections for activation, and the
connection dimensions, a real-value representation, are the values for connection weightings
and neuron bias. Thus, there are three vectors H, B1 and B2, and four matrices C1, C2, W1

and W2, which are used to specify an ANN in IPSONet. The dimensions of the vector H
are equal to the maximum number of hidden neurons allowable in the ANN. In the vector
H , the value of an element that is smaller than or equal to 0 denotes inactive state (i.e. the
hidden node does not exist) and while the value of an element that is greater than 0 denotes
active state (i.e. the hidden node exists). The connections from the input layer to the hidden
layer are encoded in the connection matrix C1 while the connection matrix C2 contains the
connections from the hidden layer to the output layer, whose entries take a form of real
numbers (i.e. the value of an element in the matrix that is smaller than or equal to 0 denotes
the inactivation of a connection, while the value of an element in the matrix that is larger
than 0 denotes the activation of a connection). It should be noted that from Fig. 1(b) “−”
represents that the value of an element in control dimensions is smaller than or equal to 0,
while “+” represents that the value of an element in control dimensions is larger than 0. The
other two matrices W1 and W2 are weight matrices corresponding to the connection matrices
C1 and C2, whose entries are real numbers. The vectors B1 and B2 represent the bias of the
hidden neurons and output neurons, respectively. Within such a specific treatment, structure
and weights of an ANN evolution can be implemented easily by PVMCPSO.
Fitness function: The fitness function, which measures the performance of individuals, is
defined as:

f i tness(g) = 1

mn

m∑
j=1

n∑
i=1

(Ti − Oi )
2 (11)
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where Ti is the expected output, Oi is the calculated output of individual network g, n is the
number of training set examples, and m is the number of output nodes. Thus, f i tness(g) is
the normalized mean squared error (MSE) of the individual g on the training set.
Population initialization: The algorithm begins with the random generation of a number of
networks bigger than the number of networks used during the evolutionary process. We ran-
domly generate 10M networks, and then select the best M among them based on the fitness
function (11).
Evolution by PVMCPSO along with velocity resetting: Evolving the population by using
PVMCPSO until the global best position Pg cannot be improved for some successive gen-
erations predetermined by users, and then the velocities of the particles are reset in order to
enable particles to have a new momentum (i.e., new velocities) for finding better networks
(discussed in Sect. 2).
Stopping scheme: The stop criterion is reached whenever one of the following two conditions
is fulfilled: (1) a given fitness value is achieved; (2) the total number of generations specified
by users is reached.
Selection of the best individual network: Once the stop criterion is reached, IPSONet uses
a validation set to select the best individual ANN (with the lowest classification error rate)
from all the personal best individuals Pi (i = 1, 2, . . . M , where M is the number of indi-
viduals in the population) in the last generation, and then uses the testing set to evaluate the
performance of the best ANN.

4 Experimental Studies

To evaluate the performance of IPSONet, several experiments were conducted on 8 data sets
listed in Table 1. All data sets come from the UCI machine learning benchmark repository
[20]. These problems have been the subjects of many studies in ANNs and machine learning.
Experimental details, results and comparisons with other work are presented in the following
sub-sections.

4.1 Experimental Setup

In this study, all data sets are. partitioned into three sets: a training set, a validation set and a
testing set. The validation set is used to select the best one (with the lowest classification error
rate) from the personal best individuals of PVMCPSO, while the testing set is used to test the
generalization performance of the best ANN and is not seen by any individual ANNs during
the whole training and validating process. It is known that the experimental results may vary
significantly for different partitions of the same data set [21]. It is necessary to know precise

Table 1 Description of data sets
used in the experiments

Data set Attributes Classes Instances

Breast cancer 10 2 699
Credit card (A) 14 2 690
Diabetes 8 2 768
German 20 2 1000
Heart 13 2 270
Iris 4 3 150
Pima 8 2 768
Vehicle 18 4 846
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specification of the partition in order to reproduce an experiment or conduct fair comparisons
with other work. In the experiment, we firstly analyze the evolutionary process of IPSONet
and evaluate the performance of IPSONet on the breast cancer, diabetes and heart data sets.
To do so, we partitioned the three data sets as follows:

• For the breast cancer data set, the first 349 examples were used for the training set, the
following 175 examples for the validation set, and the rest (i.e., 175 examples) for the
testing set.

• For the diabetes data set, the first 384 examples were used for the training set, the following
192 examples for the validation set, and the rest (i.e., 192 examples) for the testing set.

• For the heart data set, the first 134 examples were used for the training set, the following
68 examples for the validation set, and the rest (i.e., 68 examples) for the testing set.

The input attributes of all the data sets were rescaled to between 0.0 and 1.0 by a linear
function. The outputs were encoded by the 1-of-c representation for c classes. The win-
ner-takes-all method was used in the proposed approach, i.e., the output with the highest
activation designates the class.

There are some parameters in IPSONet which need to be specified by the user. It is, how-
ever, unnecessary to tune all these parameters for each data set because IPSONet is not very
sensitive to them. Therefore, these parameters were set to the same for all these problems: the
population size M(50), the number of generations (1,500), the initial position and velocity
range of particles ([−1, +1]), the inertia weights wmax and wmin of PVMCPSO (0.9 and 0.4),
the initial acceleration coefficients c1 and c2 of PVMCPSO (2.5 and 0.5), and the global best
position Pg in PVMCPSO is not improved for successive generations (50) to conduct the
velocity resetting, the crossover rate α (0.7) and the mutation rate β (0.1), and the standard
deviation σ (0.7) of Gaussian mutation in PVMCPSO. The used ANNs in the population are
three-layer feedforward ANNs with the maximum number of hidden nodes (7). It should be
noted that we used full connections (i.e., all hidden nodes and connections are active in the
initial particles) in the individual networks of the initial population.

4.2 Experimental Results

Table 2 presents the results of IPSONet over 30 independent runs on the breast cancer, dia-
betes and heart data sets (the Mean, SD, Max and Min indicate the mean value, standard
deviation, maximum value and minimum value, respectively). The error rate in the table
refers to the percentage of wrong classification produced by the trained ANNs on the train-
ing, validation and testing set. We report the results in terms of average error rates over 30
independent runs on the three data sets. It should be noted that IPSONet does not consider
any structural optimization in the fitness function to construct a compact ANN, but only
evolves the structure by using PVMCPSO based on the specific individual representation
scheme. The results demonstrate that IPSONet has the capability to evolve compact ANNs
which generalize well.

To observe the evolutionary process in IPSONet, Figs. 2–4 show the evolution of mean of
average numbers of connections and the mean of average classification error rate of ANNs
over 30 runs for the three problems. It should be noted that these results are calculated based
on the personal best positions (i.e., Pi (i = 1, 2, . . . M), where M is the number of individu-
als in the population), namely, the classification error rates of all Pi (i = 1, 2, . . . M) on the
training set are calculated to obtain the average classification error rate of the population in
each generation. The evolutionary processes are quite interesting. It can be observed that the
number of connections in ANNs decreases rapidly in the beginning of the evolution. After
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Table 2 Results of IPSONet for the breast cancer, diabetes and heart data sets

Data set Training set Validation set Testing set Number
of hidden
nodes

Number
of connec-
tions

Error rate Error rate Error rate

Breast cancer Mean 0.0181 0.0286 0.0127 4.7 39.7
SD 0.0060 0.0047 0.0057 1.0 10.7
Min 0.0086 0.0229 0.0057 4 23
Max 0.0287 0.0343 0.0286 7 50

Diabetes Mean 0.2217 0.1946 0.2102 4.9 40.5
SD 0.0139 0.0142 0.0123 1.2 11.1
Min 0.1875 0.1667 0.1875 2 17
Max 0.2448 0.2240 0.2292 7 63

Heart Mean 0.0582 0.1945 0.1814 5.0 56.6
SD 0.0123 0.0199 0.0342 1.1 12.5
Min 0.0448 0.1471 0.1176 3 33
Max 0.0821 0.2353 0.2500 7 96

Fig. 2 Evolution of ANN connections and error rates for the breast cancer data set

certain number of generations, the number of connections starts decreasing slowly. During
the latter part of the evolution, the number of connections keeps stability. Meanwhile, it can
be observed that IPSONet can reduce the error of the trained ANNs quickly during the early
part of the evolution. Moreover, IPSONet is capable of continuously reducing the error of
the ANNs on the training set during the latter part of the evolution. This demonstrates that
PVMCPSO can converge quickly toward the global optima, and fine tune the solutions very
efficiently. The phenomenon illustrates the effectiveness of IPSONet in simultaneously evolv-
ing the weights and structure of individual networks through using the specific individual
representation and evolutionary scheme.

In the beginning stage of the evolution, IPSONet deletes many connections in the individ-
ual network to reduce its error on the training data set. After certain number of generations,
networks in the population will have fewer connections and lower errors than before. They
have reached such a level that further large deletion of connections will increase their errors.
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Fig. 3 Evolution of ANN connections and error rates for the diabetes data set

Fig. 4 Evolution of ANN connections and error rate for the heart data set

Hence large deletion is likely to fail, and small addition or deletion is likely to be attempted
in the latter stage of the evolution. Based on the relative stable structure of the individual
network, further fine tune the weights of the network can reduce continuously its error during
the latter part of the evolution. Therefore, these results demonstrate that IPSONet is capable
of evolving compact ANNs with good training results.

Table 3 compares the results of IPSONet with those of EPNet proposed by Yao and Liu [4].
Due to IPSONet and EPNet used the same training set, validation set and testing set for the
three problems, it is appropriate to compare the performance of IPSONet with that of EPNet.
The results of IPSONet and EPNet are the average testing error rates over 30 independent
runs on the three data sets. This comparison shows that IPSONet achieves the generalization
performance better than EPNet for both the breast cancer and diabetes data sets. It should
be noted that EPNet spends much additional computation time to evolve ANNs due to its
complicated computation and large search. In comparison with EPNet, IPSONet uses more
simple evolutionary method and spends less computation cost through using PVMCPSO.
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Table 3 Comparison between
IPSONet and EPNet in terms of
the average testing error rate for
the breast cancer, diabetes and
heart data sets

Data set IPSONet EPNet

Breast cancer 0.0127 0.0137
Diabetes 0.2102 0.2238
Heart 0.1814 0.1677

Table 4 Comparison with other algorithms in terms of the average testing accuracy rate for all data sets

Data set NB BN TAN CL C4.5 SNB IPSONet

Card 86.23 ± 1.1 86.23 ± 1.7 84.20 ± 1.2 85.07 ± 1.3 85.65 ± 1.8 86.67 ± 1.8 86.83 ± 2.7
0 6 4 1 2 1 7

Cancer 97.36 ± 0.5 96.92 ± 0.6 96.92 ± 0.6 92.40 ± 0.8 94.73 ± 0.5 96.19 ± 0.6 97.07 ± 0.5
0 3 7 1 9 3 1

Diabetes 74.48 ± 0.8 75.39 ± 0.2 75.52 ± 1.1 74.74 ± 1.1 76.04 ± 0.8 76.04 ± 0.8 77.63 ± 0.7
9 9 1 9 5 3 8

German 74.70 ± 1.3 72.30 ± 1.5 73.10 ± 1.5 73.90 ± 1.8 72.20 ± 1.2 73.70 ± 2.0 75.52 ± 3.6
3 7 4 5 3 2 3

Heart 81.48 ± 3.2 82.22 ± 2.4 83.33 ± 2.4 82.22 ± 2.9 81.11 ± 3.7 81.85 ± 2.8 82.62 ± 5.2
6 6 8 6 7 3 5

Iris 93.33 ± 1.0 94.00 ± 1.2 94.00 ± 1.2 93.33 ± 1.0 94.00 ± 1.2 94.00 ± 1.2 96.00 ± 3.5
5 5 5 5 5 5 1

Pima 75.51 ± 1.6 75.00 ± 1.2 75.52 ± 1.2 75.39 ± 1.5 75.13 ± 1.5 74.86 ± 2.6 76.68 ± 2.0
3 2 7 1 2 1 9

Vehicle 58.28 ± 1.7 61.00 ± 2.0 69.63 ± 2.1 67.15 ± 2.0 69.74 ± 1.5 61.36 ± 2.3 70.02 ± 5.3
9 2 1 6 2 3 4

4.3 Comparison with Other Work

In order to further evaluate the performance of IPSONet under cross-validation method, the
following comparisons were carried out by using 5-fold cross-validation [22] on all data sets,
and other cross-validation on the Australia credit card and diabetes data sets. In order to
conduct a fair comparison with other work, the training set was used as the validation set in
IPSONet for the selection of the best individual network from the personal best positions of
the population.

4.3.1 Comparison with Other Work using 5-fold Cross-validation

In order to compare IPSONet with previous work, the experimental setup that is the same
as the previous experimental setup described in [23], namely, 5-fold cross-validation was
used for all data sets in this study. Table 4 compares results of IPSONet against those of five
Bayesian network classifiers and C4.5 [24] tested by Friedman [23]. The accuracy rate in the
table refers to the percentage of correct classifications produced by the trained ANNs on the
testing set. It is clear that IPSONet outperforms other algorithms on major data sets.

4.3.2 Comparison with Other Work using Other Cross-validation

This section compared the results of IPSONet with those of other learning algorithms. The
experimental setup is the same as the previous experimental setup described in [25]. Namely,
the 10-fold cross-validation [26] was used for the Australian credit card data set, and 12-fold
cross-validation was used for the diabetes data set, respectively.
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Table 5 Comparisons among
IPSONet, EENCL and MPANN
in terms of the average testing
error rate for the Australian credit
card data set and the diabetes data
set

Data set IPSONet EENCL MPANN

Credit card 0.132 0.135, 0.132 0.136
Diabetes 0.230 0.221, 0.223 0.251

Table 5 compares the results ( i.e., average testing error rates) of IPSONet against those
of other evolutionary ANN algorithms proposed by Liu et al. [27] and Abbass [28]. Liu
et al. [27] proposed an evolutionary ensemble algorithm with negative correlation learning
(EENCL) to address the issues of automatic determination of the number of individual ANNs
in an ensemble and the exploitation of the interaction between individual ANN design and
combination. Their results indicated that EENCL showed good generalization performance
in the Australian credit card and diabetes data set. In general, ensemble ANN can obtain bet-
ter generalization performance than those of single ANNs. It should be noted that results of
EENCL have two error rates which are obtained from two combination approaches, namely,
ensemble all individuals in the population and select representation from the population,
respectively. For the ensemble using the whole population and the winner-takes-all com-
bination method, the average error rates of EENCL are respectively 0.135 and 0.221 for
the Australian credit card data set and the diabetes data set, respectively. For the ensemble
using the representatives from species, the average testing error rates of EENCL are 0.132
and 0.223 for the Australian credit card data set and the diabetes data set, respectively. The
reason for choosing EENCL algorithm is to show good generalization performance of IPS-
ONet when compared with an evolutionary ANN ensemble algorithm. Abbass [28] presented
an evolutionary ANN approach (MPANN) based on pareto multi-objective optimization and
differential evolution augmented with local search. From Table 5, it is evident that IPSONet
have been able to achieve the generalization performance comparable to EENCL and better
than the MPANN. It should be noted that EENCL used the evolutionary ensemble approach,
which helps EENCL obtain better generalization performance in comparison with using the
best individual network in the population. In contrast, IPSONet used the best individual
network to test its performance.

Tables 6 and 7 compare the results ( i.e., average testing error rates) of IPSONet against
those of 23 algorithms tested by Michie et al. [25]. These algorithms can be categorized into

Table 6 Comparison with other algorithms in terms of the average testing error rate for the Australian credit
card data set

Algorithm Error rate Algorithm Error rate

IPSONet 0.132 Baytree 0.171
Discrim 0.141 NaiveBay 0.151
Quadisc 0.207 CN2 0.204
Logdisc 0.141 C4.5 0.155
SMART 0.158 ITrule 0.137
ALLOC80 0.201 Cal5 0.131
k-NN 0.181 Kohonen Fail
CASTLE 0.148 DIPOL92 0.141
CART 0.145 Backprop 0.154
IndCART 0.152 RBF 0.145
NewID 0.181 LVQ 0.197
AC2 0.181 Default 0.440
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Table 7 Comparison with other
algorithms in terms of the
average testing error rate for the
diabetes data set

Algorithm Error rate Algorithm Error rate

IPSONet 0.230 Baytree 0.271
Discrim 0.225 NaiveBay 0.262
Quadisc 0.262 CN2 0.289
Logdisc 0.223 C4.5 0.270
SMART 0.232 ITrule 0.245
ALLOC80 0.301 Cal5 0.250
k-NN 0.324 Kohonen 0.273
CASTLE 0.258 DIPOL92 0.224
CART 0.255 Backprop 0.248
IndCART 0.271 RBF 0.243
NewID 0.289 LVQ 0.272
AC2 0.276

statistical algorithms (Discrim, Quadisc, Logdisc, SMART, ALLOC80, k-NN, CASTLE,
NaiveBay, and Default), decision trees (CART, IndCART, NewID, AC2, Baytree, Cal5, and
C4.5), rule-based methods (CN2, and ITrule), and ANNs (Backprob, Kohonen, LVQ, RBF,
and DIPOL92). IPSONet used the same experimental setup as in [25] (i.e., 10-fold cross-
validation for the Australian credit card data set and 12-fold cross-validation for the diabetes
data set). The comparisons indicate that IPSONet achieves the generalization performance
comparable to or better than the best of 23 algorithms for both the Australian credit card and
diabetes data sets.

5 Conclusions

In this paper, a new evolutionary ANN algorithm, i.e., IPSONet, is proposed. IPSONet
is based on an improved PSO algorithm PVMCPSO for evolving three-layer feedforward
ANNs. PVMCPSO enables ANNs to dynamically evolve its structure and adapt its weights by
using a specific individual representation and evolutionary scheme. To improve efficiency of
PSO in global search and fine-tuning of the solutions, parameter automation strategy, velocity
resetting, and crossover and mutations are used in PVMCPSO. The performance of IPSONet
has been evaluated on seven benchmark problems. Very competitive results have been pro-
duced by IPSONet in comparison with other algorithms. Moreover, the results demonstrate
that IPSONet can evolve compact ANNs by only using PVMCPSO without considering any
structural information of ANNs in the fitness function. One of the future improvements to
IPSONet would be to form the ensemble output from combination of individual ANN outputs.
Another future improvement would be to further improve the performance of PVMCPSO by
combing other EAs such as ES and EP.
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