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Abstract. The data descriptions of the units are called “symbolic” when they 
are more complex than standard ones due to the fact that they contain internal 
variation and are structured. Symbolic data arise from many sources, for 
instance in order to summarize huge Relational Data Bases by their underlying 
concepts. “Extracting knowledge” means getting explanatory results, that why,  
“symbolic objects” are introduced and studied in this paper. They model 
concepts and constitute an explanatory output for data analysis. Moreover they 
can be used in order to define queries of a Relational Data Base and propagate 
concepts between Data Bases. We define “Symbolic Data Analysis” (SDA) as 
the extension of standard Data Analysis to symbolic data  tables as input in 
order to find symbolic objects as output. Any SDA is based on four spaces: the 
space of individuals , the space of concepts, the space of descriptions modelling 
individuals or classes of individuals, the space of symbolic objects modelling 
concepts. Based on these four spaces, new problems appear such as the quality, 
robustness and reliability of the approximation of a concept by a symbolic 
object, the symbolic description of a class, the consensus between symbolic 
descriptions, and so on. In this paper we give an overview on recent 
development in SDA. We present some tools and methods of SDA and 
introduce the SODAS software prototype (issued from the work of 17 teams of 
nine countries involved in an European project of EUROSTAT) . 

1 Introduction  

As input, when large data sets are aggregated into smaller more manageable data sizes 
we need more complex data tables called “symbolic data tables” because a cell of 
such data table does not necessarily contain as usual, a single quantitative or 
categorical value. 
In a symbolic data table, a cell can contain a distribution (Schweitzer (1985) says that 
“distributions are the number of the future!”), or intervals, or several values linked by 
a taxonomy and logical rules. The need to extend standard data analysis methods 
(exploratory, clustering, factorial analysis, discrimination,...) to symbolic data table is 



increasing in order to get more accurate information and summarize extensive data 
sets contained in Data Bases. 
Since the first papers announcing the main principles of Symbolic Data Analysis 
(Diday 1987a, 1987b, 1989) much work has been done up to the most recent book 
published by Bock and Diday (2000) and the proceedings of IFCS’2000 (Kiers et al. 
2000) which contains a large chapter devoted to this field. In factorial analysis,  
Cazes, Chouakria, Diday and Schecktman (1997) have defined a principal component 
analysis of individuals described by a vector of numerical intervals. In the same 
direction is the work by Verde and De Carvalho (1998) that takes care on given 
dependence rules (see also Lauro and Palumbo 1998). In the case where the 
individuals are described by symbolic data, Conruyt (1994) in the case of structured 
data, Ciampi et al. (1995), Périnel (1996), have developed an extension of standard 
decision trees. In the same direction is the work by Bravo and Garcia-Santesmases 
(1998) on “segmentation trees for stratified data” and Rasson and Lissoir (1998). See 
also (Auriol 1995) for a link with the domain of “Case Based Reasoning”. In order to 
select the symbolic variables which distinguish at the best individuals or classes of 
individuals, several works have been done such as Vignes (1991) and more recently 
Ziani (1996). It is often useful to calculate dissimilarities between symbolic objects; 
in that direction mention should be made of Gowda and Diday (1992), De Carvalho 
(1994, 1998a). A complete review is reported in the work by Esposito et al. (2000). If 
each cell of the data table is a random variable represented by a histogram (for 
instance, the histogram of the inhabitant age of a town), a histogram of histogram can 
be calculated for instance, by taking care of rules between the variable values in De 
Carvalho (1998b), or by using the capacity theory (Diday & Emilion 1995, 1997, 
Diday et al. 1996). Noirhomme and Rouard (1998, 2000) give a way of representing 
multidimensional symbolic data (see also Gigout 1998). 
Starting from standard data has been proposed a way for extracting symbolic objects 
from a factorial analysis (Gettler-Summa 1992), and a way for extracting symbolic 
objects from a partition (Stephan et al. 2000). Starting from time -series, Ferraris, 
Gettler-Summa, Pardoux, Tong (1995), have defined a way for providing symbolic 
objects (see also Gettler-Summa & Pardoux 2000). 
More recently, several dissertations have been presented in the Paris 9 - Dauphine 
University. Mfoumoune (1998) for the sequential building of a pyramid where each 
node is associated to a symbolic object. Chavent (1997), in order to build a partition 
of a set of symbolic objects by a top-down algorithm which provides also a symbolic 
object associated to each obtained class (see chapter 11 in Bock , Diday (2000)). 
Stéphan (1998) for extracting symbolic objects from a data base (see also Stéphan et 
al. 2000). Hillali (1998) for describing classes of individuals described by a vector of 
probability distributions. Pollaillon (1998), for extending Galois lattices and extracted 
pyramid to symbolic data at input and “complete” symbolic objects at output 
(Pollaillon 2000). Tang (1998) for extending Factorial Correspondence Analysis and 
O. Rodriguez (2000) for extending regression and Multidimensional Scaling to 
interval data. 



1.1 The Input of a Symbolic Data Analysis: a “Symbolic Data Table” 

“Symbolic data tables” constitute the main input of a Symbolic Data Analysis. They 
are defined in the following way: columns of the input data table are «symbolic 
variables» which are used in order to describe a set of units called “individuals”. 
Rows are called «symbolic descriptions» of these individuals because they are not as 
usual, only vectors of single quantitative or categorical values. Each cell of this 
«symbolic data table» contains data of different types: 
(a) Single quantitative value: for instance, if «height» is a variable and w is an 

individual: height(w) = 3.5. 
(b) Single categorical value: for instance, town(w) = London. 
(c) Multi-valued: for instance, in the quantitative case height(w) = {3.5, 2.1, 5} 

means that the height of w can be either 3.5 or 2.1 or 5. Notice that (a) and (b) are 
special cases of (c). 

(d) Interval: for instance height(w) = [3, 5], which means that the height of w varies 
in the interval [3, 5]. 

(e) Multi-valued with weights: for instance a histogram or a membership function 
(notice that (a) and (b) are special cases of (e) when the weights are equal to 1 or 
0). 

Variables can be:  
(f) Taxonomic: for instance, «the colour» is considered to be “light” if it is “yellow”, 

“white” or “pink”.  
(g) Hierarchically dependent: for instance, we can describe the kind of computer of a 

company only if it has a computer, hence the variable “does the company has 
computers? ” and the variable “ kind of computer ” are hierarchically linked. 

(h) With logical dependencies, for instance: «if age(w) is less than 2 months then 
height(w) is less than 10». 

Many example of such symbolic data are given in the chapter 3 in (Bock & Diday 
2000). 
 
Sources of Symbolic Data. Symbolic data are generated when we summarize huge 
sets of data. The need of such summary can appear in different ways, for instance, 
from any query to a data base which induces categories and descriptive variables. 
These categories can be, for instance, simply the towns or in a more complex way, the 
socio-professional categories (SPC) crossed with categories of age (A) and regions 
(R). Hence, in this last case, we obtain a new categorical variable of cardinality    
SPC × A ×R where  X is the cardinality of X. The descriptive variables of the 
households can then be used in order to describe these categories by symbolic data. 
Symbolic Data can also appear after a clustering in order to describe in an explanatory 
way (by using the initial variables) the obtained clusters. 
Symbolic data may also be “native” in the sense that they result from expert 
knowledge (scenario of traffic accidents, type of emigration, species of insects, ...), 
from the probability distribution, the percentiles or the range of any random variable 
associated to each cell of a stochastic data table, from time series (in representing 
each time series by the histogram of its values or in describing intervals of time), from 
confidential data (in order to hide the initial data by less accuracy), etc. They result 



also from Relational Data Bases, in order to study a set of units whose description 
needs the merging of several relations as is shown in the following example. 

1.2 Output of  Symbolic Data Analysis  

Most of the symbolic data analysis algorithms give in their output the symbolic 
description “d” of a class of individuals (which are the partial or complete extent of a 
given concept), by using a “generalization” process. By starting with this description, 
symbolic objects model the underlying concept and give a way, to find at least, the 
individuals of this class. 

Example: The age of two individuals w1, w2 which satisfy a given concept (for 
instance they leave in the same town), are age(w1) = 30, age(w2) = 35, the description 
of the class C = {w1, w2} obtained by a generalization process can be [30, 35]. The 
extent of this description contains at least w1 and w2 but may contain other 
individuals. In this simple case the symbolic object “s” is defined by a triple: s = (a, 
R, d) where  d = [30, 35], R  = “∈” and “a” is the mapping: Ω  → {true, false} such that 
a(w) = the true value of “age(w) R  d” denoted with [age(w) R d]. An individual w  is in 
the extent of s if a(w) = true. 

More formally (see figure 1), let Ω  be a set of individuals, D a set containing 
descriptions of individuals dw or of a class of individuals dC, “y” a mapping defined 
from Ω  into D which associates to each w∈Ω  a description dw∈ D from a given 
symbolic data table. We denote by R, a relation defined on D. It is defined by a subset 
Ω  of D×D. If (x, y)∈ Ω  we say that x and y are connected by R and this is denoted by 
x R y. More generally we say that x R y take its value in a set L. We can have 
L={true,false}, in this case [d’ R d] = true means that there is a connection between d 
and d’. We can also have L= [0, 1] if d is more or less connected to d’. In this case, [d’ 
R d] can be interpreted as the “true value” of x R y or “ the degree to which d’ is in 
relation R  with d”. For instance, R ∈ {=, ≡, ≤, ⊆ } or R  is an implication, a kind of 
matching taking care of missing values, etc. R can also use a logical combination of 
such operators. 

2 Symbolic Objects 

A «symbolic object» is defined by a description “d”, a relation “R” for comparing d to 
the description dw of an individual and a mapping “a” called “membership function”. 
More formally: “a symbolic object is a triple s = (a, R, d ) where R is a relation 
between descriptions, d is a description and a is a mapping defined from Ω  in L 
depending on R and d”. 
Symbolic Data Analysis concerns usually classes of symbolic objects where R is 
fixed, “d” varies among a finite set of coherent descriptions and “a” is such that: 
a(w)=[y(w) R d] which is by definition the result of the comparison of the description 
of the individual w to d. More generally, many other cases can be considered. If, for 
instance, the mapping “a” is of the following kind: a(w) = [he (y(w)) hj (R) hi (d)] 



where the mappings he , hj and hi are “filters” which will be discussed hereunder. 
There are two kinds of symbolic objects: 

- «Boolean symbolic objects» if [y(w) R d] ∈ L = {true, false}. In this case, if 
y(w) = (y1,...,yp), the yi are of type (a) to (d), defined in section 1. 
Example: Let be a(w) = [y(w) R d] with R: [ d’ R d ] = ∨  i =1, 2  [d’i Ri di  ] where 
∨  has  the standard logical meaning and Ri = ⊆. If y(w ) = (colour(w ), 
height(w)), d=({red, blue, yellow}, [10,15] )=(d1, d2), colour(u)={red, yellow}, 
height(u)={21}, then a(u)=[colour(u ) ⊆ {red, blue, yellow}]∨  [height(u) ⊆  
[10,15]]= true ∨  false = true. 

- «Modal symbolic objects» if [y(w) R d] ∈ L = [0,1]. 
Example: Let be a(u) = [y(u) R d] where for instance R: [d’ R d ] = Max i =1, 2 
[d’i Ri di  ]. The choice of the Max is among many other possible choices 
related to copulas theory (Diday 2000). The “matching” of two probability 
distributions is defined for two discrete probability distributions d’I = r and di 

= q of k values by: r Ri q = ∑j=1,k rj qj e ( r
j
 -  min (r

 j
, q

 j
)). By analogy with the 

Boolean case we denote [ d’ R d ]= ∨* i =1, 2 [ d’i Ri di  ] where ∨* = Max . With 
these definitions it is possible to calculate the mapping “a” of a symbolic 
object s = (a, R, d) where SPC means «socio-professional-category» and d = 
({(0.2)12, (0.8)[20 ,28]}, {(0.4)employee, (0.6)worker}) by: a(u) = [age(u) 
R1{(0.2)12, (0.8) [20 ,28]}] ∨* [SPC(u ) R2{(0.4)employee, (0.6)worker}]. 
Notice that in this example the weights (0.2), (0.8), (0.4), (0.6) represent 
frequencies but more generally other kinds of weights may be used as 
“possibilities”, “necessities”, “capacities”, etc. Notice that the Ri depends on 
this choice, (Diday 1995). 

2.1 Syntax of Symbolic Objects in the Case of “Assertions” 

If the initial data table contains p variables we denote y(w) = (y1(w),..., yp (w)), D = 
(D1,...,Dp), d ∈ D: d = (d1,..., dp) and R’ = (R1,...,Rp) where Ri is a relation defined on 
Di. We call «assertion» a special case of a symbolic object defined by s = (a, R, d) 
where R is defined by [d’ R d] = ∧  i =1, p  [ d’i Ri di] where “∧” has the standard logical 
meaning and “a” is defined by: a (w) = [ y(w) R  d ] in the Boolean case. Notice that 
considering the expression a(w) = ∧  i =1, p  [yi (w) Ri di] we are able to define the 
symbolic object s = (a, R, d). Hence, we can say that this explanatory expression 
defines a symbolic object called “assertion”. 
For example, a Boolean assertion is: a(w) = [age(w ) ⊆ {12, 20 ,28}] ∧  [SPC(w) ⊆ 
{employee, worker}]. If the individual u is described in the original symbolic data 
table by age(u)={12, 20} and SPC (u)  = {employee } then: a(u) = [{12, 20 }⊆ {12, 
20 ,28}] ∧  [{employee}⊆{employee, worker}]= true. 
In the modal case, the variables are multi-valued and weighted, an example is given 
by a(u) = [y(u) R d ] with [d’ R d ] = f({[yi(w) Ri di]}i=1,...,p) where for instance, 
f({[yi(w) Ri di]}i=1,...,p) = Π i =1, 2 [ d’i Ri di  ] where in case of probability distributions, 
the “matching” is defined for two discrete density distributions d’i = r = (r1, ...,r k) and 
di  =q = (q1, ... , qk) of k  values by: r Ri q = ∑j=1,k r j q j e ( r

 j
 -  min (r

 j
, q

 j
)). 



By analogy with the Boolean case we denote [ d’ R  d ]= ∧*i =1, 2 pi [ d’i Ri di  ] where the 
meaning of “∧*” is given by the definition of the mapping “f”. For instance, with 
these choices, a modal assertion I = (a, R, d) is completely defined by the equality: 
a(w) = [age(w) R1 {(0.2)12, (0.8) [20 ,28]}] ∧* [SPC(w) R2 {(0.4)employee, 
(0.6)worker}]. 
 

Extent of a symbolic object s. In the Boolean case, the extent of a symbolic object is 
denoted Ext(I) and defined by the extent of a, which is: Extent(a) = {w ∈ Ω  / a(w) = 
true}. In the modal case, given a threshold α, it is defined by Extα (s)= Extentα (a)= 
{w ∈ Ω  / a(w ) ≥ α}. 

 

Fig. 1. Modeling by a symbolic object of a concept known by its extent 



2.2 Underlying Structures of Symbolic Objects: a Generalized Conceptual  
Lattice 

Under some assumptions on the choice of R and T (for instance T ≡ Max if R ≡ ≤ and 
T ≡ Min if R ≡ ≥) it can be shown that the underlying structure of a set of symbolic 
objects is a Galois lattice (Diday 1991, Brito 1994, Diday & Emilion 1995, 1997), 
Polaillon & Diday (1997), Polaillon (1998), Bock & Diday (2000)), where the 
vertices are closed sets defined thereunder by «complete symbolic objects». More 
precisely, the associated Galois correspondence  is defined by two mappings F and G: 
• F: from P(Ω) (the power set of Ω) into S (the set of symbolic objects) such that 

F(C)= s where s = (a, R, d) is defined by d = Tc∈C y(C) and so a(w) = [y(w) R Tc∈C 
y(C)], for a given R. For example, if Tc∈C y(C) = ∪c∈C y(C ) , R  ≡ «⊆», y(u) = {pink, 
blue}, C = {c, c’}, y(C) = {pink, red}, y(c’) = {blue, red}, then a(u) =[y(w) R Tc∈C  
y(C)] = [{pink, blue}⊆ {pink, red}∪{blue, red}})={pink, red, blue}] = true and u∈ 
Ext (s). 

• G: from S in P(Ω) such that: G(s) = Ext (s). 
A «complete symbolic object» s is such that  F(G(s)) = s. Such objects can be selected 
from the Galois lattice but also, from a partitioning, a hierarchical or a pyramidal 
clustering, from the most influential individuals in a factorial axis, from a decision 
tree, etc. 
In order to see how much a given symbolic object is characteristic of a class A, an 
hypergeometric distribution can be used. Let N be the size of Ω’, n the size of A, p = 
Ext(s/Ω’)/N the proportion in Ω’ of individuals belonging in the extent of s, X a 
random variable whose value at each resample is the proportion in A of individuals 
belonging in the extent of s. Then, the hypergeometric law gives the probability of X 
= x by: Pr(X=x) = Cx

Np C
 n-x

N-Np /
 Cn

N where Cn
N= N! / n!(N-n)! is the number of 

possible samples of size n in N, Cx
Np = Np!/(Np-x)!x! is the number of groups of x 

individuals belonging in the extent of s in Ω’ and C n-x
N-Np = (N-Np)!/ (n-x)!(N-Np-

n+x)! is the number of groups of (n-x) individuals which are not belonging in the 
extent of s in Ω’. If the operator T produces k symbolic objects of extent in A with 
size x1,…, xk then the more Y = ∑i = 1,k Pr(X = x i)/k is small, the more these symbolic 
objects are characteristic of the class A. This happen for instance, when p is small and 
x/n large or p large and x/n small. Notice that in the case where s is a complete 
symbolic object the size of the extent is n and p = n/N, so Pr (X = n) = Cn

n  x C 0
N-n /

 

Cn
N = 1x1/ Cn

N = ((N-n)! n!)/ N! which is the probability of a complete symbolic 
object of size n in a population of size N. When bootstrapping Ω’, if the mean of the 
random variable Y is out of the chosen confidence interval, then the more its standard 
deviation is low the more the characterization is reliable. If we are interested by the 
variation of the characteristic of a specific symbolic objet, notice that at each 
resample we have to recognize each symbolic object. This can be done by the use of a 
dissimilarity measure between symbolic objects from one resample to the next 
(Esposito et al. 2000). The closest are considered to be the same. 
A «complete symbolic object» s is such that F(G(s)) = s. Such objects can be selected 
from the Galois lattice but also, from a partitioning, a hierarchical or a pyramidal 
clustering, from the most influential individuals  in a factorial axis, from a decision 
tree, etc. 



2.3 Modeling Individuals, Classes of Individuals and Concepts 

In figure 1 the “set of individuals” and the “set of concepts” is considered to be in the 
“real world”, the “modeled world” is the “set of descriptions” which models 
individuals (or classes of individuals) and the “set of symbolic objects” which models 
concepts. We start with a “concept” C whose extent denoted Ext(C/Ω’) is known in a 
sample Ω’ of individuals. For instance, if the concept is “insurance companies”, for 
instance, 30 insurance companies among a sample Ω’ of 1000 companies. Each 
individual w of the extent of C in Ω’  is described by using the mapping Y such that 
Y(w) describe the individual w. We generalize the set of descriptions of the 
individuals of Ext(C/Ω’) with the operator T in order to produce the description dC 
(which can be a set of Cartesian products of intervals and (or) distributions). 

i. The comparison relation R is chosen in relation with the T choice. For 
instance, if T = ∪ then R = “⊆”, it T = ∩ , then R = “⊇”. 

ii. The membership function is then defined by aC (w) = [y(w) RC dC] and then 
the symbolic object modelling the concept C is the triple s = (aC, R , dC). 

When we don’t have concepts as input, we get them in the following way: 
i. A clustering of Ω’ by using the description of the individuals produces a set 

of classes. 
ii. To each interesting class denoted A, we associate a concept C and a symbolic 

object sA = (aA, RA, dA) with aA = [Y(w) RA dA] where dA is obtained by using 
an operator T on the set of the descriptions of the individuals of A, as in the 
preceding case. 

iii. The concept C is considered to be modeled by sA. 

2.4 Some Advantages in the Use of Symbolic Objects 

We can observe at least five kinds of advantages in the use of symbolic objects. 
1. They give a summary of the original symbolic data table in an explanatory way, 

(i.e. close to the initial language of the user) by expressing descriptions based on 
properties concerning the initial variables or meaningful variables (such as 
indicators obtained by regression or factorial axes). 

2. They can be easily transformed in terms of a query of a Data base and so they can 
be used in order to propagate concepts between data bases (for instance, from one 
country to another country). 

3. By being independent of the initial data table they are able to identify any matching 
individual described in any data table. 

4. In the use of their descriptive part, they are able to give a new symbolic data table 
of higher level on which a symbolic data analysis of second level can be applied. 

5. In order to characterize a concept, they are able to join easily several properties 
based on different variables coming from different relations in a Data Base and 
different samples of a population. 

6. In order to apply exploratory data analysis to several data bases, instead of merging 
them in a huge data base, an alternative is to summarize each Data Base by 
symbolic objects and then to apply Symbolic Data Analysis to the whole set of 
obtained symbolic objects. 



3 Some Symbolic Data Analysis Methods  

Symbolic Data Analysis methods are mainly characterized by the following principle: 
i. they start as input with a symbolic data table and they give as output a set of 

symbolic objects. These symbolic objects give explanation of the results in a 
language close to the one of the user and moreover have all the advantages 
mentioned in 5). 

ii. They use efficient generalization processes during the algorithms in order to 
select the best variables and individuals.  

iii. They give graphical descriptions taking account of the internal variation of 
the symbolic objects. 

The following methods are developed in Bock & Diday (2000) and in the SODAS 
software: 
• Principal Component and Discriminate Factorial Analysis of a symbolic data table. 

The output of these methods preserves the internal variation of the input data in the 
sense that the individuals are not represented in the factorial plane by a point as 
usual but by a rectangle which allows the definition of a symbolic object with 
explanatory factorial axes as variables; 

• extension of elementary descriptive statistics to symbolic data (central object, 
histograms, dispersion, co-dispersion, etc. from a symbolic data table);  

• extracting symbolic objects from the answers to queries of a relational data base; 
• partitioning, hierarchical or pyramidal clustering of a set of individuals described 

by a symbolic data table such that each class be associated with a complete 
symbolic object; 

• dissimilarities between Boolean or probabilistic symbolic objects; 
• extension of decision trees on probabilistic symbolic objects; 
• generalization by a disjunction of symbolic objects of a class of individuals 

described in a standard way; 
• inter-active and ergonomic graphical representation of symbolic objects. 

4 Symbolic Data Analysis in the SODAS Software  

The general aim of SODAS can be stated in the following way: building symbolic 
data in order to summarize huge data sets and then, analyze them by Symbolic Data 
Analysis. For instance, if a set of households is characterized by its region, the 
number of bedrooms and of dining-living, its socio-economic group, we obtain a data 
table of the kind of table 1: 

 

 

 

 

 



Table 1. Standard Data Table where the units are Households 

Household 
number 

Region Bedroom Dining-
Living 

Socio-Econ 
group 

11404 Northern- 
Metropolitan 

2 1 1 

11405 Northern- 
Metropolitan 

2 1 3 

11406 Northern- 
Metropolitan 

1 3 3 

12111 Northern- 
Metropolitan 

   

12112 East anglia 1 3 3 
12112 East anglia 2 2 1 
12112 Greater 

London  N-E 
1 2 3 

 

In census data there is a huge set of households. In order to compare the regions, we 
can summarize them by describing each region by the households of their inhabitants. 
In order to do so, we delete the first column of this table and we obtain the table 2: 

Table 2. The first column of table 4 concerning the household number has been deleted 

Region Bedroom Dining-Liv Socio-Ec gr 
Northern- Metropolitan 2 1 1 
Northern- Metropolitan 2 1 3 
Northern- Metropolitan 1 3 3 
Northern- Metropolitan    

East-anglia 1 3 3 
East-anglia 2 2 1 
East-anglia 1 2 3 

Greater London 
North-East 

   

 

We can now describe each town by the histogram of the categories of each variable. 
This is done in table 3 which is a symbolic data table as each cell contains a histogram 
and not a quantitative or categorical number as in the standard data tables. It is easy to 
see that standard data analysis methods will not apply in the same way with these kind 
of symbolic data. For instance that a decision tree will not be the same if the variables 
are categories and each cell of the associated data table contains a frequency and if the 
variable are symbolic and each cell contains a histogram. In the first case each branch 
of the decision tree represents an interval of frequency (for instance, “the frequency of 
the category [20, 30] years old is less then 0.3”), whereas in the second case it 
represents an interval of values (for instance, “the age is less then 50 years old”). For 
more details see in Bock & Diday (2000) the chapter 11. 



Table 3. A symbolic data table where the units are now regions 

Region Bedroom Dining-Living Socio-Ec gr 
Northern Metropolitan (2\3) 2, (1\3) 3 (2\3) 1, (1\3) 3 (1\3) 1, (2\3) 3 

East-anglia (2\3) 1, (1\3) 2 (2\3) 2, (1\3) 3 (1\3) 1, (2\3) 3 
Greater London    

 
The main steps for a symbolic data analysis in SODAS can then be defined as 
following: 
If there is more than one data table, put the data in a relational data base (ORACLE, 
ACCESS, and so on). Then, define a context by giving: the units (individuals, 
households, and so on), the classes (regions, socio-economics groups,...), the 
descriptive variables of the units. Then, build a symbolic data table where the units 
are the preceding classes, the descriptions of each class is obtained by a histogram as 
in table 6 or by a generalization process applied to its members. This is done by a 
computer program of SODAS called “DB2SO” (from Data Bases Two Symbolic 
Objects). Finally, apply to this symbolic data table, symbolic data analysis methods 
(histogram of each symbolic variable, dissimilarities between symbolic descriptions, 
clustering, factorial analysis, discrimination of a symbolic data table, graphical 
visualization of symbolic descriptions, and so on). 

5 Conclusion 

The need to extend standard data analysis methods (exploratory, clustering, factorial 
analysis, discrimination,...) to symbolic data tables in order to extract new knowledge, 
is increasing due to the expansion of information technology, now able to store an 
increasing amount of huge data sets. This need, has led to a new methodology called 
“Symbolic Data Analysis” whose aim is to extend standard data analysis methods  
(exploratory, clustering, factorial analysis, discrimination, decision trees,...) to new 
kind of data table called “symbolic data table” and to give more explanatory results 
expressed by real world concepts mathematically represented by easy readable 
“symbolic objects”. The aim of the EUROSTAT European Community project called 
SODAS for a «Symbolic Official Data Analysis System» in which 17 institutions of 9 
European countries are concerned was to produce a first software of Symbolic Data 
Analysis (fig. 2). Three Official Statistical Institutions was involved in this project: 
EUSTAT (Span), INE (Portugal) and ONS (England). An example of future 
application proposed on their Census data consists in finding clusters of unemployed 
people and their associated mined symbolic objects in a country, calculating its extent 
in the census of another country and describing this extent by new symbolic objects in 
order to compare the behaviour of the two countries. In that way, several new 
theoretical development are needed as the selection and the stochastic convergence of 
symbolic objects. Also, as the consensus between set of symbolic objects and their 
associated concepts extracted from different data bases. New software development 
are also needed as a tool in order to be able to transform a symbolic object extracted 
from a data base in a query of this data base or of another data base. This new tool 
may be called SO2DB as it is complementary to the actual DB2SO (Malerba et al, 



2002). Moreover, the next steps will be to improve the actual SDA methods 
(robustness, validity of the results, extending standard tests to symbolic data, etc.) and 
extend the symb olic data analysis methodology to regression, multidimensional 
scaling, neural network etc. The SODAS software is free and available at 
http://www.ceremade.dauphine.fr/~touati/sodas-pagegarde.htm. 

 

 
Fig. 2. Software development of the SODAS project 
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