

Lean Software Development: An Agile Toolkit

By Mary Poppendieck, Tom Poppendieck

Publisher: Addison Wesley

Pub Date: May 08, 2003

ISBN: 0-321-15078-3

Lean Software Development shows software professionals how to achieve
breakthrough quality, savings, speed, and business value by adapting the
seven "lean" principles that have already revolutionized manufacturing and
R&D. Drawing on 25+ years' experience leading enterprise projects, the
authors show how to use these principles to create agile processes that
work - because they're optimized for your environment.

 Copyright
 The Agile Software Development Series
 Foreword
 Foreword
 Preface

 Acknowledgments

 Introduction

 Lean Principles, Thinking Tools, Agile Practices

 Guided Tour

 Chapter 1. Eliminate Waste

 The Origins of Lean Thinking

 Tool 1: Seeing Waste

 Tool 2: Value Stream Mapping

 Try This

 Chapter 2. Amplify Learning

 The Nature of Software Development

 Tool 3: Feedback

 Tool 4: Iterations

 Tool 5: Synchronization

 Tool 6: Set-Based Development

 Try This

 Chapter 3. Decide as Late as Possible

 Concurrent Development

 Tool 7: Options Thinking

 Tool 8: The Last Responsible Moment

 Tool 9: Making Decisions

 Try This

 Chapter 4. Deliver as Fast as Possible

 Why Deliver Fast?

 Tool 10: Pull Systems

 Tool 11: Queuing Theory

 Tool 12: Cost Of Delay

 Try This

 Chapter 5. Empower the Team

 Beyond Scientific Management

 Tool 13: Self-Determination

 Tool 14: Motivation

 Tool 15: Leadership

 Tool 16: Expertise

 Try This

 Chapter 6. Build Integrity In

 Integrity

 Tool 17: Perceived Integrity

 Tool 18: Conceptual Integrity

 Tool 19: Refactoring

 Tool 20: Testing

 Try This

 Chapter 7. See the Whole

 Systems Thinking

 Tool 21: Measurements

 Tool 22: Contracts

 Try This

 Chapter 8. Instructions and Warranty

 Caution—Use Only as Directed

 Instructions

 Troubleshooting Guide

 Warranty

 Bibliography

Copyright
Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley, Inc. was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but they make
no expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales.
For more information, please contact:

Pearson Education Corporate Sales Division
One Lake Street
Upper Saddle River, NJ 07458
(800) 382-3419
corpsales@pearsontechgroup.com

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data available

Copyright © 2003 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher. Printed
in the United States of America. Published simultaneously in Canada.

Text printed on recycled paper

1 2 3 4 5 6 7 8 9 10—MA—0504030201

First printing, May 2003

Dedication
To Dustin, Andy and Brian, Karen and Becca

The Agile Software Development
Series
Alistair Cockburn and Jim Highsmith, Series Editors

For more information check out http://www.awprofessional.com/series/agile

Agile software development centers on four values identified in the Agile Alliance's
Manifesto:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

http://www.awprofessional.com/series/agile

The development of Agile software requires innovation and responsiveness, based on
generating and sharing knowledge within a development team and with the customer.
Agile software developers draw on the strengths of customers, users, and developers,
finding just enough process to balance quality and agility.

The books in The Agile Software Development Series focus on sharing the experiences
of such Agile developers. Individual books address individual techniques (such as Use
Cases), group techniques (such as collaborative decision making), and proven solutions
to different problems from a variety of organizational cultures. The result is a core of
Agile best practices that will enrich your experience and improve your work.

Titles in the Series:

Alistair Cockburn, Surviving Object-Oriented Projects, ISBN 0-201-49834-0

Alistair Cockburn, Writing Effective Use Cases, ISBN 0-201-70225-8

Lars Mathiassen, Jan Pries-Heje, and Ojelanki Ngwenyama, Improving Software
Organizations: From Principles to Practice, ISBN 0-201-75820-2

Alistair Cockburn, Agile Software Development, ISBN 0-201-69969-9

Jim Highsmith, Agile Software Development Ecosystems, ISBN 0-201-76043-6

Steve Adolph, Paul Bramble, Alistair Cockburn, and Andy Pols, Patterns for Effective
Use Cases, ISBN 0-201-72184-8

Anne Mette Jonassen Hass, Configuration Management Principles and Practice, ISBN 0-
321-11766-2

DSDM Consortium and Jennifer Stapleton, DSDM, Second Edition: Business Focused
Development, ISBN 0-321-11224-5

Mary Poppendieck and Tom Poppendieck, Lean Software Development: An Agile
Toolkit, ISBN 0-321-15078-3

Foreword
BY JIM HIGHSMITH

In February 2001, when "Agile" was adopted as the umbrella word for methodologies
such as Extreme Programming, Crystal, Adaptive Software Development, Scrum, and
others, the industrial heritage of agile buzzed around in the background. Womack, Jones,
and Roos's The Machine That Changed the World, Smith and Reinertsen's Developing
Products in Half the Time, and Womack and Jones's Lean Thinking have resided on my

bookshelf for years. The Agility Forum was founded by manufacturers in the early 1990s.
The extensive literature on agile and lean industrial product development influenced my
work on Adaptive Software Development.

But in Lean Software Development, Mary and Tom Poppendieck take lean industrial
practices to a new level—they tell us how to apply them directly to software
development. It is one thing to read about value stream mapping in a manufacturing plant
but quite another to see how this idea applies to software development processes. It is one
thing to read about Toyota's set-based decision making and another to apply those ideas
to software design. Mary's manufacturing and industrial product development experience
at 3M gives her insight into how these practices actually work, and her and Tom's
information technology backgrounds gives them insight into how to apply the practices to
software development.

Although Agile Software Development has roots that go back more than 10 years, as a
movement it is only a couple of years old (in early 2003). Tying it to lean and agile
industrial product development provides additional credibility to the principles and
practices of Agile Software Development, but more importantly, it provides a wealth of
ideas that can strengthen agile practices.

For example, the set-based decision making previously mentioned counters prevalent
ideas about making design decisions. Traditional engineering (software and others)
stresses analysis and early decision making so downstream activities can proceed. Set-
based development stresses keeping multiple design options open in order to have as
much information as possible, not only about a particular piece of the design, but also
about the integration of all pieces. Set-based development helps optimize the whole
rather than the pieces. Simple design and refactoring serve similar purposes for software
developers—pushing off certain design decisions into the future when more information
is available. Set-based development therefore provides a parallel that adds credibility to
agile practices but also shows how to extend those practices.

Lean Software Development provides a wealth of information about applying lean
techniques from an industrial setting to software development. In particular, it presents a
toolkit for project managers, team leaders, and technology managers who want to add
value rather than become roadblocks to their project teams.

Jim Highsmith
Flagstaff, Arizona
March 2002

Foreword
BY KEN SCHWABER

Agile processes for software development came into being during the 1990's. We
constructed them based on experience, trial-and-error, knowledge of what didn't work,
and best practices. I had used Scrum and Extreme Programming-like practices in my own
software company during the early 90's. When I first formulated the detailed practices of
Scrum, I made sure that I tried them on every sort of development situation imaginable
before I published my first book about Scrum. In the absence of first-principles or a
theoretical framework for Scrum and other agile processes, I wanted to make sure it
really worked before I unleashed more snake oil on the world.

Others and I have made attempts to provide a theoretical underpinning to agile processes.
I've referred back to my research in industrial process control theory, which friends of
mine at DuPont's Advanced Research Facility helped me understand and apply. Jim
Highsmith has referred to the principles of complex adaptive systems and complexity
theory to explain, by analogy, the reasons why agile processes work.

Mary and Tom Poppendieck have provided us with a more understandable, robust, and
everyday framework for understanding the workings of agile processes. I was with them
at the XP2002 conference in Sardinia, Italy when Enrico Zaninotto, Dean of Faculty of
Economics at the University of Trento, Italy gave his keynote talk, "From X
Programming to the X Organization." In this talk, Enrico laid out the migration of
manufacturing from the simple workshop through the assembly line to the modern use of
lean manufacturing. He clearly demonstrated the economic imperatives underlying the
current use of lean manufacturing. After the talk, Mary was obviously pleased at this
validation. Enrico's talk brought together her background in manufacturing and product
development with all of the collaborative work she had done with the lean construction
movement and her knowledge of the Toyota production system.

This book is the consequence of the Poppendiecks' work to pull all of these movements
and knowledge together. In doing so, they have provided a commonsense set of tools that
underlie agile processes. People using agile processes can refer to the 22 tools that Mary
and Tom describe to understand why and how the most common agile processes work, or
to modify them based on a deep understanding of them, or to construct their own agile
process. The tools in this book provide the framework.

I took particular pleasure in listening to Enrico and seeing Mary's and Tom's thinking gel.
Our industry has long been burdened by the accusation that we should be able to "do it
like manufacturing!" The manufacturing this referred to was the Frederick Taylor, Henry
Ford assembly line. The systems development processes we constructed on Taylor's
principles didn't work, and we didn't know why. Enrico laughed—"Modern
manufacturing left the Taylor principles behind twenty years ago!"

No longer do we need to refer to such abstruse theory and science as complex adaptive
systems to explain agile systems development. We can refer to the 22 tools set forth in
this book and look to manufacturing and common sense for their rationale. We are finally
starting to model software development on something that works for us!

Ken Schwaber
February 2003

Preface
I used to be a really good programmer. My code controlled telephone switching systems,
high energy physics research, concept vehicles, and the makers and coaters used to
manufacture 3M tape. I was equally good at writing Fortran or assembly language, and I
could specify and build a minicomputer control system as fast as anyone.

After a dozen or so years of programming, I followed one of my systems to a
manufacturing plant and took the leap into IT management. I learned about materials
control and unit costs and production databases. Then the quality-is-free and just-in-time
movements hit our plant, and I learned how a few simple ideas and empowered people
could change everything.

A few years later I landed in new product development, leading commercialization teams
for embedded software, imaging systems, and eventually optical systems. I liked new
product development so much that I joined a start-up company and later started my own
company to work with product development teams, particularly those doing software
development.

I had been out of the software development industry for a half dozen years, and I was
appalled at what I found when I returned. Between PMI (Project Management Institute)
and CMM (Capability Maturity Model) certification programs, a heavy emphasis on
process definition and detailed, front-end planning seemed to dominate everyone's
perception of best practices. Worse, the justification for these approaches was the lean
manufacturing movement I knew so well.

I was keenly aware that the success of lean manufacturing rested on a deep understanding
of what creates value, why rapid flow is essential, and how to release the brainpower of
the people doing the work. In the prevailing focus on process and planning I detected a
devaluation of these key principles. I heard, for example, that detailed process definitions
were needed so that "anyone can program," while lean manufacturing focused on
building skill in frontline people and having them define their own processes.

I heard that spending a lot of time and getting the requirements right upfront was the way
to do things "right the first time." I found this curious. I knew that the only way that my
code would work the first time I tried to control a machine was to build a complete
simulation program and test the code to death. I knew that every product that was
delivered to our plant came with a complete set of tests, and "right the first time" meant
passing each test every step of the way. You could be sure that next month a new gizmo
or tape length would be needed by marketing, so the idea of freezing a product
configuration before manufacturing was simply unheard of. That's why we had serial
numbers—so we could tell what the current manufacturing spec was the day a product

was made. We would never expect to be making the exact same products this month that
we were making last month.

Detailed front-end planning strikes me as diametrically opposed to lean manufacturing
principles. Process definition by a staff group strikes me as diametrically opposed to the
empowerment that is core to successful lean manufacturing. It seems to me that the
manufacturing metaphor has been misapplied to software development. It seems to me
that CMM, in its eagerness to standardize process, leaves out the heart of discovery and
innovation that was the critical success factor in our move to total quality management.
We knew in manufacturing that ISO9000 and even Malcolm Baldrige awards had little or
nothing to do with a successful quality program. They were useful in documenting
success, but generally got in the way of creating it.

It seems to me that a PMI certification program teaches a new project manager several
antipatterns for software project management. Work breakdown. Scope control. Change
control. Earned value. Requirements tracking. Time tracking. I learned all about these
when I was a program manager for government contracts at 3M, and was keenly aware of
the waste they added to a program. We certainly knew better than to use them on our
internal product development programs, where learning and innovation were the essential
ingredients of success.

This is not to say that CMM and PMI are bad, but only that for anyone who has lived
through the lean revolution, they tend to give the wrong flavor to a software development
program. In this book we hope to change the software development paradigm from
process to people, from disaggregation to aggregation, from speculation to data-based
decision making, from planning to learning, from traceability to testing, from cost-and-
schedule control to delivering business value.

If you think that better, cheaper, and faster can't coexist, you should know that we used to
think the same way in the pre-lean days of manufacturing and product development.
However, we learned that by focusing on value, flow, and people, you got better quality,
lower cost, and faster delivery. We learned that from our competitors as they took away
our markets.

May you lead your industry in lean software development.

Mary Poppendieck

Acknowledgments
This book is in our words, but the ideas came from the agile community. Lean principles
have had decades of success in lean manufacturing, logistics, and construction. These
same principles, which are the framework of this book, are finally emerging as agile
software development.

Many reviewers invested thoughtful hours reading and providing feedback that helped us
refine our ideas and presentation, including Ken Schwaber, Jim Highsmith, Alistair
Cockburn, Luke Hohmann, Martin Fowler, pragmatic Dave Thomas, Bill Wake, Rob
Purser, Mike Cohn, and Martha Lindeman. Thanks to Glenn Ballard and Greg Howell
from the Lean Construction Institute for their contributions. We also thank Kent Beck,
Tim Ocock, Ron Crocker, and Bruce Ferguson for their contributions to the book.

Thanks to our employers, mentors, team members, collaborators and clients. Thanks to
all who have attended our classes and tutorials, asked probing questions, and given us
examples of lean principles that work (or do not work) in their worlds. Finally, thanks to
the authors of the books and articles we cited, for their contributions to agile software
development.

Introduction
This is a book of thinking tools for software development leaders. It is a toolkit for
translating widely accepted lean principles into effective, agile practices that fit your
unique environment. Lean thinking has a long history of generating dramatic
improvements in fields as diverse as manufacturing, health care, and construction. Can it
do the same for software development? One thing is clear: The field of software
development has plenty of opportunity for improvement.

Jim Johnson, chairman of the Standish Group, told an attentive audience[1] the story of
how Florida and Minnesota each developed its Statewide Automated Child Welfare
Information System (SACWIS). In Florida, system development started in 1990 and was
estimated to take 8 years and to cost $32 million. As Johnson spoke in 2002, Florida had
spent $170 million and the system was estimated to be completed in 2005 at the cost of
$230 million. Meanwhile, Minnesota began developing essentially the same system in
1999 and completed it in early 2000 at the cost of $1.1 million. That's a productivity
difference of over 200:1. Johnson credited Minnesota's success to a standardized
infrastructure, minimized requirements, and a team of eight capable people.

[1] Johnson, "ROI, It's Your Job."

This is but one example of dramatic performance differences between organizations
doing essentially the same thing. Such differences can be found not only in software
development but in many other fields as well. Differences between companies are rooted
in their organizational history and culture, their approach to the market, and their ability
to capitalize on opportunities.

The difference between high-performance companies and their average competitors has
been studied for a long time, and much is known about what makes some companies
more successful than others. Just as in software development, there is no magic formula,
no silver bullet.[2] There are, however, some solid theories about which approaches foster
high performance and which are likely to hinder it. Areas such as manufacturing,

logistics, and new product development have developed a body of knowledge of how to
provide the best environment for superior performance.

[2] See Brooks, "No Silver Bullet."

We observe that some methods still considered standard practice for developing software
have long been abandoned by other disciplines. Meanwhile, approaches considered
standard in product development, such as concurrent engineering, are not yet generally
considered for software development.

Perhaps some of the reluctance to use approaches from product development comes from
unfortunate uses of metaphors in the past. Software development has tried to model its
practices after manufacturing and civil engineering, with decidedly mixed results. This
has been due in part to a naive understanding of the true nature of these disciplines and a
failure to recognize the limits of the metaphor.

While recognizing the hazards of misapplied metaphors, we believe that software
development is similar to product development and that the software development
industry can learn much from examining how changes in product development
approaches have brought improvements to the product development process.
Organizations that develop custom software will recognize that their work consists
largely of development activities. Companies that develop software as a product or part
of a product should find the lessons from product development particularly germane.

The story of the Florida and Minnesota SACWIS projects is reminiscent of the story of
the General Motors GM-10 development, which began in 1982.[3] The first model, a Buick
Regal, hit the streets seven years later, in 1989, two years late. Four years after the GM-
10 program began, Honda started developing a new model Accord aimed at the same
market. It was on the market by the end of 1989, about the same time the GM-10 Cutlass
and Grand Prix appeared. What about quality? Our son was still driving our 1990 Accord
12 years and 175,000 mostly trouble-free miles later.

[3] Womack, Jones and Roos, The Machine That Changed the World, 110.

Studies[4] at the time showed that across multiple automotive companies, the product
development approaches typical of Japanese automakers resulted in a 2:1 reduction in
engineering effort and shortened development time by one-third when compared to
traditional approaches. These results contradicted the conventional wisdom at the time,
which held that the cost of change during final production was 1,000 times greater than
the cost of a change made during design.[5] It was widely held that rapid development
meant hasty decision making, so shortening the development cycle would result in many
late changes, driving up development cost.

[4] Ibid., 111.

[5] Thomas Group, National Institute of Standards & Technology Institute for Defense Analyses.

To protect against the exponentially increasing cost of change, traditional product
development processes in U.S. automotive manufacturers were sequential, and
relationships with suppliers were arm's length. The effect of this approach was to
lengthen the development cycle significantly while making adaptation to current market
trends impossible at the later stages of development. In contrast, companies such as
Honda and Toyota put a premium on rapid, concurrent development and the ability to
make changes late in the development cycle. Why weren't these companies paying the
huge penalty for making changes later in development?

One way to avoid the large penalty for a change during final production is to make the
right design decision in the first place and avoid the need to change later. That was the
Detroit approach. Toyota and Honda had discovered a different way to avoid the penalty
of incorrect design decisions: Don't make irreversible decisions in the first place; delay
design decisions as long as possible, and when they are made, make them with the best
available information to make them correctly. This thinking is very similar to the thinking
behind just-in-time manufacturing, pioneered by Toyota: Don't decide what to
manufacture until you have a customer order; then make it as fast as possible.

Delaying decisions is not the whole story; it is an example of how thinking differently
can lead to a new paradigm for product development. There were many other differences
between GM and Honda in the 1980s. GM tended to push critical decisions up to a few
high-level authorities, while Honda's decision to design a new engine for the Accord
emerged from detailed, engineering-level discussions over millimeters of hood slope and
layout real estate. GM developed products using sequential processes, while Honda used
concurrent processes, involving those making, testing, and maintaining the car in the
design of the car. GM's designs were subject to modification by both marketing and
strong functional managers, while Honda had a single leader who envisioned what the car
should be and continually kept the vision in front of the engineers doing the work.[6]

[6] Womack, Jones and Roos, The Machine That Changed the World, 104–110.

The approach to product development exemplified by Honda and Toyota in the 1980s,
typically called lean development, was adapted by many automobile companies in the
1990s. Today the product development performance gap among automakers has
significantly narrowed.

Lean development principles have been tried and proven in the automotive industry,
which has a design environment arguably as complex as most software development
environments. Moreover, the theory behind lean development borrows heavily from the
theory of lean manufacturing, so lean principles in general are both understood and
proven by managers in many disciplines outside of software development.

Lean Principles, Thinking Tools, Agile Practices
This book is about the application of lean principles to software development. Much is
known about lean principles, and we caution that organizations have not been uniformly

successful in applying them, because lean thinking requires a change in culture and
organizational habits that is beyond the capability of some companies. On the other hand,
companies that have understood and adopted the essence of lean thinking have realized
significant, sustainable performance improvements.[7]

[7] Chrysler, for example, adopted a lean approach to supplier management, which is credited with making significant contributions to its
turnaround in the early 1990s. See Dyer, Collaborative Advantage.

Principles are guiding ideas and insights about a discipline, while practices are what you
actually do to carry out principles.[8] Principles are universal, but it is not always easy to
see how they apply to particular environments. Practices, on the other hand, give specific
guidance on what to do, but they need to be adapted to the domain. We believe that there
is no such thing as a "best" practice; practices must take context into account. In fact, the
problems that arise when applying metaphors from other disciplines to software
development are often the result of trying to transfer the practices rather than the
principles of the other discipline.

[8] Senge, The Fifth Discipline, 373.

Software development is a broad discipline—it deals with Web design and with sending a
satellite into orbit. Practices for one domain will not necessarily apply to other domains.
Principles, however, are broadly applicable across domains as long as the guiding
principles are translated into appropriate practices for each domain. This book focuses on
the process of translating lean principles to agile practices tailored to individual software
development domains.

At the core of this book are 22 thinking tools to aid software development leaders as they
develop the agile practices that work best in their particular domain. This is not a
cookbook of agile practices; it is a book for chefs who are setting out to design agile
practices that will work in their domain.

There are two prerequisites for a new idea to take hold in an organization:

• The idea must be proven to work operationally, and
• People who are considering adopting the change must understand why it works.[9]

[9] See Larpé and Van Wassenhove, "Learning Across Lines."

Agile software development practices have been shown to work in some organizations,
and in Adaptive Software Development[10] Jim Highsmith develops a theoretical basis for
why these practices work. Lean Development further expands the theoretical foundations
of agile software development by applying well-known and accepted lean principles to
software development. But it goes further by providing thinking tools to help translate
lean principles into agile practices that are appropriate for individual domains. It is our
hope that this book will lead to wider acceptance of agile development approaches.[11]

[10] Highsmith, Adaptive Software Development.

[11] Agile software development approaches include Adaptive Software Development, ASD (Highsmith, 2000); Crystal Methods (Cockburn,
2002); Dynamic Systems Development Method, DSDM (Stapleton, 2003); Feature-Driven Development, FDD (Palmer and Felsing, 2002);
Scrum (Schwaber and Beedle, 2001); and Extreme Programming, XP (Beck, 2000). See Highsmith, Agile Software Development Ecosystems
for an overview of agile approaches.

Guided Tour
This book contains seven chapters devoted to seven lean principles and thinking tools for
translating each principle into agile practices. A brief introduction to the seven lean
principles concludes this introduction.

1. Eliminate waste. Waste is anything that does not add value to a product, value as
perceived by the customer. In lean thinking, the concept of waste is a high hurdle.
If a component is sitting on a shelf gathering dust, that is waste. If a development
cycle has collected requirements in a book gathering dust, that is waste. If a
manufacturing plant makes more stuff than is immediately needed, that is waste.
If developers code more features than are immediately needed, that is waste. In
manufacturing, moving product around is waste. In product development, handing
off development from one group to another is waste. The ideal is to find out what
a customer wants, and then make or develop it and deliver exactly what they
want, virtually immediately. Whatever gets in the way of rapidly satisfying a
customer need is waste.

2. Amplify learning. Development is an exercise in discovery, while production is
an exercise in reducing variation, and for this reason, a lean approach to
development results in practices that are quite different than lean production
practices. Development is like creating a recipe, while production is like making
the dish. Recipes are designed by experienced chefs who have developed an
instinct for what works and the capability to adapt available ingredients to suit the
occasion. Yet even great chefs produce several variations of a new dish as they
iterate toward a recipe that will taste great and be easy to reproduce. Chefs are not
expected to get a recipe perfect on the first attempt; they are expected to produce
several variations on a theme as part of the learning process.[12] Software
development is best conceived of as a similar learning process with the added
challenge that development teams are large and the results are far more complex
than a recipe. The best approach to improving a software development
environment is to amplify learning.

[12] See Ballard, "Positive vs. Negative Iteration in Design."

3. Decide as late as possible. Development practices that provide for late decision
making are effective in domains that involve uncertainty, because they provide an
options-based approach. In the face of uncertainty, most economic markets
develop options to provide a way for investors to avoid locking in decisions until
the future is closer and easier to predict. Delaying decisions is valuable because
better decisions can be made when they are based on fact, not speculation. In an
evolving market, keeping design options open is more valuable than committing
early. A key strategy for delaying commitments when developing a complex
system is to build a capacity for change into the system.

4. Deliver as fast as possible. Until recently, rapid software development has not
been valued; taking a careful, don't-make-any-mistakes approach has seemed to
be more important. But it is time for "speed costs more" to join "quality costs
more" on the list of debunked myths.[13] Rapid development has many advantages.
Without speed, you cannot delay decisions. Without speed, you do not have
reliable feedback. In development the discovery cycle is critical for learning:
Design, implement, feedback, improve. The shorter these cycles are, the more can
be learned. Speed assures that customers get what they need now, not what they
needed yesterday. It also allows them to delay making up their minds about what
they really want until they know more. Compressing the value stream as much as
possible is a fundamental lean strategy for eliminating waste.

[13] Womack, Jones and Roos, The Machine That Changed the World, 111.

5. Empower the team. Top-notch execution lies in getting the details right, and no
one understands the details better than the people who actually do the work.
Involving developers in the details of technical decisions is fundamental to
achieving excellence. The people on the front line combine the knowledge of the
minute details with the power of many minds. When equipped with necessary
expertise and guided by a leader, they will make better technical decisions and
better process decisions than anyone can make for them. Because decisions are
made late and execution is fast, it is not possible for a central authority to
orchestrate activities of workers. Thus, lean practices use pull techniques to
schedule work and contain local signaling mechanisms so workers can let each
other know what needs to be done. In lean software development, the pull
mechanism is an agreement to deliver increasingly refined versions of working
software at regular intervals. Local signaling occurs through visible charts, daily
meetings, frequent integration, and comprehensive testing.

6. Build integrity in. A system is perceived to have integrity when a user thinks,
"Yes! That is exactly what I want. Somebody got inside my mind!" Market share
is a rough measure of perceived integrity for products, because it measures
customer perception over time.[14] Conceptual integrity means that the system's
central concepts work together as a smooth, cohesive whole, and it is a critical
factor in creating perceived integrity.[15] Software needs an additional level of
integrity—it must maintain its usefulness over time. Software is usually expected
to evolve gracefully as it adapts to the future. Software with integrity has a
coherent architecture, scores high on usability and fitness for purpose, and is
maintainable, adaptable, and extensible. Research has shown that integrity comes
from wise leadership, relevant expertise, effective communication, and healthy
discipline; processes, procedures, and measurements are not adequate substitutes.

[14] Clark and Fujimoto, "The Power of Product Integrity," 278.

[15] Brooks, Mythical Man Month, 255.

7. See the whole. Integrity in complex systems requires a deep expertise in many
diverse areas. One of the most intractable problems with product development is
that experts in any area (e.g., database or GUI) have a tendency to maximize the

performance of the part of the product representing their own specialty rather than
focusing on overall system performance. Quite often, the common good suffers if
people attend first to their own specialized interests. When individuals or
organizations are measured on their specialized contribution rather than overall
performance, suboptimization is likely to result. This problem is even more
pronounced when two organizations contract with each other, because people will
naturally want to maximize the performance of their own company. It is
challenging to implement practices that avoid suboptimization in a large
organization, and it is an order of magnitude more difficult when contracts are
involved.

This book was written for software development managers, project managers, and
technical leaders. It is organized around the seven principles of lean thinking. Each
chapter discusses the lean principle and then provides thinking tools to assist in
translating the lean principle to agile software development practices that match the needs
of individual domains. At the end of each chapter are practical suggestions for
implementing the lean principle in a software development organization. The last chapter
is an instruction and warranty card for using the thinking tools in this toolkit.

Chapter 1. Eliminate Waste

The Origins of Lean Thinking

Tool 1: Seeing Waste

Tool 2: Value Stream Mapping

Try This

The Origins of Lean Thinking
In the late 1940s, a small company named Toyota set out to manufacture cars for Japan,
but it had a problem. Since people did not have much money, cars had to be cheap. Mass
production was the cheapest way to make cars, but mass production meant making
thousands of the same kind of car, and the Japanese market was simply not large enough
to need all those cars. So the question was, how could Toyota make cars in small
quantities but keep them as inexpensive as mass-produced cars?

From this dilemma, the Toyota Production System emerged to form the basis of a whole
new way to think about manufacturing, logistics, and eventually product development.
The mastermind behind this new way of thinking was Taiichi Ohno, known as the father
of the Toyota Production System. At the heart of Ohno's thinking was the fundamental
lean principle: Eliminate waste.

Waste seems like a reasonably clear-cut term, but Ohno gave new meaning to the word.
In his mind, anything that does not create value for a customer is waste. A part that is
sitting around waiting to be used is waste. Making something that is not immediately
needed is waste. Motion is waste. Transportation is waste. Waiting is waste. Any extra
processing steps are waste. And of course defects are waste.

Ohno was not trying to copy mass production, so he did not adopt mass production
values. His ideal was to both make and deliver a product immediately after a customer
placed an order. He believed that it is better to wait for an order than to build up
inventory in anticipation of the order. Yet he also believed that the ideal is to deliver the
product immediately.

Toyota transferred its concept of waste from manufacturing to product development.
When a development project is started, the goal is to complete it as rapidly as possible,
because all of the work that goes into development is not adding value until a car rolls off
the production line. In a sense, ongoing development projects are just like inventory
sitting around a factory. Designs and prototypes are not useful to customers; they receive
value only when the new product is delivered.

If it seems strange that the intermediate steps of a development program might be
considered waste, in the 1980s it seemed equally strange that inventory should be
considered waste. After all, inventory was the thing that allowed immediate delivery once
a customer order was placed, and inventory was the thing that allowed all machines to
run at maximum capacity. How could inventory be waste?

Actually, inventory is a very big waste. Running all of those machines at maximum
capacity produces piles of unneeded inventory that hide quality problems, grow obsolete,
and clog distribution channels. A large backlog of product development suffers from the
same drawbacks.

Eliminating waste is the most fundamental lean principle, the one from which all the
other principles follow. Thus, the first step to implementing lean development is learning
to see waste. The second step is to uncover the biggest sources of waste and eliminate
them. The next step is to uncover the biggest remaining sources of waste and eliminate
them. The next step is to do it again. After a while, even things that seem essential can be
gradually eliminated.

The True Story of a Death March
Project, Part 1: Eliminating Waste
I took over a troubled project[1] four and a half months before it had to go live.
The first two months had been spent gathering requirements. The next two
months had been spent trying to get the customers to sign off on the
requirements, but they were reluctant to sign because they knew that if they

made a mistake in interpreting the volumes of obtuse documents, they would be
held accountable and may never get the functionality they really needed. Two
weeks before I took over the project, the entire three-inch document was made
obsolete by a management decision.

As I said, delivery had to be in four and a half months; the features of the new
system were required by law. The contract called for a traditional waterfall
approach, but in five and a half months there was nothing to show for that
approach, so I set out with Gene,[2] the customer project manager, to eliminate all
waste.

The first thing I did was eliminate all features that were not required to meet the
law. They could be implemented later, but they were not going to be
implemented by the deadline. Resistance of senior managers was strong, but
since they couldn't change reality, it was simply a matter of time before they
came around to accepting the situation. We started a second project to put a Web
front end on the parts of the system that could not be implemented immediately,
so they would look new.

Then, we eliminated the change control system. Since the requirements
documents were obsolete, there was nothing to control. Instead, we agreed upon
a simple criterion to determine if any feature was in or out of scope. Since we
were modifying software originally developed for another customer, we agreed
that the scope was defined by the features developed for the original customer,
adapted to meet local laws, and run in the local technical environment. Our
"one-minute scope control" rule worked for almost every user request; we had to
resort to a backup arbitration method for only a few features.

Next, we eliminated the finger pointing. We were late. The environment, which
the customer was to supply, did not work. We all had problems. Gene and I
agreed that we simply did not have any time to assess blame, and there was
plenty enough for both sides. We worked together on every problem, trying
mightily not to dump it in the other person's lap. We found that difficult
problems got resolved easier with both of us working on them, and usually there
was a problem on both sides anyway.

Finally, there were the design documents called for in the contract. We didn't
have any, nor did we have anyone who knew what it meant to produce design
documents. We were adapting existing software to a new environment, and we
had no choice but to use the existing, undocumented design, such as it was.
Adding gap design documents on top of no design documents did not make
much sense. Even if it did, the analysts who understood the customer
requirements were not capable of producing design documents suitable for the
(remote) programming team.

Instead, I sent the analysts to the programming site to talk with the programmers

and told them to come back with the first iteration of code. When they brought
that first iteration back, we could not get it working in the customer
environment, because it had not been tested there. The customer site was not
replicated at the development site; security concerns did not allow remote
access. So, I had some of the developers come to the customer site, where a
delegation stayed for the remainder of the project. They communicated
effectively with the remote development site for a while, but the entire effort
eventually moved to the customer site.

The old system was shut down when the new law went into effect, and after
three weeks of down time, the new system went live. At that point only half of
the features were working, but the law was not broken and the remainder of the
system was implemented with weekly iterations over the next few months.

—Mary

[1] Edward Yourdon, in Death March, defines a death march project as "one whose 'project parameters' exceed the norm by at least 50%."

[2] Not his real name.

Tool 1: Seeing Waste
Learning to see waste is the first step in developing breakthroughs with lean thinking. If
something does not directly add value as perceived by the customer, it is waste. If there is
a way to do without it, it is waste. In 1970 Winston Royce wrote that the fundamental
steps of all software development are analysis and coding. "[While] many additional
development steps are required, none contribute as directly to the final product as
analysis and coding, and all drive up the development costs."[3] With our definition of
waste, we can interpret Royce's comment to indicate that every step in the waterfall
process except analysis and coding is waste.

[3] Royce, "Managing the Development of Large Software Systems." For a description of the waterfall approach, see Chapter 2, "Amplify
Learning," especially Figure 2.5.

Agile software development practices seek to eliminate waste. To do this, it is first
necessary to see the waste, and Royce suggests a good place to start looking. Good
candidates include everything your organization does to develop software that is not
analysis or coding. Do all of those processes really add value for customers?

Shigeo Shingo, one of the masterminds of the Toyota Production System, identified
seven types of manufacturing waste.[4] His list has helped many manufacturing managers
find waste where they never would have thought to look. To aid software development
managers in their quest to find that elusive thing called waste, we translate the seven
wastes of manufacturing into the seven wastes of software development in Table 1.1.

[4] Shingo, Study of "Toyota" Production System, 287.

Table 1.1. The Seven Wastes

The Seven Wastes of Manufacturing The Seven Wastes of Software Development

Inventory Partially Done Work

Extra Processing Extra Processes

Overproduction Extra Features

Transportation Task Switching

Waiting Waiting

Motion Motion

Defects Defects

Partially Done Work

Partially done software development has a tendency to become obsolete, and it gets in the
way of other development that might need to be done. But the big problem with partially
done software is that you might have no idea whether or not it will eventually work. Sure,
you have a stack of requirements and design documents. You may even have a pile of
code, which may even be unit tested. But until the software is integrated into the rest of
the environment, you don't really know what problems might be lurking, and until the
software is actually in production, you don't really know if it will solve the business
problem.

Partially done development ties up resources in investments that have yet to yield results.
In software development these investments are sometimes capitalized, and depreciation
starts when the software goes into production. What if the system never makes it into
production? Then there is a big investment to write off. Partially done software
development can carry huge financial risks. Minimizing partially done software
development is a risk-reduction as well as a waste-reduction strategy.

Extra Processes

Do you ever ask, Is all that paperwork really necessary? Paperwork consumes resources.
Paperwork slows down response time. Paperwork hides quality problems. Paperwork gets
lost. Paperwork degrades and becomes obsolete. Paperwork that no one cares to read
adds no value.

Many software development processes require paperwork for customer sign-off, or to
provide traceability, or to get approval for a change. Does your customer really find this
makes the product more valuable to them? Just because paperwork is a required
deliverable does not mean that it adds value. If you must produce paperwork that adds

little customer value, there are three rules to remember: Keep it short. Keep it high level.
Do it off line.

Safety-critical systems are frequently regulated and are often required to have written
requirements, traceable to code. In this case, formatting the requirements so they can be
easily evaluated and checked for completeness may qualify as a value-adding activity.
Look for a table-driven or template-driven format that reduces the requirements to a
condensed format that both users and developers can rapidly understand and validate.

A good test of the value of paperwork is to see if there is someone waiting for what is
being produced. If an analyst fills out templates, makes tables, or writes use cases that
others are eager to use—for coding, testing, and writing training manuals—then these
probably add value. Even so, there should be a constant search for the most efficient,
effective means to transmit the information. Consider writing customer tests instead of
requirements. In general, delay documenting the details of desired features until the
iteration in which they are implemented.

Extra Features

It may seem like a good idea to put some extra features into a system just in case they are
needed. Developers might like to add a new technical capability just to see how it works.
This may seem harmless, but on the contrary, it is serious waste. Every bit of code in the
system has to be tracked, compiled, integrated, and tested every time the code is touched,
and then it has to be maintained for the life of the system. Every bit of code increases
complexity and is a potential failure point. There is a great possibility that extra code will
become obsolete before it's used; after all, there wasn't any real call for it in the first
place. If code is not needed now, putting it into the system is a waste. Resist the
temptation.

Task Switching

Assigning people to multiple projects is a source of waste. Every time software
developers switch between tasks, a significant switching time is incurred as they get their
thoughts gathered and get into the flow of the new task.[5] Belonging to multiple teams
usually causes more interruptions and thus more task switching. This task switching time
is waste.

[5] DeMarco and Lister, Peopleware, 63.

The fastest way to complete two projects that use the same resources is to do them one at
a time. Say you have two projects that should each take two weeks. If you start one of
them, it should be done in two weeks. When it's done, you can start the second project,
and it should be done in two weeks. What if you start both projects together and expect
people to switch between them? First of all, neither one will be done in two weeks, but
will they both be done in four weeks? When you add the switching time, they will
probably take closer to five weeks.[6]

[6] See Goldratt, Critical Chain, 126.

It is difficult to resist the temptation to start several projects at the same time, but
releasing too much work into a software development organization creates a lot of waste,
since it actually slows things down. Work moves much faster through a pipeline that is
not filled to capacity, as we discuss in the section on queueing theory in Chapter 4,
"Deliver as Fast as Possible."

Waiting

One of the biggest wastes in software development is usually waiting for things to
happen. Delays in starting a project, delays in staffing, delays due to excessive
requirements documentation, delays in reviews and approvals, delays in testing, and
delays in deployment are waste. Delays are common in most software development
processes, and it seems counterintuitive to think of these delays as a waste. It would seem
that at worst, delays are neutral.

So what's wrong with waiting? Delay keeps the customer from realizing value as quickly
as possible. When a critical customer need arrives in your development organization, the
speed with which you can respond is directly related to the systemic delays in your
development cycle.

For some environments, delay may not loom as large as other problems. However, if you
are developing software for an evolving domain, delays in development are more serious.
A fundamental lean principle is to delay decisions until the last possible moment so you
can make the most informed decision possible. This is an options-based approach to
software development, and it is the best way to deal with uncertainty, as we discuss in
Chapter 3, "Decide as Late as Possible." You cannot delay decisions, however, if you
cannot implement rapidly once a decision is made.

Motion

When a developer has a question, how much motion does it take to find out the answer?
Are people at hand to help with a technical problem? Is the customer or customer
representative readily accessible to answer a question about features? Can the developer
find out the results of tests without walking down the hall? Development is an activity
that requires great concentration, so walking down the hall takes a lot more time than you
might think. It will probably take the developer several times as long to reestablish focus
as it took to get the question answered. It is for this reason that agile software
development practices generally recommend that a team work in a single workroom
where everyone has access to developers, to testers, and to customers or customer
representatives.

People aren't the only things that move—various artifacts move also. Requirements may
move from analysts to designers, and then design documents move from designers to
programmers, and then code moves from coders to testers, and so on. Each handoff of an

artifact is fraught with opportunities for waste. The biggest waste of all in document
handoffs is that documents don't—can't, really—contain all of the information that the
next person in line needs to know. Great amounts of tacit knowledge remain with the
creator of the document and never get handed off to the receiver. Moving artifacts from
one group to another is a huge source of waste in software development.

Defects

The amount of waste caused by a defect is the product of the defect impact and the time it
goes undetected. A critical defect that is detected in three minutes is not a big source of
waste. A minor defect that is not discovered for weeks is a much bigger waste. The way
to reduce the impact of defects is to find them as soon as they occur. Thus, the way to
reduce the waste due to defects is to test immediately, integrate often, and release to
production as soon as possible.

Management Activities

Management activities do not directly add value to a product, but they do have a big
impact on waste in an organization. Consider, for example, a project prioritization
process and work release system. Minimizing waste means keeping the amount of
unfinished work in the pipeline at a minimum, and this is usually the result of the way
work is prioritized and released. Unless the work release system is focused on keeping
work flowing smoothly through the development pipeline, it is probably a big generator
of waste.

Project tracking and control systems also do not add value, and further, they may be an
indication of too much work in the system. In a just-in-time manufacturing system, work
moves through the factory so quickly that sophisticated tracking is unnecessary. If work
moved through a development organization in a just-in-time manner, it would not need a
sophisticated tracking system either. If project tracking is complicated, there probably are
a lot of other kinds of waste in the system. Before building a complicated tracking
system, minimize the tracking problem by making sure that work flows rapidly through
the system.

Authorization systems that are set up to review and approve changes to requirements
often add significant delay as opposed to adding value for the customer. But authorization
systems are symptoms of the larger waste associated with collecting large lists of
requirements in the first place. The thing to do is to figure out how to make the
authorization system unnecessary; we offer many ideas on this topic in chapters 2 and 3.

Learning to see waste is an ongoing process of changing the way you think about what is
really necessary. One way to discover waste is to think about what you would jettison if
you had to get rid of all the excess baggage on a troubled project. It's usually easier to see
waste in a crisis.

Tool 2: Value Stream Mapping

In the book Lean Thinking,[7] James Womack and Daniel Jones chronicle the journey of a
cola can from raw material to consumption. It looks like Figure 1.1.

[7] Data from Womack and Jones, Lean Thinking, 43. Used with permission.

Figure 1.1. Value stream for cola cans.

The interesting thing about this value stream is that it takes a cola can an average of 319
days to move from the mine to consumption, while the processing time–the time that
value is actually being added—is only 3 hours, or 0.04 percent of the total time.
Aluminum cans have to be a very stable industry to be able to tolerate such a long value
stream. Consider the opposite end of the spectrum: personal computers. Michael Dell
considers inventory to be his biggest risk, because almost every component will become
obsolete in a short time. That is why Dell Computer Corporation focuses aggressively on
shortening its value stream.

Map Your Value Stream

Mapping your value stream is a good way to start discovering the waste in your software
development process. In industry after industry, the process of mapping the value stream
has invariably led to deeper insights about how internal processes work—or don't work—
to meet customer needs. By mapping your value stream, you say to yourself and your
organization, "First and foremost, our mission is to provide customer value."

Creating a value stream map is a paper and pencil exercise you can easily perform while
walking around your organization. Pretend you are a customer request and imagine
yourself going through each step of your process. Don't ask people what happens; walk
around, look at the data, find out for yourself. Don't buy specialized computer software,
and even though training might be useful, you don't need it to get started.

With a pencil and pad in hand, go to the place where a customer request comes into your
organization. You goal is to draw a chart of the average customer request, from arrival to
completion. Working with the people involved in each activity, you sketch all the process
steps necessary to fill the request, as well as the average amount of time that a request
spends in each step. At the bottom of the map, draw a timeline that shows how much time
the request spends in value-adding activities, and how much time it spends in waiting
states and non-value adding activities.

If your organization is using a traditional development process, your map might look
something like Figure 1.2.

Figure 1.2. Traditional value stream map.

This map shows that an average project is ready to deploy in a year, with about a third of
the time spent on value-adding activity. The management team reviews projects every 12
weeks, so projects wait an average of 6 weeks before starting. They must then compete
for resources, which can be seen in wait times for analysis, design, coding, and testing.
Customer sign-off is very slow, taking a couple of months on the average. This is
probably because customers consider signing off a high risk, since, as this map indicates,
they don't get another chance to influence what they need. Design reviews take 3 weeks
to schedule, and coding doesn't begin for another 3 weeks, since developers are working
on other projects. Testing times are short, indicating that few problems develop late in
projects. However, it takes almost 6 weeks to deploy a tested system. This is a long time.

An Agile Value Stream Map

Let's assume that the organization depicted in the traditional value stream map has
decided to move to agile practices. What will its future value stream map look like? The
value stream map in Figure 1.2 might generate the following analysis:

The as-is value stream map indicates that the approval process should be shortened, so
the management team agrees to meet weekly to make yes/no decisions on new requests.
The team has decided that its highest priority will be rapid response to customer requests,
so the members agree to approve only requests that can be handled immediately and to
either add staff or subcontract additional requests. Staff availability will be managed so
that an early design team can be assigned to approved projects within a week, and all
projects should be fully staffed within 3 weeks with dedicated analysts and developers.

The initial value stream map indicates that customer sign-off might be a source of
irritation as well as a delay. It shows design reviews should be moved inline with

development, since they are currently a great source of delay. Finally, it indicates that
planning for deployment should occur earlier in the process. Since the team has decided
on agile development, it will solve these problems by moving to incremental
development, gathering requirements as needed, integrating design reviews with coding,
and planning early for regular deployments.

The agile value stream map from this analysis might look something like Figure 1.3. This
map shows that with the changes being considered, a typical customer request should
move through the organization in about three months, with most of that time spent
actually adding value.

Figure 1.3. Agile value stream map.

Value Stream Maps
Value stream maps often show that nondevelopment activities are the biggest
bottlenecks in a software development value stream. Figure 1.4 is an example of
a value stream map that Kent Beck posted on the discussion group Software-in-
Process. It shows that the biggest delays in this particular organization come
after development and testing are complete.

Figure 1.4. Kent Beck's value stream map.

"It took us about a half hour to come up with this (don't spend longer than that

or you'll have too much detail)."

– from Kent Beck

A value stream map provides a starting point for evaluating and improving your software
development process. Once you have a map, pick the biggest opportunities to increase
flow and value-added time, and send your team after them. Then, update your value
stream map, pick the next biggest opportunities, and repeat the process.

Once you have a value stream map of your organization, the next step is to extend it to
your customers. If you can understand how your customers create value, you have a
tremendous tool for helping them realize that value.

The Bicycle Factory
Our idea of a vacation is to take our tandem on a week's bicycle trip. One
summer, as we biked across Wisconsin, our group of several hundred cyclists
was invited to stop at a Trek bicycle factory for refreshments and a tour. Tom,
an avid photographer, took many pictures with his digital camera during our
tour. After the trip, the pictures joined thousands of others in our screen saver
file.

One day, while Mary was writing this chapter, she returned from a break to see a
value stream map, right there, filling her screen. On the tour Tom had snapped a
picture of a big chart on the wall, and sure enough, it was a value stream map of
the bicycle factory.

—Tom and Mary

Many companies have discovered the power of value stream mapping. It helps
organizations step back and get an overall view of their processes. It is a tool for
uncovering and eliminating wasteful activities and grouping activities that truly create
value into a rapid flow that responds to customer demand. The reason value stream
mapping is so effective is that it focuses attention on products and their value to
customers rather than on organizations, assets, technologies, processes and career paths.
It helps managers to step back and rethink their entire development process from a value-
creation point of view.

Try This
1. Make a list of the 10 or 15 most important activities in your organization. Put

yourself in the shoes of a customer and rate each item from 1 to 5, with 1 meaning
customers probably don't care about the activity and 5 meaning customers value it

highly. Think of the low-scoring activities as waste. Take the two lowest scoring
items and develop a plan to cut the time on these activities in half.

2. At your next seven team meetings, take some time to discuss each of the seven
wastes of software development, one at a time:

o Partially done work
o Extra processes
o Extra features
o Task switching
o Waiting
o Motion
o Defects

For each waste, ask the questions

o Do you agree that this "waste" is really a waste? Why or why not?
o Whether or not you agree that the item is a waste, estimate how much time

it consumes in an average week.
o What can or should be done to reduce that time?

3. Develop a value stream map for your organization. Start with an incoming request
and map a timeline of its progress to providing customer value. Find out how
much of the time is spent adding value and how much is spent waiting. Take the
biggest cause of delay and develop a plan to cut it in half.

Chapter 2. Amplify Learning

The Nature of Software Development

Tool 3: Feedback

Tool 4: Iterations

Tool 5: Synchronization

Tool 6: Set-Based Development

Try This

The Nature of Software Development
The origins of lean thinking lie in production, but lean principles are broadly applicable
to other disciplines. However, lean production practices—specific guidelines on what to
do—cannot be transplanted directly from a manufacturing plant to software development.
Many attempts to apply lean production practices to software development have been

unsuccessful because generating good software is not a production process; it is a
development process.

Development is quite different than production. Think of development as creating a
recipe and production as following the recipe. These are very different activities, and they
should be carried out with different approaches. Developing a recipe is a learning process
involving trial and error. You would not expect an expert chef's first attempt at a new
dish to be the last attempt. In fact, the whole idea of developing a recipe is to try many
variations on a theme and discover the best dish.

Once a chef has developed a recipe, preparing the dish means following the recipe. This
is equivalent to manufacturing, where the objective is to faithfully and repeatedly
reproduce a "recipe" with a minimum of variation. The difference between development
and production is outlined in Table 2.1.[1]

[1] See Ballard, "Positive vs. Negative Iteration in Design."

Table 2.1. Development versus Production

Development Production

Designs the Recipe

• Quality is fitness for use
• Variable results are good
• Iteration generates value

Produces the Dish

• Quality is conformance to requirements
• Variable results are bad
• Iteration generates waste (called rework)

Perspectives on Quality

In production, quality is defined as conformance to requirements specified in the design
or "recipe." In the service industry, a different perspective on quality has emerged.

The Service View of Quality

Walt Disney designed Disneyland as a giant stage where several hundred actors make it
their job to be sure every guest has a wonderful time. One guest's requirements for having
a wonderful time are quite different from the next, and the actors are supposed to figure
out exactly what each guest thinks a quality experience should be and make sure he or
she has it.

Quality at Disneyland
At Disneyland, even the tram drivers are actors. A friend told me the story of a
tram driver who noticed a small girl crying on her way back to the Disneyland

hotel. He asked her why she was crying and found out that the crowd around
Mickey Mouse was too large, so the girl had not been able to talk to Mickey.
The driver called ahead, and when the tram arrived at the hotel, there was
Mickey Mouse, waiting to meet it. The girl was thrilled, and the driver had done
his job of making sure she had a quality experience.

—Mary

The service view of quality takes into account that every customer has a different idea of
what constitutes a quality experience. In a service economy, quality does not mean
conformance to a script; it means adapting to meet the changing expectations of many
different customers.[2]

[2] See Prahalad and Krishnan, "The New Meaning of Quality in the Information Age," and Prahalad and Krishnan, "The Dynamic
Synchronization of Strategy and Information Technology."

Quality in Software Development

Quality in software development results in a system with both perceived integrity and
conceptual integrity. Perceived integrity means that the totality of the product achieves a
balance of function, usability, reliability, and economy that delights customers.[3]
Conceptual integrity[4] means that the system's central concepts work together as a
smooth, cohesive whole. We devote Chapter 6, "Build Integrity In," to the important
topic of software integrity.

[3] The definition of perceived and conceptual integrity is adapted from Clark and Fujimoto, Product Development Performance, 30.

[4] A term found in Brooks, Mythical Man Month, 42.

Customers of a software system will perceive integrity in a system if it solves their
problem in an easy-to-use and cost-effective manner. It does not matter whether the
problem is poorly understood, changes over time, or is dependent on outside factors; a
system with perceived integrity is one that continues to solve the problem in an effective
manner. Thus, quality in design means realization of purpose or fitness for use rather than
conformance to requirements.

Variability

When you think of quality in a service business such as Disney World, the one thing you
can count on is that each customer will have different expectations. True, most people
expect the theme park to be clean and the rides to work, but if you provided only one
experience to all customers, your theme park would not be widely popular. The
difference between providing a service and manufacturing a product is that in service,
dynamically shifting customer expectations require variation, while in manufacturing,
variation is the enemy. Manufacturing assumes a homogeneous, unchanging set of
customer expectations, so the objective is to make a product the same way every time.

Somehow, the idea that variation is bad has found its way into software development,
where people have tried to develop standardized processes to reduce variation and
achieve repeatable results every time. But development is not intended to produce
repeatable results; development produces appropriate solutions to unique customer
problems.

Design Cycles

It was once thought that good programmers develop software though a structured, top-
down approach.[5] In 1990, Raymonde Guindon evaluated the paradigm that top-down
decomposition is the best approach to software design. She reported on research in which
experienced designers were asked to design an elevator control system and to describe
each step of their thought process to researchers. She found that when experienced
designers are presented with ill-defined problems, their design activities are not at all top-
down. They move repeatedly between scenario examination, requirements elucidation,
high-level solution segmentation, and low-level design of difficult elements. (See Figure
2.1.)

[5] See Yourdon, Classics in Software Engineering, particularly the articles "Structured Programming" by Dijkstra and "On the Composition of
Well-Structured Programs" by Niklaus Wirth. See also Brooks, Mythical Man Month, 143.

Figure 2.1. Design activity.[6]

[6] Guindon, "Designing the Design Process," 320, Figure 4. Used with permission.

Guindon found that cycling between high-level design and detailed solution was typical
of good designers when dealing with ill-structured problems, that is, problems that do not

have a single right answer or a best way to arrive at a solution. She theorized that this
unstructured approach is necessary to understand and ultimately give structure to such
problems.[7]

[7] Ibid.

The bulk of the work of software development is a problem-solving activity similar to
that investigated by Guindon. Software problems are solved at many levels, by all
members of the development team. Software architects are clearly involved in a design
activity, but so are developers who write the code. The process of writing code involves
deep problem understanding, recognition of patterns from experience, experimentation
with various approaches, testing the results, and determination of the best approach.

Today it is widely accepted that design is a problem-solving process that involves
discovering solutions through short, repeated cycles of investigation, experimentation,
and checking the results. Software development, like all design, is most naturally done
through such learning cycles.

Do It Right the First Time?

In order to solve problems that have not been solved before, it is necessary to generate
information. For complex problems, the preferred approach to a solution is to use the
scientific method: observe, create a hypothesis, devise an experiment to test the
hypothesis, run the experiment, and see if the results are consistent with the hypothesis.
One of the interesting features of the scientific method is that if your hypothesis is always
correct, you are not going to learn very much. The maximum amount of information is
generated when the probability of failure is 50 percent, not when the hypotheses are
always correct. It is necessary to have a reasonable failure rate in order to generate a
reasonable amount of new information.[8]

[8] Reinertsen, Managing the Design Factory, 71.

There are two schools of thought in developing software. One is to encourage developers
to be sure that each design and each segment of code is perfect the first time. The second
school of thought holds that it is better to have small, rapid try-it, test-it, fix-it cycles than
it is to make sure the design and code are perfect the first time. The first school of
thought leaves little room for knowledge generation through experimentation; instead, it
believes that knowledge generation should happen through deliberation and review. The
right the first time approach may work for well-structured problems,[9] but the try-it, test-
it, fix-it approach is usually the better approach for ill-structured problems.

[9] Well-structured problems have a single right solution and a preferred approach to arriving at the solution. For example, most problems
children encounter in elementary school are well-structured problems.

If the right the first time approach is preferred in your organization, you might ask
yourself why this is a value. As Yourdon points out, "A piece of program logic often
needs to be rewritten three or four times before it can be considered an elegant,
professional piece of work." Why, he asks, do we object to revising programming logic

when we are quite happy to rewrite prose three or four times to achieve a professional
result?[10]

[10] Yourdon, Classics in Software Engineering, 151.

Your objective should be to balance experimentation with deliberation and review. In
order to do this, consider how you can generate the most knowledge at the least cost in
your circumstances. For instance, if the cost of testing is very high, you will want more
knowledge to be generated through deliberation and review. If experimentation is
relatively inexpensive and yields better knowledge faster, then it is the least expensive,
most effective approach. Usually, some combination of experimentation, peer review,
and iteration will yield the best results.

Learning Cycles

Quite often, the problem to be solved is understood best by the people in the business
with the problem, so it is usually necessary to have business people—or representatives
such as focus groups—in the knowledge-generation loop. In this case, it is important to
speak to the businesspeople with a representation they readily grasp, or the knowledge
generation will be inefficient. There are many ways to represent the system, from models
to prototypes, to incremental deliveries, but the important thing is to select the
representation that gathers the most knowledge. Most users relate better to seeing
working screens than to a requirements document, so working software tends to generate
better knowledge faster.

Iterations with refactoring—improving the design as the system develops—have been
found to be one of the most effective ways to generate knowledge, find answers early,
and generate a system with integrity, because this approach generates knowledge most
effectively for ill-defined problems. The important question in development is, How can I
learn most effectively? The answer is often to have many short learning cycles. If you ask
instead, How can I minimize the number of learning cycles? you are likely to get long
cycles, large batches, long feedback loops, and as a result, ineffective learning.

The True Story of a Death March
Project, Part 2: Weekly Iterations

As the first installment of this drama drew to a close in Chapter 1, we had just
released a very shaky system to production in a mission-critical area. Only half
of the features worked, but the law required the new logic, so against our better
judgment, we went live. The customer agreed to work around missing features
manually, while we agreed to release new capabilities to the system every week.

We made a list of missing features and known defects, which we called a punch
list. Every week, we had the customer review and prioritize the list. On Friday,

the developers selected from the top of the punch list those features that they
thought they could complete in a week. Users ran a lengthy, manual regression
test on the new release the following Thursday, and usually we had to rebuild
and retest on Friday. We did not allow new features into the build after the first
regression test, so we usually could release the build to production after the
second regression test. If not, we tested over the weekend. Almost every
Monday morning for three months, a new release went into production.
Generally, scripts were run on the database as part of the release, so once
production started, there was no going back to the previous release.

Releasing a new version of a mission-critical system to 100 users every week,
with no fallback, seems like a high-risk approach. But we never had a disaster,
and the weekly releases caused remarkably few problems. The discipline of the
regression testing coupled with the small increments of functionality worked
like magic. Development and testing was done at the customer site, so if there
were questions or problems, feedback was immediate.

Once most of the features were delivered, the customers no longer wanted the
hassle of weekly regression tests, so the iterations stretched to two or three
weeks. We found that it was devilishly difficult to pass regression testing with
the longer increments. As release intervals stretched out, it became tempting to
add just one last feature to a release even after its first or second regression test.
This was invariably a mistake, making another build and more testing necessary,
causing the interval to stretch out, making it more tempting to add more features
to the current release. Stretching out intervals was a vicious circle.

Things never went so well as during that heady time when things were so bad
that weekly production releases seemed to be the only option. As the urgency
faded and we lengthened the feedback cycle, it got more and more difficult for a
new release to pass the regression tests. We never were able to automate the
regression tests, but were we to do this over again, that would be the first step.

—Mary

Tool 3: Feedback
It's two in the morning and you are driving home. The traffic light is red, and there's not
another car in sight. But the traffic light is red, so you stop. And wait. And wait. Finally,
the light changes, after allowing time for lots of nonexistent cross-traffic. You think to
yourself, It's going to be a long drive home. And sure enough, the next light is also red.
But as you approach the light, it turns green. Ah ha! you think, An automatic sensor. That
light is smart enough to know I'm here and there's no one else around. I hope the rest of
the lights are like that!

The difference between the two lights is feedback. The first light was preprogrammed
based on the assumption that there will be three times as much traffic on the main road as

on the side road, so you sat through a long light. The second light had sensors buried
throughout the intersection and was programmed to adjust its cycle based on traffic
patterns as they vary throughout the day and night.

Figure 2.2 shows how the first traffic signals works.

Figure 2.2. Timed traffic light.

Figure 2.3 shows how the second traffic signal works.

Figure 2.3. Traffic signal with sensors.

Notice that the second set of traffic signals have more components, more logic, and more
things to go wrong. But traffic lights with feedback are desirable despite their increased
complexity. Feedback adds considerable value, and thus it is very common. Your home
heater and air conditioner are controlled with a feedback loop, as is your oven. Figure 2.4
shows a feedback loop for an oven:

Figure 2.4. Oven.

In a steel mill or a tape manufacturing plant, there are many variables to control: speed,
pressure, heat, thickness. The formula for making tape or steel includes a setpoint for
each variable. Operators or computers dial in the setpoint, and then a feedback loop
provides the control for each variable. It is rare to find control without feedback, because
feedback gives much better control and predictability than attempting to control
complicated processes with predefined algorithms.

Software Development Feedback Loops

There are many unforeseeable events in developing software, so why would anyone think
that software systems should be developed without feedback loops? In 1970, Winston
Royce proposed a sequential software design process that closely resembled the
sequential product development processes of the time. He advocated creating detailed
documentation at each step but also pointed out that waiting until the end to test the
system was not practical, because the feedback provided by testing was needed early in
the development process. Therefore, he suggested that an early prototype be built to
provide feedback. [11] See Figure 2.5.

[11] See Royce, "Managing the Development of Large Software Systems," Figure 7.

Figure 2.5. Original Royce "waterfall" recommendation.

In 1975, Fred Brooks wrote, "Plan to throw one away; you will anyhow."[12] Brooks
retracted this in 1995, saying, "Don't build one to throw away—the waterfall model is
wrong."[13] He notes that his original quote implicitly assumed a sequential development
process, while it has become clear that an incremental model with progressive refinement
is the proper approach.[14]

[12] Brooks, Mythical Man Month.

[13] Ibid., 264.

[14] Ibid., 267.

As actually implemented, the sequential, or waterfall, development model does not
usually provide for much feedback; it is generally thought of as a single-pass model. This

can be called a deterministic model because it assumes that the details of a project are
determined at the beginning. A deterministic model is favored by project management
disciplines that have their origins in contract administration. The contract-inspired model
of project management generally favors a sequential development process with
specifications fixed at the start of the project, customer sign-off on the specifications, and
a change authorization process intended to minimize changes. There is a perception that
these processes give greater control and predictability, although sequential development
processes with low feedback have a dismal record in this regard.[15]

[15] Johnson, "ROI, It's Your Job."

Traditional project management approaches often consider feedback loops to be
threatening because there is concern that the learning involved in feedback might modify
the predetermined plan. The conventional wisdom in project management values
managing scope, cost, and schedule to the original plan. Sometimes this is done at the
expense of receiving and acting on feedback that might change the plan; sometimes it is
done at the expense of achieving the overall business goal. This mental model is so
entrenched in project management thinking that its underlying assumptions are rarely
questioned. This might explain why the waterfall model of software development is so
difficult to abandon.

Imagine Deterministic Cruise
Control

You are driving along the highway. You get up to the speed you want to go, turn
on the cruise control, and push set. The car has a control loop, which operates
every few seconds, checking the actual speed of the car against the speed you set
(the setpoint). If the car speed is less than the setpoint, the cruise control
depresses the accelerator a bit. If the speed is higher than the setpoint, the cruise
control lets up on the accelerator.

Imagine driving a car in which the position of the accelerator was
preprogrammed at the factory. If you want to go 60 mph, it moves the
accelerator to position A; if you want to go 65 mph, it moves the accelerator to
position B, and so on. This might work on flat terrain, but when it got to a steep
hill, the car would slow to a crawl. Upon reaching the top, the car would careen
dangerously fast down the other side.

Deterministic control simply does not work when there is variability in the
terrain.

When an organization has software development challenges, there is a tendency to
impose a more disciplined process on the organization. The prevailing concept of a more
disciplined software process is one with more rigorous sequential processing:

Requirements are documented more completely, all agreements with the customer are
written, changes are controlled more carefully, and each requirement must be traced to
code. This amounts to imposing additional deterministic controls on a dynamic
environment, lengthening the feedback loop. Just as control theory predicts, this generally
makes a bad situation worse.

In most cases, increasing feedback, not decreasing it, is the single most effective way to
deal with troubled software development projects and environments.

• Instead of letting defects accumulate, run tests as soon as the code is written.
• Instead of adding more documentation or detailed planning, try checking out ideas

by writing code.
• Instead of gathering more requirements from users, show them an assortment of

potential user screens and get their input.
• Instead of studying more carefully which tool to use, bring the top three

candidates inhouse and test them.
• Instead of trying to figure out how to convert an entire system in a single massive

effort, create a Web front end to the legacy system and try the new idea out.

Whenever people do work, they should be doing it for an immediate customer; that is,
someone, somewhere, should be eager to make use of the results of their work.
Developers should know their immediate customers and have ways for those customers
to provide regular feedback. When a problem develops, the first thing to do is to make
sure the feedback loops are all in place; that is, make sure everyone knows who his or her
immediate customer is. The next thing to do is to increase the frequency of the feedback
loops in the problem areas.

The True Story of a Death March
Project, Part 3: Amplifying

Feedback
When I took over the project, it was stuck. The design was supposed to be done,
but there were no designers on the team. No one could agree on what constituted
an appropriate design format. The analysts did not know what to do, and the
programmers did not find the existing documents detailed enough to work from.
Wheels were spinning, but nothing was happening.

I was new, so I could change things. I asked the analysts to choose a small part
of the system and take a day to write use cases, then sit down with the
developers and see if the use cases were useful. Working together, the analysts
and developers were to discover the level of detail needed in a use case that was
possible for the analysts to provide and sufficient for programming to proceed.
Then, the developers were to write code for the small part of the system and

have analysts test it to see if it was what they had in mind.

After two weeks, the log jam was broken and code started flowing. The analysts
developed a style of writing use cases that the developers found useful, and the
developers started holding regular meetings with the analysts so they could ask
questions that were not covered in the use cases. It was a start.

—Mary

Tool 4: Iterations
If a manufacturer wants to start applying lean production principles, there is one starting
point that always works—use just-in-time inventory flow. The simple act of working to
fill customer orders rather than working to meet a schedule drives a host of other
improvements. One reason just-in-time flow is so effective is that it requires significantly
improved worker-to-worker communication and surfaces quality problems as soon as
they occur.

In concurrent product development, which we discuss in Chapter 3, "Decide as Late as
Possible," there is an equivalent universal starting point that always works—drive the
effort with prototypes at closely placed milestones. A prototype synchronizes efforts
toward a well-understood short-term goal without the need for detailed scheduling.
Regular prototype milestones make concurrent product development possible because
they provide a focal point around which crossfunctional communication can and must
occur. Prototypes also provide early feedback on design problems and customer
preferences.

There is an equivalent universal starting point for all agile software development
approaches: iterations. An iteration is a useful increment of software that is designed,
programmed, tested, integrated, and delivered during a short, fixed timeframe. It is very
similar to a prototype in product development except that an iteration produces a working
portion of the final product. This software will be improved in future iterations, but it is
working, tested, integrated code from the beginning. Iterations provide a dramatic
increase in feedback over sequential software development, thus providing much broader
communication between customers/users and developers, and among various people who
have an interest in the system. Testers are involved from the first iteration; hardware and
software environments are considered early. Design problems are exposed early, and as
changes occur, change-tolerance is built into the system.

There are three fundamental principles at work here. First, as we will see in Chapter 4,
"Queuing Theory," small batches moving rapidly through a system lead to all manner of
good things. Small batches enforce quality and worker-level communication while
allowing for greater resource utilization. They provide short feedback loops, which
enhances control. For this reason, short, complete iterations are as fundamental to lean
development as small batches are to lean manufacturing.

Second, short iterations are an options-based approach to software development. They
allow the system to respond to facts rather than forecasts. There are few endeavors in
which it is more important to keep options open than in software development. In
Chapter 3, "Decide as Late as Possible," we see that options-based approaches are
fundamentally risk-reduction strategies, and as counterintuitive as it may sound, you
actually reduce your risk by keeping options open rather than freezing design early.[16]

[16] See Thimbleby, "Delaying Commitment," 78–86.

Finally, iterations are points of synchronization across individual and multiple teams and
with the customer. Iterations are the points when feature sets are completed and the
system is brought as close as possible to a releasable or shippable state—even if it will
not actually be released. Thus, iterations force decisions to be made. Frequent points of
synchronization allow teams to work independently yet never stray far from the work of
other teams or the interests of customers and users.

Iteration Planning[17]
[17] See Schwaber and Beedle, Agile Software Development with Scrum, 47–50, for a discussion of planning a sprint in Scrum. In Beck,
Extreme Programming Explained, chapters 17 and 18 discuss iteration planning in extreme programming.

What work should be done in each iteration? The idea is to implement a coherent set of
features in each iteration. A feature is something that delivers meaningful business value
to the customer but is small enough that the team can confidently estimate the effort
required to deliver it. If a feature cannot be done in a single iteration, it should be broken
down into smaller features. Features come from customers or customer representatives in
the form of use cases, stories, or backlog items.[18]

[18] The best reference on use cases is Cockburn, Writing Effective Use Cases. Stories are used in extreme programming. See Beck, Extreme
Programming Explained. A backlog list is used in Scrum. See Schwaber and Beedle, Agile Software Development with Scrum.

At the beginning of each iteration, a planning session occurs at which the development
team estimates the level of difficulty of the features under consideration and the
customers or customer representatives decide which features are most important, given
their estimated cost. The highest priority features should be developed first in order to
deliver the highest business value first. High-risk items should be addressed earlier rather
than later.

An iteration should have a fixed time-box. Some people suggest keeping all iterations to
the same length to establish a rhythm. Others vary the iteration length based on local
circumstances. How long should the iteration time-box be? It should be long enough to
support a meaningful design-build-test cycle and short enough to provide frequent
feedback from customers that the system is on track. Some people feel a one-month time-
box is ideal. Others suggest time-boxes of a couple of weeks. Some companies use 6-
week to 10-week time-boxes, but these are coupled with daily builds and extensive
weekly testing.

The development team must be free to accept only the amount of work for an iteration
that team members believe they can complete within the time-box. Customers will
probably want to load iterations with lots of features, but it is important to resist the
temptation to be accommodating at the expense of setting unreasonable expectations. If
iterations are short and delivery is reliable, customers should be content to wait for the
next iteration. If a development team overcommits—which often happens to
inexperienced teams—it is best to deliver some of the features on time rather than all of
them late.

Team Commitment

A project team can evaluate a list of features and, with a little bit of investigation, come
up with a good idea of what it can do in a few weeks or a month. If you ask a team to
choose items from the top of a list that the members believe they can do in a short time-
box, the team will probably choose and commit to a reasonable set of features. Once the
team members have committed to a set of features that they think they can complete, they
will probably figure out how to get those features done within the time-box.

A team should not be expected to set and meet time-box goals without organizational
support.[19]

[19] See Schwaber and Beedle, Agile Software Development with Scrum.

• The team must be small and staffed with the necessary expertise. Some team
members must be experienced in the domain and some in each critical
technology.

• The team must have enough information about requested features to be able to
decide what is feasible to accomplish in the time-box.

• The team must be assured of getting the resources it needs.
• Team members must have the freedom, support, and skill to figure out how to

meet its commitments.
• The team must have or create the basic environment for good programming:

- Automated build process

- Automated testing

- Coding standards

- Version Control Tool

- Etc.

Good iteration planning gives customers a way to ask for features that are important to
them and creates a motivating environment for the development team. The best part about
these benefits is that they feed upon success. As customers see the features they regard as
highest priority actually implemented in code, they start to believe the system is going to

be real and begin to envision what it can do for them. They become comfortable that
features scheduled for future iterations will actually be delivered. At the same time,
developers gain a sense of accomplishment, and as customers begin to appreciate their
work, they are even more motivated to satisfy the customers.

Convergence

Iterations sound like a good idea, yet there is a significant reluctance to use them. The
reason behind this can often be traced to a fear that the software development effort will
not converge. There is a concern that the project will continue indefinitely if it does not
have a predefined stopping point.[20] This is a valid concern; how can you be sure that any
system with a feedback loop will converge on a solution? In fact, books on control theory
have more pages on convergence than on any other topic. It is not a concern to be taken
lightly.

[20] Highsmith, Adaptive Software Development, 87.

A fluid business situation might send unpredictable and constantly changing signals to
the software development process. It is not unusual for a situation called thrashing to
develop; that is, the feedback changes so fast that the system doesn't have time to
complete one response before being told to go in the opposite direction.

Consider a thermostat. It does not turn on the furnace the moment the room temperature
falls below the setpoint, and then turn it off the moment the temperature rises above the
setpoint. If this happened, the furnace would cycle on and off constantly, something that
is not good for furnaces. Instead, the thermostat turns on heat when the temperature falls
a couple of degrees below the setpoint and leaves the furnace on until the temperature is a
degree or two above the setpoint.

An iterative software development process achieves this same effect by limiting customer
requests for feature changes to the beginning of each iteration. During the iteration, the
team concentrates on delivering the features it committed to at the beginning of the
iteration. If the iterations are short—2 to 4 weeks—the feedback loop is still quite short.

Delaying response to feedback must be handled with care; long delays in feedback tend
to cause system oscillation. Convergence requires small, frequent adjustments. For
example, a cruise control adjusts the accelerator only slightly when the car falls below the
desired speed. Similarly, if software is delivered in small, frequent increments, the
customer can see business value increasing with each increment and make adjustments on
a regular basis. Delivering large increments on an infrequent basis is far more likely to
produce oscillations than is accepting frequent feedback.

There is an optimal window for feedback—it should be as short as possible without being
so short as to create thrashing. The optimal size of this window depends on the dynamics
of the situation, but in general, environments that are more dynamic require more rapid
feedback. Some have found that larger teams do better with more frequent feedback,
because if a large team gets off track, it is more difficult to reverse direction.

Negotiable Scope

A good strategy for achieving convergence is to work on top priority items first, leaving
the low priority items to fall off the to-do list. By delivering high priority features first, it
is likely that you will deliver most of the business value long before the customer's wish
list is completed. Here comes the tricky part. If you are working under the expectation
that development is not complete until a fixed, detailed scope is achieved, then the system
may indeed not converge. It is therefore best to avoid this expectation, either by stating at
the front that scope is negotiable or by defining scope at a high level so it is negotiable in
detail. With negotiable scope, iterative development will generally converge.

Why should a customer accept the idea of negotiable scope? In the introduction to this
book, we told the story of how Florida and Minnesota each set out to develop a SACWIS
(Statewide Automated Child Welfare Information System). The systems are quite similar,
but the Florida system will take about 15 years and cost about $230 million, while the
Minnesota system was completed in 2 years at the cost of $1.1 million. This vast
difference in time and cost for developing essentially the same system is credited to two
factors: Minnesota used a standardized infrastructure and minimized requirements. [21]

[21] Johnson, "ROI, It's Your Job."

A Standish Group study found that 45 percent of features in a typical system are never
used and 19 percent are rarely used.[22] Since customers often don't know exactly what
they want at the beginning of a project, they tend to ask for everything they think they
might need, especially if they think they will get only one shot at it. This is one of the
best ways we know to increase the scope of a project well beyond what is necessary to
accomplish the project's overall mission.

[22] Ibid.

If you let customers ask for only their highest priority features, deliver them quickly, then
ask for the next highest priority, you are more likely to get short lists of what is
important. Moreover, you can respond to their changing circumstances. Therefore, it is
usually a good idea to work down a prioritized feature list from the top. In general, this
strategy will accomplish the overall mission by the time the allocated resources are up.

This approach to project management may seem to lead to unpredictable results, but quite
the opposite is true. Once a track record of delivering working software is established, it
is easy to project how much work will be done in each iteration as the project proceeds.
By tracking the team velocity, you can forecast from past work how much work will
probably be done in the future. Velocity measurements are significantly more accurate
tools than scope-based controls because they measure how much time it actually took to
deliver complete, tested, releasable code at the end of each iteration. You know exactly
where things stand after only a few iterations, which provides highly reliable early
predictions of project performance.

It is a good idea to make progress visible to both the development team and the customer.
One way to do this is with burn-down charts.[23] Let's assume that you develop a high-level
list of features to be delivered and make a preliminary estimate of the development time
of each feature. You add all the estimated times and get a time-to-complete number, say
500 staff days. Assume for simplicity that your iterations are one month long. After the
first iteration, the customer may have added more items, and the team will have
completed some items. You add up the time to complete and notice that it is actually
larger than the month before, say 620 staff days. After 4 months, your graph might look
like the left-hand burn-down chart in Figure 2.6, which shows that the system is not
converging very quickly.

[23] More detail on using burn-down charts can be found in Schwaber and Beedle, Agile Software Development with Scrum, 63–68.

Figure 2.6. Burn-down charts.

If you expect the system to be done in 9 months, you should be seeing convergence more
like that in the right-hand burn-down chart in Figure 2.6. Since that is not what is
happening, you know after a couple of months that action is necessary. If the customer is
adding new features as fast as the team is completing others, it is time to consider
deleting features from the list. If the team is bogging down, it is time to get them help. In
any case, this kind of burn-down chart gives actionable data to all parties so that
convergence—or lack thereof—is visible early in the project.

Another chart commonly used to show convergence in agile software development is a
chart showing the rate at which acceptance tests—and thus features—are being added to
the system and the rate at which these tests have passed. For an example, see Figure
2.7.[24]

[24] See Jeffries, Anderson and Hendrickson, Extreme Programming Installed, 139.

Figure 2.7. Acceptance tests written and passed.

Tool 5: Synchronization
Iterations are planned by selecting features that are important to customers, and if
multiple teams are involved, they generally divide the work by feature. One of the
problems with a feature-based approach to software development is that a feature will
most likely involve several different areas of the code. Traditionally, the integrity of a
module was ensured by having only one developer, who understood it clearly, assigned to
work on it. Most agile approaches recommend common ownership of code, although
Feature-Driven Development (FDD) maintains individual ownership of modules, or
classes.[25] Since individual features require several different classes to be modified, FDD
forms feature teams consisting of the relevant class owners.

[25] Palmer and Felsing, A Practical Guide to Feature-Driven Development, 42–44.

Whenever several individuals are working on the same thing, a need for synchronization
occurs. So in FDD, synchronizing the several people working on a feature is necessary,
while common code ownership requires that several people working on the same piece of
code must be synchronized. The need for synchronization is fundamental to any complex
development process.

The same problem occurs in automobile design. A slight change in hood slope for better
aerodynamics might have an impact on the shape of the front fenders or the layout of
components under the hood. When things get complicated in automotive design, there is
no substitute for building a mock-up to see how things actually fit together. Toyota builds
far more prototypes than most other automakers because they are such an effective way
to rapidly synchronize the efforts of many people.

Synch and Stabilize[26]
[26] See Cusumano, "How Microsoft Makes Large Teams Work Like Small Teams."

In a software development environment with collective code ownership, the idea is to
build the system every day, after a very small batch of work has been done by each of the
developers. In the morning, developers check out source code from a configuration
management system, make changes, test their changes in a "private build," check to see if
anyone else has made change to the same code, and if so, check for conflicts, then check
in the new code. At the end of the day, a build takes place, followed by a set of automated
tests. If the build works and the tests pass, the developers have been synchronized. This
technique is often called the daily build and smoke test.

There are many variations on this theme: A build might occur every few days, or it might
run every time new code is checked in. More frequent builds are better; they provide
much more rapid feedback. Builds and build tests should be automated. If they are not,
the build process itself will introduce errors, and the amount of manual work will prohibit
sufficiently frequent builds.

Sometimes the build is of the whole system; sometimes only subsets of the system are
built, because the whole system is too large. Sometimes an entire suite of tests is run, and
sometimes, especially when tests are manual, only some tests are run. The general
principle is that if builds and test suites take too long, they will not be used, so invest in
making them fast. This provides a bias toward more frequent builds with less
comprehensive tests, but it is still important to run all the tests overnight or every
weekend.

A standard approach to keeping automated tests reasonable in size is to stub-out or
simulate slow layers to keep up the speed. For example, you probably want to stub-out
database access and the user interface. If you are designing software to control a device,
you will want to simulate the hardware performance as you develop the system. The span
of a build and test operation is an important development decision.

If the entire system is not spanned in the daily build and smoke test, full system tests
should be run as frequently as possible. Remember the rule of small batches: If you
integrate changes in small batches, it will be infinitely easier to detect and fix problems.
Keep it simple by doing it as often as possible. The goal should be to have workable code
at the end of every day.

Spanning Application[27]
[27] There are several different names used for a spanning application. The description here is modeled after the thread described in Simons,
"Big and Agile?" Hunt and Thomas, The Pragmatic Programmer, 48–52, call the same concept a tracer bullet. Cockburn uses the term walking
skeleton, and Hohmann, in Beyond Software Architecture, calls it a spike. In Jeffries, Anderson and Hendrickson, Extreme Programming
Installed, a spike is an experiment to validate an estimate.

Another way to synchronize the work of several teams is to start by having a small
advance team develop a simple spanning application through the system. For example,
suppose you are converting an insurance system to a new environment. You might begin
by choosing a simple policy type, preferably one with low volume. The advance team
develops a spanning application for that type of policy all the way through the system.
This includes establishing a new policy, renewing the policy, handling a claim, and

terminating the policy. If possible, the spanning application should go into production
when it's done.

Once the spanning application is developed, you have in effect driven a nail through the
system, sort of like a carpenter positioning a piece of wood. When the spanning
application is proven in production, you know you have a workable approach. At this
point, multiple teams can use the same approach and drive in many nails at the same
time.

A spanning application works well to test various commercial components. Say you have
three possible vendors for middleware, and you are not quite sure which one will really
work in your environment. By having a small team build a simple spanning application,
you can get a real understanding of the strengths and weaknesses of each possibility
before you commit to any single solution.

Matrix

A more traditional approach to synchronizing multiple teams is to sketch out an overall
architecture and then have teams develop separate components or subsystems. This
approach is particularly appropriate when the different teams are not located in the same
place, because it allows them to go about their work with a minimum of communication
with other teams. The problem, of course, comes at the interfaces. When the various
teams' components have to work together, high bandwidth communication is usually
necessary to resolve the many detailed design issues involved. Moreover, if the teams
have already developed their subsystems, they are not going to be eager to change what
they have done.

Therefore, the matrix approach starts by developing the interfaces and then the
subsystems. All points of cross-team interaction should be laid out at the beginning;
teams should be assigned to each of these interaction points. The interface should be
developed first, stubbing out the components to allow the cross-component software to be
demonstrated. After the interfaces are working, the component teams can work
reasonably independently to develop their subsystems, but they should integrate their
code into the full system regularly to be sure that the interface continues to work.

This approach was used by Motorola to design a new communication system.[28] Teams
from around the world were involved, and each team was responsible for developing the
software in a single piece of hardware. Before the teams got started with their subsystem
designs, they assembled in a single place to study the overall architecture and define the
interactions among the devices. Each link between devices, called a strata, was
identified, and a team consisting of people from the two device teams in question was
assigned to each strata. This is illustrated in Figure 2.8, which shows the strata among
devices A, B, C, D, and E.

[28] See Battin, Crocker, Kreidler, and Subramanian, "Leveraging Resources in Global Software Development." The cluster concept in that
paper has been renamed strata. This is more fully described in Crocker, Large Scale Agile Software Development.

Figure 2.8. Implement interfaces first.

Each strata was developed and validated independently, focusing principally on the
interactions across devices. They did this by stubbing out the interaction of the strata with
the individual devices and focusing on the cross-device communication first. As the
various strata reached some level of maturity, they were integrated into the devices. This
"internal" integration was the easy part, since each device team was collocated in a
particular country, and members were used to working together.

The beauty of this approach is that the highest risk areas likely to cause the biggest delays
and create the biggest communications problems were the interteam interactions; these
were resolved at the beginning of the project, when there was plenty of time and there
was no prior code to change. The easier part, the device integration, was saved for later in
the project. This technique provided superior synchronization throughout the project,
because a team could integrate into the overall structure regularly, making sure that
whatever it did from within did not compromise the overall system.

Tool 6: Set-Based Development
Set-Based Versus Point-Based

Let's say you want to set up a meeting. There are two ways to go about it, you can use a
point-based or a set-based approach. Figure 2.9 illustrates the point-based approach: First
you choose a meeting time, and then you refine it until it works. Unfortunately, it may
take several iterations to find an acceptable meeting time, and the process may never
converge. Figure 2.10 illustrates the set-based approach: You start by defining everyone's
constraints and then select a meeting time that fits within those constraints. This approach
involves considerably less communication, yet it quickly converges on an acceptable
meeting time.

Figure 2.9. Point-based scheduling.[29]

[29] Diagram adapted from Durward Sobek. Used with permission.

Figure 2.10. Set-based scheduling.[30]

[30] Ibid. Used with permission.

In set-based development, communication is about constraints, not choices. This turns out
to be a very powerful form of communication, requiring significantly less data to convey
far more information. In addition, talking about constraints instead of choices defers
making choices until they have to be made, that is, until the last responsible moment,
which we discuss in Chapter 3.

Let's consider how constraint-based communication can speed up large-scale product
development. Durward Sobek studied Toyota and Chrysler product development
approaches for his 1997 dissertation at the University of Michigan.[31] He found that a
primary engineering discipline at Toyota is to maintain and refer to checklists, which
record known tradeoffs and constraints.

[31] Sobek, Principles That Shape Product Development Systems: A Toyota-Chrysler Comparison.

For example, a styling engineer might want a rear fender section with a dramatic new
look. However, the manufacturing engineer might suspect that the new design is going to
be difficult to manufacture. Instead of expressing a vague doubt, the manufacturing
engineer would send the styling engineer a checklist showing the time it takes to stamp
body panels with certain characteristics and detailing the limits of those characteristics.

The checklist isn't necessarily a list; it is often a graph of the boundary conditions, similar
to Figure 2.11. The styling engineer would examine the checklist along with many
similar checklists and come up with two or three designs that take all of the constraints
into consideration.

Figure 2.11. Checklist: Rear quarter panel cross-section deformity ratio.[32]

[32] Diagram from Durward Sobek. Used with permission.

If you were a manufacturing engineer at Chrysler, it is more likely that the styling
engineers would send you one or two possible styles and ask for comments. You would
respond that you think the panel is going to be difficult to manufacture. At the same time,
many other engineers would have problems with the proposed style, so meetings would
be called to resolve the issues. However, once you get a style you think you can
manufacture, perhaps the design of the gas cap will be difficult, or maybe there is not
enough room left for all of the targeted wheel sizes. More meetings are needed to iron out
these problems, which will no doubt lead to more problems. A never-ending game
ensues, reminiscent of point-based meeting scheduling.

Figures 2.12 and 2.13 show how the two approaches work.

Figure 2.12. Point-based development.[33]

[33] Ibid. Used with permission.

Figure 2.13. Set-based development.[34]

[34] Ibid. Used with permission.

Toyota explores a large number of concepts at the beginning of a vehicle program,
expending significantly more resources than other automakers. It maintains a large
number of options throughout the development process and produces an extraordinary
number of prototypes of subsystems and clay models of vehicles. Final body dimensions
are fixed far later in the development process than is common among other automakers,
and final specifications are released to suppliers very late in the development process.
The quality, popularity, and profitability of the cars it produces indicate that Toyota's
development process is highly effective.[35]

[35] Ward, Liker, Cristaino, and Sobek, "The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster."

Set-Based Software Development

So how do you apply set-based development to software? You develop multiple options,
communicate constraints, and let solutions emerge.

Develop Multiple Options

When you have a difficult problem, try this: Develop a set of alternative solutions to a
problem, see how well they actually work, and then merge the best features of the
solutions or choose one of the alternatives. It might seem wasteful to develop multiple
solutions to the same problem, but set-based development can lead to better solutions
faster, as the examples in the sidebars illustrate.

Set-Based Embedded Software
Development

A software development manager from a medical device company described to
us how he runs a new program:

The first thing I do is have the user champion describe to a group of developers
what problem needs to be solved. Now, I don't think anyone can put into words
what they really want, so I set a team to working on maybe a half dozen
possibilities. This is the first iteration, and it lasts a month. Then I have the
developers show the champion their work, and we can narrow down what is
really needed to a couple of the prototypes. At this point, I reduce the team size
and have some developers continue developing the most promising options for
the next iteration. Based on this work, the champion can usually let the
developers know exactly what is needed, and by that time, the work is better
than half done. The champion is always happy, and we get results very fast.

Set-Based Technology Selection
A friend from a company that does enterprise applications told us how he made
a critical decision:

We had to choose a technical platform for a system. However, it was not clear
which of the three available options was going to be the winner, let alone meet
our needs. So we started developing on all three. This required the underlying
development to be a bit more general than otherwise, but it turned out to be
quite robust because of that. It was really not necessary to decide on a platform
until quite near to the end of the project, and by that time, the correct choice was
pretty obvious, but it was not the one we would have made in the beginning.

Set-Based Web Site Design
A colleague from a company that does Web designs for many customers told us
how she answers difficult usability questions:

When we can't agree on how to structure the Web site, what we do is create two
or three versions, with different paths and page layouts. We then do usability
testing with several target users. It turns out that there is never one design that
stands out above the others. Instead, we find that some features from each
design are good, and some are rather poor. We put together the best features of
all the options and retest. Invariably we get a far better usability score with the
combination. We're thinking that we should design all of our sites this way.

Set-based development does not replace iterative development—it adds a new dimension.
During early iterations, multiple choices are developed for key features; in later
iterations, they are merged or narrowed to a single choice.

Communicate Constraints

Set-based development means that you communicate constraints, not solutions. On the
surface, this might seem to be the opposite of using an iterative approach. Since you are
supposed to produce working, deployable code with each iteration, an iteration might
seem like a point-based solution, the opposite of set-based development.

Thinking of an iteration as a point-based solution is a misinterpretation of iterative
development. In an iteration, you implement only the minimum amount of functionality
necessary to demonstrate the core concepts of that iteration. For example, you do not start
with an entire database design in the first iteration; you use a simple persistence layer to
deal with the current subset of features. The design will evolve, and in that sense, the
early iteration is a prototype of a piece of the overall design.

In Chapter 6 we discuss refactoring, that is, restructuring the code as the design evolves.
Aggressive refactoring is the key to making sure that iterative development converges on
a solution. When an iteration implements "frozen" code that is not available for
refactoring, then it is a point-based solution and can lead to the same circular iterations
we saw in point-based meeting scheduling. When an iteration implements a design that is
available for refactoring, then the design is an instance of a range of options that can be
refined later in development, similar to a prototype in set-based development.

An iteration should be considered a demonstration of a possible solution; it should not be
considered the only solution. Early iterations should leave wide latitude for implementing
the rest of the system in many possible ways. As iterations progress and more choices are
made, the design space should be gradually narrowed.

Let the Solution Emerge

Communicating constraints is very useful when tackling a particularly difficult problem,
because it helps assure that the solution is worked out by all concerned. As the group
grapples with the problem, resist the temptation to jump to a solution; keep the
constraints of the problem visible so that the team can discover the intersection of the
design space that will work for all concerned.

The True Story of a Death March
Project, Part 4: A Solution

Emerges
The team had a disagreement on how to translate the data from the old database
to the new database. It was necessary to use a new database key, but when
customers sent in changes for legacy data, the new key would not be available to
the data entry clerk. There was a raging debate between the people who
understood the legacy database structure, those designing the new database, the
people designing the new GUI, and the managers of the data entry clerks.

I had all of the interested parties list the range of options (as opposed to their
preferred solution) that could work in their area. We had a series of meetings in
which each group presented their constraints rather than their solutions. At each
meeting, we tossed out any ideas that were completely unworkable, and then
allowed a couple of days for each group to reevaluate their options. At first, the
options expanded rather than contracted, because each group found that ideas
from other groups expanded their idea of what might work. Every few days, the
groups met again and repeated the process.

The solution that emerged was novel and very well thought out. It wasn't
something that anyone would have thought of at the beginning, but it was
probably about the only thing that would have worked. Once everyone agreed
on the approach at a fine level of detail, the development team mounted a
massive effort to implement it quickly. Despite the many changes involved, this
was one area of the code that worked from the first day it was released.

—Mary

Try This
1. Take your most difficult problem and devise a way to increase feedback.

a. Increase the feedback of development teams to management by asking
each team at the end of each iteration the following questions:

i. Was the team properly staffed for this iteration?
ii. Were there any needed resources that were not forthcoming?

iii. How can things be changed to make things go better and faster?

iv. What is getting in the way?
b. Increase the feedback of customers to development teams by holding a

customer focus group at the end of each iteration. Ask questions such as
the following:

i. How well does this section solve the problem it was meant to
solve?

ii. How could it be improved?
iii. How does this iteration affect your view of what you need?
iv. What do you need to put this part of the system into production?

c. Increase the feedback of the product to the development team in the
following ways:

i. Have developers write and run developer tests as they write the
code.

ii. Have analysts, customers, or testers write and run customer tests as
the developers work on the code. Have developers help with the
customer tests if that's what it takes to get them automated.

iii. Have developers observe usability tests of each feature as it nears
completion, so they can see how users react to their
implementation.

d. Increase the feedback within the team in the following ways:
i. Make testers an integral part of the development team.

ii. Involve operations people at the beginning of the project.
iii. Establish the policy that the development team maintains the

product.
2. Start iterations with a negotiation session between customers and developers.

Customers should indicate which features are the highest priority, and developers
should select and commit to only those features from the top of the priority list
which they can realistically expect to complete in the iteration time-box.

3. Post a progress chart for your current project in a common area so the team can
see what needs to be done and everyone can see how the project is converging.

4. If you divide a system across multiple teams, make every effort to have a divisible
architecture that allows teams to work on their own areas as independently as
possible. Find ways for multiple teams to synchronize as often as possible by
integrating their code and running automated tests.

5. If strata teams work for machine interfaces, consider them for user interfaces also.
If you have several teams working on different components of a system, consider
forming strata teams focused on user interfaces that cross components.

6. Find your toughest outstanding development problem and have the development
team come up with three options on how to solve it. Instead of choosing one of
the solutions, have the team explore all three options at the same time.

Chapter 3. Decide as Late as Possible

Concurrent Development

Tool 7: Options Thinking

Tool 8: The Last Responsible Moment

Tool 9: Making Decisions

Try This

Concurrent Development[1]
[1] Information drawn from Womack, Jones and Roos, The Machine That Changed the World, 116–119, and Clark and Fujimoto, Product
Development Performance, 187, 236–237.

When sheet metal is formed into a car body, a massive stamping machine presses the
metal into shape. The stamping machine has a huge metal die, which makes contact with
the sheet metal and presses it into the shape of a fender, door, or another body panel.
Designing and cutting the dies to the proper shape accounts for half of the capital
investment of a new car development program and drives the critical path. If a mistake
ruins a die, the entire development program suffers a huge setback. If there is one thing
that automakers want to do right, it is the die design and cutting.

The problem is, as the car development progresses, engineers keep making changes to the
car, and these find their way to the die design. No matter how hard the engineers try to
freeze the design, they are not able to do so. In Detroit in the 1980s the cost of changes to
the design was 30 to 50 percent of the total die cost, while in Japan it was 10 to 20
percent. These numbers seem to indicate the Japanese companies must have been much
better at preventing change after the die specs were released to the tool and die shop. But
such was not the case.

The U.S. strategy for making a die was to wait until the design specs were frozen, and
then send the final design to the tool and die maker, which triggered the process of
ordering the block of steel and cutting it. Any changes went through an arduous change
approval process. It took about two years from ordering the steel to the time the die
would be used in production. In Japan, however, the tool and die makers order up the
steel blocks and start rough cutting at the same time the car design is starting. This is
called concurrent development. How can it possibly work?

The die engineers in Japan are expected to know a lot about what a die for a front door
panel will involve, and they are in constant communication with the body engineer.[2]
They anticipate the final solution, and they are also skilled in techniques to make minor
changes late in development, such as leaving more material where changes are likely.
Most of the time die engineers are able to accommodate the engineering design as it
evolves. In the rare case of a mistake, a new die can be cut much faster because the whole
process is streamlined.

[2] The close collaboration between Japanese die engineer and designer occurs even though the die engineer is an external supplier. Changes are
anticipated in the contract and are done on a worker-to-worker basis without the delay of a change approval process. We discuss contracts that
allow for such close collaboration in Chapter 7, "See the Whole."

Japanese automakers do not freeze design points until late in the development process,
allowing most changes to occur while the window for change is still open. When
compared to the early design freeze practices in the United States in the 1980s, Japanese
die makers spent perhaps a third as much money on changes and produced better die
designs. Japanese dies tended to require fewer stamping cycles per part, creating
significant production savings.[3]

[3] Typical Japanese stamping in 1990 took five shots per panel, compared to seven in the United States (Clark and Fujimoto, Product
Development Performance, 186).

The impressive difference in time-to-market and increasing market success of Japanese
automakers prompted U.S. automotive companies to adopt concurrent development
practices in the 1990s, and today the product development performance gap has narrowed
significantly.

Concurrent Software Development

Programming is a lot like die cutting. The stakes are often high, and mistakes can be
costly, so sequential development, that is, establishing requirements before development
begins, is commonly thought of as a way to protect against serious errors. The problem
with sequential development is that it forces designers to take a depth-first rather than a
breadth-first approach to design. Depth-first forces making low-level dependent decisions
before experiencing the consequences of the high-level decisions. The most costly
mistakes are made by forgetting to consider something important at the beginning. The
easiest way to make such a big mistake is to drill down to detail too fast. Once you set
down the detailed path, you can't back up and are unlikely to realize that you should.
When big mistakes may be made, it is best to survey the landscape and delay the detailed
decisions.

Concurrent development of software usually takes the form of iterative development. It is
the preferred approach when the stakes are high and the understanding of the problem is
evolving. Concurrent development allows you to take a breadth-first approach and
discover those big, costly problems before it's too late. Moving from sequential
development to concurrent development means you start programming the highest value
features as soon as a high-level conceptual design is determined, even while detailed
requirements are being investigated. This may sound counterintuitive, but think of it as an
exploratory approach that permits you to learn by trying a variety of options before you
lock in on a direction that constrains implementation of less important features.

In addition to providing insurance against costly mistakes, concurrent development is the
best way to deal with changing requirements, because not only are the big decisions
deferred while you consider all the options, but the little decisions are deferred as well.
When change is inevitable, concurrent development reduces delivery time and overall
cost while improving the performance of the final product.

If this sounds like magic—or hacking—it would be if nothing else changed. Just starting
programming earlier, without the associated expertise and collaboration found in
Japanese die cutting, is unlikely to lead to improved results. There are some critical skills
that must be in place in order for concurrent development to work.

Under sequential development, U.S. automakers considered die engineers to be quite
remote from the automotive engineers, and so too, programmers in a sequential
development process often have little contact with the customers and users who have
requirements and the analysts who collect requirements. Concurrent development in die
cutting required U.S. automakers to make two critical changes—the die engineer needed
the expertise to anticipate what the emerging design would need in the cut steel and had
to collaborate closely with the body engineer.

Similarly, concurrent software development requires developers with enough expertise in
the domain to anticipate where the emerging design is likely to lead and close
collaboration with the customers and analysts who are designing how the system will
solve the business problem at hand.

Cost Escalation

Software is different from most products in that software systems are expected to be
upgraded on a regular basis. On the average, more than half of the development work that
occurs in a software system occurs after it is first sold or placed into production.[4] In
addition to internal changes, software systems are subject to a changing environment—a
new operating system, a change in the underlying database, a change in the client used by
the GUI, a new application using the same database, and so on. Most software is expected
to change regularly over its lifetime, and in fact once upgrades are stopped, software is
often nearing the end of its useful life. This presents us with a new category of waste:
waste caused by software that is difficult to change.

[4] The percentage of software lifecycle cost attributed to maintenance ranges between 40 and 90 percent. See Kajko-Mattsson et al.,
"Taxonomy of Problem Management Activities."

In 1987 Barry Boehm wrote, "Finding and fixing a software problem after delivery costs
100 times more than finding and fixing the problem in early design phases."[5] This
observation became the rationale behind thorough upfront requirements analysis and
design, even though Boehm himself encouraged incremental development over "single-
shot, full product development."[6] In 2001 Boehm noted that for small systems the
escalation factor can be more like 5:1 than 100:1; and even on large systems, good
architectural practices can significantly reduce the cost of change by confining features
that are likely to change to small, well-encapsulated areas.[7]

[5] Boehm, "Industrial Software Metrics Top 10 List."

[6] Boehm and Papaccio, "Understanding and Controlling Software Costs," 1465–1466.

[7] Boehm and Basili, "Software Defect Reduction List."

There used to be a similar, but more dramatic, cost escalation factor for product
development. It was once estimated that a change after production began could cost 1,000
times more than if the change had been made in the original design.[8] The belief that the
cost of change escalates as development proceeds contributed greatly to standardizing the
sequential development process in the United States. No one seemed to recognize that the
sequential process could actually be the cause of the high escalation ratio. However, as
concurrent development replaced sequential development in the United States in the
1990s, the cost escalation discussion was forever altered. It was no longer how much a
change might cost later in development; the discussion centered on how to reduce the
need for change through concurrent engineering.

[8] Concurrent engineering has been credited with reducing product development time by 30 to 70 percent, engineering changes by 65 to 90
percent, and time to market by 20 to 90 percent, while improving quality by 200 to 600 percent and productivity by 20 to 110 percent (Thomas
Group, 1990).

Not all change is equal. There are a few basic architectural decisions that you need to get
right at the beginning of development, because they fix the constraints of the system for
its life. Examples of these may be choice of language, architectural layering decisions, or
the choice to interact with an existing database also used by other applications. These
kinds of decisions might have the 100:1 cost escalation ratio. Because these decisions are
so crucial, you should focus on minimizing the number of these high-stakes constraints.
You also want to take a breadth-first approach to these high-stakes decisions.

The bulk of the change in a system does not have to have a high-cost escalation factor; it
is the sequential approach that causes the cost of most changes to escalate exponentially
as you move through development. Sequential development emphasizes getting all the
decisions made as early as possible, so the cost of all changes is the same—very high.
Concurrent design defers decisions as late as possible. This has four effects:

• Reduces the number of high-stake constraints.
• Gives a breadth-first approach to high-stakes decisions, making it more likely that

they will be made correctly.
• Defers the bulk of the decisions, significantly reducing the need for change.
• Dramatically decreases the cost escalation factor for most changes.

A single cost escalation factor or curve is misleading.[9] Instead of a chart showing a
single trend for all changes, a more appropriate graph has at least two cost escalation
curves, as shown in Figure 3.1. The agile development objective is to move as many
changes as possible from the top curve to the bottom curve.

[9] The cost escalation number of 100:1 in Boehm and Papaccio, "Understanding and Controlling Software Costs," refers to the cost of fixing or
reworking software. In Beck, Extreme Programming Explained, the cost escalation curve on page 23 refers to all change, not just fixing or
rework.

Figure 3.1. Two cost escalation curves.

Returning for a moment to the die cutting example, the die engineer sees the conceptual
design of the car and knows roughly the necessary door panel size. With that information,
a big enough steel block can be ordered. If the concept of the car changes from a small,
sporty car to a mid-size family car, the block of steel may be too small, and that would be
a costly mistake. But the die engineer knows that once the overall concept is approved, it
won't change, so the steel can be safely ordered long before the details of the door
emerge. Concurrent design is a robust design process because the die adapts to whatever
design emerges.

Lean software development delays freezing all design decisions as long as possible,
because it is easier to change a decision that hasn't been made. Lean software
development emphasizes developing a robust, change-tolerant design, one that accepts
the inevitability of change and structures the system so that it can be readily adapted to
the most likely kinds of changes.

The main reason software changes throughout its lifecycle is that the business process in
which it is used evolves over time. Some domains evolve faster than others, and some
domains may be essentially stable. It is not possible to build in flexibility to
accommodate arbitrary changes cheaply. The idea is to build tolerance for change into the
system along domain dimensions that are likely to change. Observing where the changes
occur during iterative development gives a good indication of where the system is likely
to need flexibility in the future.[10] If changes of certain types are frequent during
development, you can expect that these types of changes will not end when the product is
released. The secret is to know enough about the domain to maintain flexibility, yet avoid
making things any more complex than they must be.

[10] See the discussion on developing a sense of how to absorb changes in "Tool 8: The Last Responsible Moment" later in this chapter.

If a system is developed by allowing the design to emerge through iterations, the design
will be robust, adapting more readily to the types of changes that occur during
development. More importantly, the ability to adapt will be built in to the system so that
as more changes occur after its release, they can be readily incorporated. On the other
hand, if systems are built with a focus on getting everything right at the beginning in
order to reduce the cost of later changes, their design is likely to be brittle and not accept
changes readily. Worse, the chance of making a major mistake in the key structural
decisions is increased with a depth-first rather than a breadth-first approach.

Tool 7: Options Thinking
"Satisfaction Guaranteed or Your Money Back." Sears. Target. L.L. Bean. Land's End.
Amazon.com. What store doesn't guarantee satisfaction? On the other hand, it's
somewhat scary to think about offering a satisfaction guarantee for software. Usually, the
message is, After you open the shrink wrap—or after you sign off the requirements—it's
yours. Software rarely comes with a warranty.

Let's step to the other side of this transaction and consider why satisfaction guaranteed
warranties are so attractive. The underlying dynamic is that people find it difficult to
make irrevocable decisions when there is uncertainty present. For example, if you are
buying a gift and aren't certain about the recipient's size or color preference, a satisfaction
guarantee lets you purchase before you get the answers. You are not being asked to make
an irrevocable decision until the uncertainty is resolved. You have the right to return the
product, usually in new condition in a set timeframe, so if it doesn't work out, you don't
lose any more than the time and effort required to evaluate and return it.

It would be nice if business transactions came with a satisfaction guaranteed clause, but
they rarely do. Most business decisions are irrevocable; we usually don't have the option
to change our mind. Interestingly enough, even though we would like to be able to
change our mind, we usually don't give our customers the option to change their minds.
And yet, almost everyone resists making irrevocable decisions in the face of uncertainty.
It would be nice if we could find a way to delay making decisions and a way to provide
the same benefit for our customers.

Delaying Decisions

Hewlett-Packard discovered a way to increase profits by delaying decisions. HP sells a
lot of printers around the world, and in many countries, the electrical connection must be
tailored to the local electrical outlets. You would think that HP could accurately forecast
how many printers it would sell in each country, but the forecasts are always just a bit
off. HP always had some excess printers for one country and not enough for another.
Then the company hit upon the idea of doing final electrical configuration in the
warehouse after the printer was ordered. It costs more to configure a printer in a
warehouse than in the factory, but overall, the cost of the option to customize was more

than offset by the benefit of always having the right product. Even though unit costs rose,
HP saved $3 million a month by more effectively matching supply to demand.[11]

[11] Coy, "Exploring Uncertainty."

As a keynote speaker at a software conference,[12] Enrico Zaninotto, an Italian economist,
pointed out that the underlying economic mechanism for controlling complexity in just-
in-time systems is minimizing irreversible actions. What does this mean? In HP's case,
there was a huge amount of complexity involved in getting the right electrical connection
on printers going to different countries. The approach used to control this complexity was
delaying the decision about what electrical connection to install until after an order was
received in the warehouse. Voila! The system was no longer so complex.

[12] Zaninotto, "From X Programming to the X Organization."

Zaninotto contrasted just-in-time systems with Fordist mass production systems, which
manage complexity by limiting the number of options—"You can have any color as long
as it's black." For example, a mass production system for printers would use only the
most common type of plug and make differences in plug styles the customers' problem;
they can buy an add-on converter at their local electronic shop.

Zaninotto suggested that when a system that prespecifies options is confronted by a
system that keeps options open, the second system wins out in a complex dynamic
market. Thus, once HP started customizing power options on printers, the market
expected all the other manufacturers to do the same.

Delaying irreversible decisions until uncertainty is reduced has economic value. It leads
to better decisions, it limits risk, it helps manage complexity, it reduces waste, and it
makes customers happy. On the other hand, delaying decisions usually comes at a cost. In
HP's case, the unit cost of adding a cord in the warehouse was higher than the cost of
adding the cord in the factory. Still, the overall system was more profitable, because
delaying decisions allowed the correct decision to be made every time.

Options

The financial and commodities markets have developed a mechanism—called options—
to allow decisions to be delayed. An option is the right, but not the obligation, to do
something in the future. It's like a satisfaction guaranteed warranty—if things work out
the way you expect them to, you can exercise the option (equivalent to keeping the
product). If things don't work out, you can ignore the option (equivalent to returning the
product), and all you lose is whatever the option cost you in the first place.

Uncertainty can move in two directions—unexpected good things can happen just as
easily as unexpected bad things. No one knows this better than farmers, who have to deal
with rising and falling commodity prices. Starting in 1985, the Chicago Board of Trade
started selling options contracts, which provide farmers with commodity price insurance.

Farmers can now buy options that guarantee a minimum price for their crop and still be
free to sell it at a higher price if the market goes up.

A hotel reservation is an option on a hotel room in the future. The price of the option is
the cost to make the reservation, which may include a reservation fee. If you exercise the
option—if you show up at the hotel—you pay the price negotiated at the time the
reservation was made. If you cancel the trip all you lose is the reservation fee.

Stock options are a way to give employees an opportunity to profit if the company does
well in the future while limiting their risk if the company does poorly.[13] In general,
financial options give the buyer an opportunity to capitalize on positive events in the
future while limiting exposure to negative events. Options provide opportunities to make
decisions down the road, while providing insurance against things going wrong.

[13] This assumes that the options are in addition to a reasonable salary.

Microsoft Strategy, circa 1988

In 1999 Eric Beinhocker[14] reminisced about the 1988 Comdex trade show. All the big
players were there with big booths: Apple was at the peak of its powers; IBM, Hewlett-
Packard, DEC, Apollo, and Sun Microsystems were all touting their latest strategies. And
then there was Microsoft, with a modest booth that "was more like a Middle Eastern
bazaar than a trade-show booth." Microsoft showed its then current strength, DOS, along
with an early version of Windows, OS/2 for IBM machines, a version of UNIX, and new
releases of Word and Excel, which were a far distant second to Lotus and WordPerfect in
the DOS environment but led the applications on Apple platforms. Beinhocker notes:
"Along with confused customers, the press was also grumbling. Columnists claimed that
Microsoft was adrift and Gates had no strategy."

[14] Beinhocker, "Robust Adaptive Strategies," 95–96.

In 1988 it was not at all clear which platform would win, and Gates did have a strategy—
to cover all the bases. He wanted Windows to win but hedged his bets with DOS, OS/2,
and even a version of UNIX. If Apple won the war, he would lose the operating system
but win as the dominant application provider on that platform. In any case, he would
develop expertise in both operating systems and applications. He played the options game
and let the market emerge.

Microsoft was not the only company to invest in options. IBM's strategy was to offer
multiple options in hardware, thus the introduction of the PC in 1981. IBM did not fully
realize that it was the software business, not the hardware business, that would become
the economic driver of the future, so it had allowed Microsoft to hold most of the options
in the software market. This made sense at the time, since all options come at a price, but
IBM chose the wrong options.

In the 1990s Cisco Systems acquired companies with relevant technologies rather than
maintaining a large research and development effort. This allowed Cisco to delay

selecting technologies until both the market and the technology emerged, considerably
reducing its risk. The cost of this options-based approach was the premium paid for the
companies that had born the initial risk.

Options Thinking in Software Development

One of the hot debates in software development concerns the tradeoff between predictive
processes and adaptive processes. The prevailing paradigm has been a predictive process:
Software development should be specified in detail prior to implementation, because if
you don't get the requirements nailed down and the design right, it will surely cost a lot to
make changes later. This paradigm may work in a highly predictable world. However, if
there is uncertainty about what customers really need, whether their situation will change,
or where technology is moving, then an adaptive approach is a better bet. Options limit
downside risk by limiting the cost and time allocated to resolving uncertainty. They
maximize upside reward by delaying decisions until more knowledge is available.
Economists and manufacturing managers alike understand that the adaptive paradigm of
delaying decisions until uncertainty is reduced usually produces better results than a
predictive approach.

Agile software development processes can be thought of as creating options that allow
decisions to be delayed until the customer needs are more clearly understood and
evolving technologies have had time to mature. This is not to say that agile approaches
are unplanned. Plans help clarify confusing situations, allow consideration of tradeoffs,
and establish patterns that allow rapid action. So, plans tend to enhance the flexibility to
respond to change. However, a plan should not prespecify detailed actions based on
speculation. Agile software development follows speculation with experiments and
learning to reduce uncertainty and adapt the plan to reality.[15]

[15] See Highsmith, Adaptive Software Development, 41–48.

Conventional wisdom in software development tends to generate detailed decisions early
in the process—like freezing the customer requirements and specifying the technical
framework. In this approach, what is taken for planning is usually a process of predicting
the future and making early decisions based on those predictions without any data or
validation. Plans and predictions are not bad, but making irrevocable decisions based on
speculation is to be avoided.

In 1988 Harold Thimbleby published a paper in IEEE Software titled "Delaying
Commitment." He notes that when faced with a new situation, experts will delay firm
decisions while they investigate the situation, because they know that delaying
commitments often leads to new insights. Amateurs, on the other hand, want to get
everything completely right, so they tend to make early decisions, quite often the wrong
ones. Once these early decisions are made, other decisions are built on them, making
them devilishly difficult to change. Thimbleby notes that premature design commitment
is a design failure mode that restricts learning, exacerbates the impact of defects, limits
the usefulness of the product, and increases the cost of change.

Options thinking is an important tool in software development as long as it is
accompanied by recognition that options are not free and it takes expertise to know which
options to keep open. Options do not guarantee success; they set the stage for success if
the uncertain future moves in a favorable direction. Options allow fact-based decisions
based on learning rather than speculation.

Tool 8: The Last Responsible Moment
Concurrent software development means starting developing when only partial
requirements are known and developing in short iterations that provide the feedback that
causes the system to emerge. Concurrent development makes it possible to delay
commitment until the last responsible moment,[16] that is, the moment at which failing to
make a decision eliminates an important alternative. If commitments are delayed beyond
the last responsible moment, then decisions are made by default, which is generally not a
good approach to making decisions.

[16] The Lean Construction Institute coined the term last responsible moment. See www.leanconstruction.org.

Procrastinating is not the same as making decisions at the last responsible moment; in
fact, delaying decisions is hard work. Here are some tactics for making decisions at the
last responsible moment:

Share partially complete design information. The notion that a design must be
complete before it is released is the biggest enemy of concurrent development. Requiring
complete information before releasing a design increases the length of the feedback loop
in the design process and causes irreversible decisions to be made far sooner than
necessary. Good design is a discovery process, done through short, repeated exploratory
cycles.

Organize for direct, worker-to-worker collaboration. Early release of incomplete
information means that the design will be refined as development proceeds. This requires
that people who understand the details of what the system must do to provide value must
communicate directly with people who understand the details of how the code works.

Develop a sense of how to absorb changes. In "Delaying Commitment" Harold
Thimbleby observes that the difference between amateurs and experts is that experts
know how to delay commitments and how to conceal their errors for as long as possible.
Experts repair their errors before they cause problems. Amateurs try to get everything
right the first time and so overload their problem-solving capacity that they end up
committing early to wrong decisions. Thimbleby recommends some tactics for delaying
commitment in software development, which could be summarized as an endorsement of
object-oriented design and component-based development:

• Use modules: Information hiding, or more generally behavior hiding, is the
foundation of object-oriented approaches. Delay commitment to the internal

design of the module until the requirements of the clients on the interfaces
stabilize.

• Use interfaces: Separate interfaces from implementations. Clients should not
depend on implementation decisions.

• Use parameters: Make magic numbers—constants that have meaning—into
parameters. Make magic capabilities like databases and third-party middleware
into parameters. By passing capabilities into modules wrapped in simple
interfaces, your dependence on specific implementations is eliminated and testing
becomes much easier.

• Use abstractions: Abstraction and commitment are inverse processes. Defer
commitment to specific representations as long as the abstract will serve
immediate design needs.

• Avoid sequential programming: Use declarative programming rather than
procedural programming, trading off performance for flexibility. Define
algorithms in a way that does not depend on a particular order of execution.

• Beware of custom tool building: Investment in frameworks and other tooling
frequently requires committing too early to implementation details that end up
adding needless complexity and seldom pay back. Frameworks should be
extracted from a collection of successful implementations, not built on
speculation.

Additional tactics for delaying commitment include

• Avoid repetition: This is variously known as the Don't Repeat Yourself (DRY)[17]
or Once And Only Once (OAOO)[18] principle. If every capability is expressed in
only one place in the code, there will be only one place to change when that
capability needs to evolve, and there will be no inconsistencies.

[17] Hunt and Thomas, The Pragmatic Programmer, 27.

[18] Beck, Extreme Programming Explained, 109.

• Separate concerns: Each module should have a single, well-defined
responsibility. This means that a class will have only one reason to change.[19]

[19] Martin, Agile Software Development Principles, Patterns, and Practices, Chapter 8, calls this the Single Responsibility
Principle.

• Encapsulate variation: What is likely to change should be inside; the interfaces
should be stable. Changes should not cascade to other modules. This strategy, of
course, depends on a deep understanding of the domain to know which aspects
will be stable and which variable. By application of appropriate patterns, it should
be possible to extend the encapsulated behavior without modifying the code
itself.[20]

[20] Ibid. Chapter 9 describes how to do this in the Open Closed Principle implemented via the Strategy or Template pattern.

• Defer implementation of future capabilities: Implement only the simplest code
that will satisfy immediate needs rather than putting in capabilities you "know"
you will need in the future.[21] You will know better in the future what you really
need then, and simple code will be easier to extend if necessary.

[21] Beck, Extreme Programming Explained, Chapter 17, uses the acronym YAGNI (You Aren't Going to Need It) for this practice
and explains its rationale.

• Avoid extra features: If you defer adding features you "know" you will need,
then you certainly want to avoid adding extra features "just-in-case" they are
needed. Extra features add an extra burden of code to be tested, maintained, and
understood. Extra features add complexity, not flexibility.

Much has been written on these delaying tactics,[22] so they are not covered in detail in this
book.

[22] See Fowler, Patterns of Enterprise Application Architecture; Larman, Applying UML and Patterns; as well as the works cited above.

Develop a sense of what is critically important in the domain. Forgetting some critical
feature of the system until too late is the fear that drives sequential development. If
security, or response time, or failsafe operation are critically important in the domain,
these issues need to be considered from the start; if they are ignored until too late, it will
indeed be costly. However, the assumption that sequential development is the best way to
discover these critical features is flawed. In practice, early commitments are more likely
to overlook such critical elements than late commitments, because early commitments
rapidly narrow the field of view.

Develop a sense of when decisions must be made. You do not want to make decisions
by default, or you have not delayed them. Certain architectural concepts such as usability
design, layering, and component packaging are best made early so as to facilitate
emergence in the rest of the design. A bias toward late commitment must not degenerate
into a bias toward no commitment. You need to develop a keen sense of timing and a
mechanism to cause decisions to be made when their time has come.

Develop a quick response capability. The slower you respond, the earlier you have to
make decisions. Dell, for instance, can assemble computers in less than a week, so it can
decide what to make less than a week before shipping. Most other computer
manufacturers take a lot longer to assemble computers, so they have to decide what to
make much sooner. If you can change your software quickly, you can wait to make a
change until customers know what they want.

Tool 9: Making Decisions
Depth-First Versus Breadth-First Problem Solving

There are two strategies for problem solving: breadth-first and depth-first. Breadth-first
problem solving might be thought of as funnel, while depth-first problem solving is more

like a tunnel. Breadth-first involves delaying commitments, while depth-first involves
making early commitments. Some people prefer the breadth-first approach, while others
prefer the depth-first approach. However, most people prefer to use depth-first when
approaching new problems, because this approach tends to quickly reduce the complexity
of the problem to be solved.[23] Since design is, by definition, the consideration of a new
problem, most novice designers are biased toward the depth-first approach.

[23] See Thimbleby, "Delaying Commitment," 84.

The risk of depth-first problem solving is that the field under consideration will be
narrowed too soon, especially if those making the early commitments are not experts in
the domain. If a change of course is necessary, the work done in exploring the details will
be lost, so this approach has a large cost of change.

Notice that both breadth-first and depth-first approaches require expertise in the domain.
A depth-first approach will work only if there was a correct selection of the area to zero
in on. Getting this selection right requires two things: someone with the expertise to make
the early decisions correctly and assurance that there will not be any changes that render
these decisions obsolete. Lacking these two conditions, a breadth-first approach will lead
to better results.

A breadth-first approach requires someone with the expertise to understand how the
details will most likely emerge and the savvy to know when the time to make
commitments has arrived. However, the breadth-first approach does not need a stable
domain; it is the approach of choice when the business domain is expected to evolve. It is
also an effective approach when the domain is stable.

Personality Types
We, the authors, exemplify the breadth-first and depth-first personality types.[24]
Tom has a strong bias toward delaying commitment, so he enjoys the process of
evaluating options, sometimes at the expense of getting things done. Mary, on
the other hand, in her eagerness to make things happen, quite often sets off
down the wrong path. Since we have complementary strengths and weaknesses,
we have learned how to combine them to get the best of both worlds.

When a decision must be made, it falls naturally to the person whose style is
most appropriate. For example, Tom evaluates available computer networking
approaches, while Mary decides when and what to buy. Tom mulls over the best
approach for a new Web site, while Mary oversees getting the Web site
developed and deployed.

Mary has learned that for important decisions, the results are always better if she
delays commitment until Tom does the breadth-first search. Tom finds that
Mary has developed a better sense of when decisions have to be made and is

more likely to make things happen. However, when it comes to implementation,
both know that pair troubleshooting resolves network issues and Web site
problems much faster than working alone.

—Mary and Tom

[24] Thimbleby, "Delaying Commitment," 84, sidebar.

Intuitive Decision Making

Gary Klein studied decision making of emergency responders, military personnel, airline
pilots, critical-care nurses, and others, to see how they make life-and-death decisions. He
expected to find that these people make rational decisions in life-threatening situations;
that is, they survey a range of options and weigh the benefits and risks of each option,
then choose the best one from the analysis. When he started the study, he was amazed to
discover that fire commanders felt they rarely, if ever, made decisions. Fire commanders
were very experienced, or they would not have their jobs. They claimed that they just
knew what to do based on their experience; there was no decision making involved. We
call this intuitive decision making.[25]

[25] Klein, Sources of Power, Chapter 3.

When experienced people using pattern matching and mental simulation to make
decisions, they are employing a very powerful tool that has an unquestioned track record
of success. To make even better decisions, emergency responders, pilots, and military
commanders engage in situational training that establishes correct patterns and enables
better mental simulations. With the proper training and experience, intuitive decision
making is highly successful the vast majority of the time.

Klein found that firefighter commanders resort to rational decision making only when
experience is inadequate. Deliberating about options is a good idea for novices who have
to think their way through decisions. However, intuitive decision making is the more
mature approach to decisions, and it usually leads to better decisions as well.[26]

[26] Ibid., 23, 28–29. Note that intuitive decision making can yield incorrect results if the underlying assumptions are incorrect or the constraints
are not understood.

Rational decision making involves decomposing a problem, removing the context,
applying analytical techniques, and exposing the process and results for discussion. This
kind of decision making has a place in making incremental improvements, but it suffers
from tunnel vision, intentionally ignoring the instincts of experienced people. It helps
clarify complicated situations but contains significant ambiguity. Even though rational
analysis gives specific answers, these are based on fuzzy assumptions and it is difficult to
know exactly when and how to apply the rules.[27]

[27] Ibid., Chapter 15.

It would be nice if rational analysis could be counted on to point out when there is an
inconsistency, when there is a key factor that everyone is overlooking. However, rational
analysis is less useful than intuition in this regard, because rational analysis tends to
remove context from analysis. Thus, rational decision making is unlikely to detect high-
stakes mistakes; intuitive decision making is better in this regard.

Sometimes it seems that there are not enough experienced people available to allow
intuitive decision making, and therefore rational decision making is the better approach.
We strongly disagree. It is much more important to develop people with the expertise to
make wise decisions than it is to develop decision-making processes that purportedly
think for people. We are also convinced that it is quite possible to develop many people
who are able to make wise intuitive decisions. Consider the Marines.

The Marines

The U.S. Marine Corps doesn't have any real need to exist; the army, navy, and air force
are equipped to handle any job the Marines tackle. However, the Marines specialize in
chaos. "Everything about the Marines…is geared toward high-speed, high-complexity
environments," writes David Freedman in Corps Business.[28] "The Marine Corps is one of
the most open-minded, innovative, knowledge-oriented…organizations in the world."

[28] Freedman, Corps Business, xix.

Freedman outlines 30 management principles that the Marines use to enable young
recruits to deal with extremely challenging combat missions as well as tricky, ill-defined
humanitarian missions. If you want to know how to deal with complexity, the Marines
have a few good ideas.

Marines plan, but they do not predict. A mission plan is both rapid and thorough, but it is
not a scenario of how the mission will unfold. Instead, the planning process focuses on
understanding the essence of the situation and the strengths and weaknesses of both sides;
finding simplifying assumptions, boundary conditions, and alternate approaches; settling
on an approach with a 70 percent chance of success; searching for what is being
overlooked; and inviting dissent. These issues are covered rapidly in the hours
immediately preceding the mission, and the Marines have a plan.

Once engaged in a mission, the organizational structure collapses, and those on the front
lines, who have access to the most current information, are expected to make decisions.
They also are expected to make mistakes. The theory is that they will make fewer, less
serious mistakes than will distant officers. Mistakes are not penalized; they are
considered necessary to learn the boundaries of what works and what doesn't.

Extreme training is used to be sure Marines don't encounter situations on the job more
challenging than those faced in training. They develop skills and learn patterns that they
are expected to adapt to new and changing situations. Training is done with stories and
analogies, but Marines are not told how to do a job. Instead, the Marines "manage by end

state and intent. [They] tell people what needs to be accomplished and why, and leave the
details to them."[29]

[29] Ibid., 208.

The Marines focus attention and resources on small teams at the lowest levels of the
organization. There is no personnel department; hiring, training, and assigning people are
required and prized rotational assignments for every senior officer. They look for leaders
who can motivate people, and they clearly distinguish management tasks—getting the
maximum value from the dollar—from leadership tasks—helping people to excel.
Marines are taught to be comfortable with paradox and value opposing traits. Thus, they
learn to balance discipline and creativity, empowerment and hierarchy, plans and
improvisation, rapid action and careful analysis.

Organizations that deal successfully with complexity, as do the Marines, understand that
complex problems can be dealt with only on the front line. Thus, they focus on enabling
intelligent, self-organizing, mission-focused behavior at the lowest levels of the
organization. Marine leaders are trained how to clearly communicate command intent so
that frontline people understand the mission and know how to make intuitive decisions.

A clear statement of intent is the key to enabling emergent behavior on the front line. In
business, the communicating intent is generally done through a small set of well chosen,
simple rules.

Simple Rules

Termites build amazing mounds and bees build complex hives. Birds migrate in flocks
and fish swim in schools. These are not extraordinarily intelligent animals, yet as a group
they exhibit extraordinarily sophisticated behavior. How do they know how to do it?

In the article "Swarm Intelligence" Eric Bonabeau and Christopher Meyer describe how
ants find food efficiently by following two simple rules: (1) Lay down a chemical as you
forage for food, and (2) follow the trail with the most chemical. If two ants go out
looking for food, the one returning first will have laid down a double layer of chemical,
so other ants will follow that trail, adding more chemical. The ants converge on the food
very efficiently.

It turns out that these same two routing rules are equally effective in routing telephone
traffic on a network. In this scheme, digital "ants" roam through a network, laying down
"digital chemicals" in places of low congestion. Phone calls follow and reinforce the
"digital trails." If congestion develops, the digital chemicals decay and are not reinforced,
so calls are no longer attracted to that route.

Simple rules can lead to surprising results. Southwest Airlines had a rule that freight was
to be loaded onto the first plane going in the right direction. The result was severe
bottlenecks in the system even though very little of the overall capacity was being used.
Then Southwest changed this one rule to ant forging rules: Find and use uncontested

paths, just like the telecommunications industry. This meant that some cargo might
actually start out moving away from its destination or taking a longer route than seemed
necessary, which seemed very counterintuitive. However, the result was an 80 percent
reduction in transfer rates at the busiest terminals, a 20 percent decrease in workload for
cargo handlers, less need for cargo storage, and spare room on flights available for new
business. Southwest estimated an annual gain of more than $10 million.[30]

[30] Bonabeau and Meyer, "Swarm Intelligence," 108.

Social insects act without supervision, self-organizing based on a set of simple rules.
Their collective behavior results in efficient solutions to difficult problems. Bonabeau
and Meyer call this swarm intelligence and list its advantages:

• Flexibility— the group can quickly adapt to a changing environment.
• Robustness— even when one or more individuals fail, the group can still perform

its tasks.
• Self-organization— the group needs relatively little supervision or top-down

control.

Simple rules are very efficient at fostering flexibility, robustness, and self-organization in
business environments. In the article "Strategy as Simple Rules," Kathleen Eisenhardt
and Donald Sull note that managers have three choices when deciding how to compete.
First they can "build a fortress and defend it." Second, they can count on unique
resources to maintain a competitive advantage. Third, they can place their organizations
in a position to rapidly pursue fleeting opportunities by choosing "a small number of
strategically significant processes and [crafting] a few simple rules to guide them."[31]

[31] Eisenhardt and Sull, "Strategy as Simple Rules."

The interesting thing about simple rules is that they enable decision making at the lowest
levels of an organization. People do not have to wonder what to do in a situation or get
permission to act. If they follow the simple rules, they know how to make decisions, and
they know their decisions will be supported. Eisenhardt and Sull suggest that a simple-
rules strategy gives a company a strong competitive advantage in high-velocity markets
because they allow an entire organization to act uniformly and quickly with little
supervision.

This is the key to simple rules: They allow everyone in an organization to act quickly,
synchronously, in a coordinated manner, without the necessity of waiting for instructions
from above. In a complex and changing environment, long decision chains slow decision
making down and separate decision making from execution. Simple rules allow decisions
to be made on the spot, when and where they need to be made, taking current information
into account. Thus, simple rules are a key mechanism to enable people to decide as late
as possible.

Simple Rules for Software Development

Simple rules for knowledge workers are a bit different than simple rules for moving
freight or switching packets through networks. Simple rules give people a framework for
making decisions; they are not instructions telling people exactly what to do. Thus,
simple rules are principles that will be applied differently in different domains; they are
used by experienced people as guidance when making intuitive decisions.

People have a limit to the number of things they can consider when making a decision, so
the list of simple rules should be short. George A. Miller's law suggests that somewhere
around seven would be a good number.[32] Simple rules should be limited to the few key
principles that really must be considered when making a decision. Quite often, simple
rules are used to reinforce a paradigm shift, so they often focus on the counterintuitive
elements of decision making.

[32] Miller, "The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information."

We offer seven simple rules, or principles, for software development along with the tools
to help you translate the principles to agile practices that are appropriate for your
particular environment:

1. Eliminate waste: Spend time only on what adds real customer value.
2. Amplify learning: When you have tough problems, increase feedback.
3. Decide as late as possible: Keep your options open as long as practical, but no

longer.
4. Deliver as fast as possible: Deliver value to customers as soon as they ask for it.
5. Empower the team: Let the people who add value use their full potential.
6. Build integrity in: Don't try to tack on integrity after the fact—build it in.
7. See the whole: Beware of the temptation to optimize parts at the expense of the

whole.

A set of simple rules are guideposts; their purpose is to allow the people on the ground to
make quick decisions about how to proceed, knowing that their decisions will not be
second-guessed because they are making the same decision their managers would make
given the same circumstances. It is the power that simple rules give to the people who
add value that makes them so valuable. It is not so important that the rules give detailed
guidance; it is important that people know that these rules are guidelines, which gives
them the freedom to make their own decisions.

Try This
1. Think of examples in your life when you have used options to delay decisions.

For example, have you ever paid extra to lock in a low interest rate as you
negotiated a mortgage? How effective has this been for you? Fill in the following
table:

Example of keeping
options open

Very
favorable

result

No gain; lost the
cost of the option

Very
unfavorable

result

Mortgage
Negotiation

X

Example 2 X

Example 3 X

2. We think you will find most examples fall into either the favorable or no-gain
category, but few fall into the unfavorable category.

3. At a team or department meeting, ask people to list decisions that are about to be
made. Group the list of decisions into two categories—tough to make and easy to
make. Then discuss what information you would need to turn each tough decision
into an easy decision. Pick three tough decisions and apply the delaying tactics
under "Tool 8: The Last Responsible Moment" to delay those decisions as long as
possible.

4. Evaluate your personality—are you inclined toward breadth-first or depth-first
problem solving? Find someone who has the opposite inclination, and pair with
him or her as you decide how to approach your next development project.

5. Select a few critical processes and develop simple rules for them so that people
understand intent and can make independent decisions.

Chapter 4. Deliver as Fast as
Possible
"Haste Makes Waste"

In the late 1990s there was a rush for Internet real estate reminiscent of the Oklahoma
Land Rush of the 1890s. At high noon the bugles went off and the race for land was on.
By sunset it was all over, with tens of thousands of people camped on plots of land. The
problem was, in their rush to get land, few had slowed themselves down with provisions.
People made a fortune selling food and water, but it would be a long time before those
who claimed the land would prosper. First they needed seed, tools, and time for a crop to
mature. Top real estate was soon selling at bargain prices as people left in droves. The
racers had discovered that to make any money, you had to be able to farm.[1]

[1] Howard, "The Rush to Oklahoma."

When we say deliver as fast as possible, we are not talking about rushing at breakneck
speed to claim real estate. We are recommending a good farming practice. Rapid delivery
is an operational practice that provides a strong competitive advantage. Customers like

rapid delivery so much that once a company in an industry learns how to deliver quickly,
its competitors are generally expected to follow suit.

The idea of delivering packages overnight was novel when Federal Express was started in
1971, but today even the U.S. Postal Service offers overnight delivery. The concept of
shipping products the same day they are ordered was a breakthrough concept when L.L.
Bean upgraded its distribution system in the late 1980s. The Sears Catalog, which started
mail-order business in 1892, was unable to respond in kind and closed operations after
100 years. In 1983 LensCrafters changed the basis of competition in the eyeglasses
industry by manufacturing prescription glasses in an hour.

In the late 1980s Japanese companies took an average of 46 months, 485 workers, and 1.7
million hours of labor to bring a new car to market. U.S. automakers took an average of
60 months, 903 workers, and 3.1 million hours of labor.[2] Commenting on these numbers,
James Womack said, "We suggest that 'faster is dearer' will now join 'quality costs more'
on the junk heap of ideas left over from the age of mass production."[3]

[2] Womack, Jones and Roos, The Machine That Changed the World, 118.

[3] Ibid., 111.

Why Deliver Fast?
Customers like rapid delivery. That is why immediate shipping and rapid delivery is
standard for online and mail-order catalogs and why while-you-wait services are popular.
Rapid delivery allows some customers to delay decisions, and for others rapid delivery
means quicker gratification. For customers of software development, rapid delivery often
translates to increased business flexibility.

Even as its customers are realizing the benefits of rapid delivery, savvy businesses are
saving money. Rapid delivery means companies can deliver faster than customers can
change their minds. It means that companies have fewer resources tied up in work-in-
process, whether inventory or partially done development. When work-in-process
represents risk, rapid delivery reduces risk.

For example, Dell Computer believes that inventory obsolescence is its biggest risk, so
Dell waits until it receives an order and then makes and ships the computer in less than a
week. Thus, when a faster video card or bigger disk drive becomes available, Dell can
offer the improved part sooner than its competitors can. Once the more desirable part is
offered in Dell machines, its competitors often find they have to offer the new part also,
writing off a significant amount of inventory.

A big pile of in-process work holds additional risks besides obsolescence. Problems and
defects, both large and small, often lurk in piles of partially done work. When developers
create a lot of code without testing, defects pile up. When code is developed but not
integrated, the high risk part of the effort usually remains. When a system is complete but

not in production, risks remain. All of these risks can be significantly reduced by
shortening the value stream.

Finally, the principle deliver as fast as possible complements decide as late as possible.
The faster you can deliver, the longer you can delay decisions. For example, if you can
make a software change in a week, then you do not have to decide exactly what you are
going to do until a week before the change is needed. On the other hand, if it takes you a
month to make the change, then you have to decide on the details of the change a whole
month before it is due. Rapid delivery is an options-friendly approach to software
development. It lets you keep your options open until you have reduced uncertainty and
can make more informed, fact-based decisions.

Tool 10: Pull Systems
Rapid delivery does not happen by accident. When people show up for work, they have
to figure out how to spend their time. It must be clear to every person, at all times, what
she or he should do to make the most effective contribution to the business. When people
do not know what to do, time is lost, productivity suffers, and rapid delivery is not
possible.

There are two ways to assure that workers make the most effective use of their time. You
can either tell them what to do or set things up so they can figure it out for themselves. In
a fast-moving environment, only the second option works. People who routinely deal
with fluid situations, such as emergency workers and military personnel, do not depend
on a remote commander to tell them how to respond to the latest development. They
figure out how to respond to events with the other people who are on the scene.

When things are happening quickly, there is not enough time for information to travel up
the chain of command and then come back down as directives. Therefore, methods for
local signaling and commitment must be developed to coordinate work. One of the keys
ways to do this is to let customers' needs pull the work rather than have a schedule push
the work.

Manufacturing Schedules

In complex manufacturing plants, one of the larger challenges is to figure out just what
each machine and each person should be doing at any time so as to maximize the
performance of the plant. In the 1980s, there was a concerted attempt to use MRP
(material requirements planning) software to schedule the shop floor. MRP is basically a
scheduling tool, so the thought was, in addition to scheduling materials, why not schedule
production as well?

Already mediocre at scheduling materials, MRP systems were a disaster when used for
scheduling the shop floor. Why? Because they were nervous. That means, whenever the
slightest change was introduced—say the red boxes did not come in or the drill press was
acting up—the new plan for dealing with the problem was completely different from the

last plan. After a re-plan, every area in the plant would be scheduled to stop what it had
been doing and do something else. The old schedule had been the optimal schedule based
on the old assumptions. The new schedule was optimized based on the new assumptions.
The fact that this changed what every person and machine in the plant was doing made no
difference to the computer.

The simple mathematical fact working here is that variation is always amplified as it
moves down a chain of connected events. A little variation in step one introduces a huge
variation five steps later. Quite often, production workers were blamed for not doing
exactly what was scheduled, but that was hardly the problem. The problem was that when
even the smallest glitch arose, the schedule became invalid, and from then on, following
the schedule just made things worse.

Just-in-time changed all of this by bringing the concept of pull scheduling to
manufacturing. Pull systems use a mechanism called kanban, which was originally
patterned after restocking grocery store shelves.[4] Kanban means sign or placard in
Japanese.[5] Here is how a kanban system works:

[4] Ohno, The Toyota Production System, 25.

[5] Ibid., 27.

When an order is received in a kanban system, it is immediately sent to a shipping
workstation. The shipping workers go to their supply shelves to get the parts they need to
fill the order. Each part has an identifying kanban card attached, which is removed and
left on the shelf. Someone brings the kanban card over to a supplier workstation which
makes that kind of part. The people at the supplier workstation make the part identified
on the kanban card, attach the card, and restock the empty spot on the shipping shelf.
They in turn get their parts from their own shelves, and they have suppliers who keep
their shelves stocked. This cascades through the plant, with all work scheduled by kanban
cards or perhaps by empty spots on the shelves of a downstream customer workstation.

When people show up at work, they look at their pile of kanban cards and know exactly
what to do next. If they have more than one kanban card, they have simple rules which
tell them which customer to restock first. If they have no kanban cards, they clean up
their workstation and perhaps help the people at a customer workstation so as to generate
some kanban cards to work on. They do not make anything until one of their customer
workstations needs restocking.

Kanban is the enabling mechanism of just-in-time. It is the thing that tells people and
machines what to do from hour to hour in order to achieve optimum plant output. Unlike
other scheduling mechanisms, pull systems take variability into account at the end of the
line, so there is very little nervousness.

Without pull scheduling and kanban cards, there would have to be some other way for
people to figure out what to do next. In fact, in pre-lean days, people were told what to do
by managers who modified the MRP schedule based on their personal knowledge and

decided what each workstation should do. You can imagine that this was a hit-and-miss
affair in a complex plant. The interesting thing about pull scheduling is that it takes the
manager out of the loop of having to tell workers what to do. The work is self-directing.
The managers spend their time coaching the team.[6]

[6] Ibid. Page 8 describes managers as coaches of a baseball team. Ohno notes that a skilled baseball team can respond to any event without a
coach telling it what to do; the coaches help the team members improve their skills and teamwork.

Lean Construction
The construction industry has the same problem with master schedules as the
manufacturing has with MRP systems. Every building site has a master
schedule, but bad weather or shortage of building material or delays of previous
crews means that the master schedule never really matches what's actually going
on. A master schedule really isn't very useful for scheduling construction on a
day-to-day basis, because it doesn't start with an accurate representation of
reality. Trying to update the master schedule usually makes things worse, just as
it did with the nervous MRP system.

Still, the basic problem remains. People show up for work in the morning, and
someone has to tell them what to do. Crews have a supervisor or crew chief who
is supposed to give them instructions, but how does that person know what to
tell them? Site managers and project managers can do little more than the plant
managers of old—look at the master schedule, add some personal knowledge,
and guess what everyone should be doing. The problem is, with various crew
chiefs working for different companies and trying to maximize their companies'
profits, there is little incentive for the crew chiefs to send signals and make
commitments to each other.

The Lean Construction Institute[7] recommends a weekly planning meeting of
crew chiefs at which they commit to each other what they will accomplish in the
next week. They base their commitment on not only what should be done
according to the master schedule but also what can be done based on actual site
status and other crew chief commitments. After adopting this and a few other
simple mechanisms for local signaling and commitment, work invariably
proceeds more efficiently—a 10 to 30 percent increase in productivity at a
construction site is not unusual.

[7] www.leanconstruction.org

Software Development Schedules

In the world of complex software development, the same basic problem exists: How do
you make sure that when people come in to work, they know how to spend their time in
the most effective manner to achieve the goal at hand? Lacking any better method for
developers to figure this out for themselves, project managers often look at the project

schedule, perhaps modify it based on their personal knowledge, and tell developers what
to do.

But the problem is, a project schedule will be just as unreliable as an MRP schedule or a
construction master schedule if it is used for fine-grained planning in an environment that
experiences even a small amount of variability. Furthermore, telling developers what to
do does not generate much motivation.[8]

[8] See Chapter 5, "Empower the Team."

We often hear complaints about micromanagement in software development. We
understand why managers may feel the need to provide detailed direction to developers if
the work is not organized to be self-directing and there are no local signaling and
commitment mechanisms in place. If a system is complex, resources are scarce, and
deadlines loom, then everybody must be productive all the time. How are people going to
know how to best use their time unless someone tells them what to do?

No schedule can make effective fine-grained work assignments in a complex
environment with even modest variability. Depending on a computerized schedule to
make work assignments and telling developers what to do are not the best ways to handle
complex or changing situations. A more effective approach is to use a pull system that
creates appropriate signaling and commitment mechanisms, so that team members can
figure out for themselves the most productive way to spend their time.

Software Pull Systems

The starting point for a pull system in software development is short iterations based on
customer input at the beginning of each iteration.[9] Let's assume that at the beginning of
the iteration, the customers or customer representatives write down descriptions of
features they need on index cards.[10] There are many other ways to document what the
customers want, but index cards are a lot like kanban cards, so for now we will assume
index cards.

[9] See Chapter 2, "Tool 4: Iterations."

[10] A story card is an index card with the name of a feature written on it and some indication of what the feature means. The story card is not
the specification of the feature, merely a signal to the team to work on that feature. The feature should be small enough that it can be done in a
few days. Story cards are used in Extreme Programming and other agile methods to represent features that may be implemented. See Jeffries,
Anderson, and Henderson, Extreme Programming Installed, Chapter 4.

As described in Chapter 2, "Amplify Learning," the developers estimate how much time
each card will take to implement, and the customers prioritize the cards. At the end of the
planning meeting, the work for the iteration is contained on the cards selected for
implementation. These cards now become kanban cards; they basically tell the
development team what work needs to be done for the length of the iteration.

Remember that the idea here is to make the work self-directing. Therefore, cards are not
assigned to developers; the developers choose the cards they want to work on. Cards

might be posted on a board in a To Do area, where developers go to figure out what to do.
Developers working on cards move them to a Checked Out area with their name attached.
Once a story passes its tests, the card is moved to the Tests Passed area. See Figure 4.1.
The scheme is not as important as the effect: The kanban cards tell developers what to
do. The work becomes self-directing, pulled from customer-selected features. Status is
visible at a glance to anyone who cares to check the board.

Figure 4.1. A software kanban system.

Cards alone are not enough for developers to know exactly what to do. A regular brief
meeting, preferably daily, is also a good idea to help make work of the iteration self-
directing. The daily team meeting should be no more than 15 minutes, and it should truly
be a team meeting. Everyone on the team should be there—even if that means phoning
in—and active participation should generally be limited to team members.

At the daily meeting, team members give a summary of what they did yesterday, what
they plan to do today, and where they need help. If some issues generate more detailed
discussion, these are deferred to later meetings of the interested parties. The job of the
leader, or coach, is to run interference for the team. For example, if a developer needs
more information from customers, the leader's job is to make sure the developer has
access to customers or customer representatives to answer the questions.[11]

[11] The pivotal importance of a daily meeting is described in Schwaber and Beedle, Agile Software Development with Scrum, 40–46.

A pull system in software development requires short time-boxes—a month or less—
otherwise, it can degenerate into a push system. If the iteration is too long, there will be
too many cards or else the cards will not be detailed enough to effectively pull work. Pull
systems work from customer orders—prioritized features—and use multiple signaling
and commitment mechanisms to organize the work so that it is self-directing.

Information Radiators

One of the features of a pull system is visual control, or management by sight.[12] If work
is going to be self-directing, then everyone must be able to see what is going on, what
needs to be done, what problems exist, what progress is being made. Work cannot be
self-directing until simple visual controls that are appropriate to the domain are in place,
updated, and used to direct work.

[12] See Ohno, The Toyota Production System, 129.

Alistair Cockburn calls visual controls for software development information radiators.[13]
The kanban board in Figure 4.1 is an information radiator that shows many things: what
needs to be done, what is already done, and who is working on what. The burn-down
charts in Chapter 2, Figure 2.6, and the acceptance test chart in Figure 2.7 are information
radiators charting the overall progress of the system.

[13] See Cockburn, Agile Software Development, 84–88.

Lists of problems, ideas for improvements, candidates for refactoring, business impact of
the system to date, daily build status, glossaries of the ubiquitous language, database test
beds, testing backlog—all are candidates for entry onto a big, visible chart. Information
radiators make problems visible, telegraph progress, and are an enabling mechanism for
self-directing work.

Tool 11: Queuing Theory
We have often heard the lament "My biggest problem is the testing department." Now,
testing people are very nice people: dedicated, hard working, and very important to the
development effort. But there never seems to be enough of them to go around. And
although the developers might write their own unit tests, testers frequently do acceptance
testing.[14] So, without enough testers, the whole development process bogs down.

[14] Unit tests in this context are also called developer tests and are aimed at verifying design intent. Acceptance testing is also called customer
testing and is aimed at verifying customer intent. See the section "Tool 20: Testing," in Chapter 6, "Build Integrity In."

Your bottleneck might not be testers; it might be analysts. Or you might have trouble
getting information from customers. Perhaps there is only one person alive who
understands the legacy database. Whatever your bottleneck is, a brief look at queuing
theory might give you some ammunition for addressing the problem.

Reducing Cycle Time

You spend a lot of time in queues. You get stuck in traffic jams, stand in lines at stores,
get put on hold on the phone, and wait for a tax refund to come in the mail. Queuing
theory concerns itself with making your wait as short as possible. Queuing theory has
prompted banks to use a single line feeding multiple tellers; it has led to express lanes—
10 items or less—at grocery stores, to low weekend phone rates, and to entrance ramp

metering on freeways. It is probably used to calculate the number of servers you should
have in your computer room.

The fundamental measurement of a queue is cycle time—that is, the average time it takes
something to get from one end of a process to the other. The cycle time clock starts when
something enters a queue and keeps on ticking away while it waits in the queue, while it
gets service, while it waits in the next queue, gets the next service, and so on, until it pops
out at the other end of the process.[15] For example, consider the process of getting from
the entrance of an airport to the gate. Door-to-gate cycle time would include the time
spent in line waiting to check luggage, the time it takes to check the luggage and get a
boarding pass, the time spent in the security line, the time it takes to get through security,
and the time it takes to walk to the gate.

[15] The use of the term cycle time to denote the average duration of a process is common in product development and supply chain
management. When the term cycle time is used in reference to load balancing a manufacturing line, it has a different meaning; it refers to the
average rate at which the line produces product.

Notice that when you are in a queue, you always want cycle time to be as short as
possible. After all, you joined the queue to accomplish something. The only reason you
can't accomplish your goal immediately is that the resources necessary to achieve the
goal are limited, so a queue has formed. The time spent waiting in the queue is wasted
time.

Steady Rate of Arrival

There are two ways to reduce cycle time; one is to look at the way work arrives and the
other is to look at the way work is processed. In some systems, it is not possible to
influence the rate of arrival of work, but in others, policies can be established to even out
incoming demand. Pricing policies are often used for this purpose. A phone company that
offers very low night and weekend rates is doing this to even out peak demand. A
restaurant with early bird specials is also using pricing to spread out demand. Airlines use
variable pricing to fill flights. Doctor's offices use reservation systems to assure that
patients arrive at regular intervals. When arrival of demand is spread out to match the
capacity of the system, queues, and therefore cycle times, will be shortened.

One way to control the rate of work arrival is to release small packages of work. If you
have to wait for a large batch of work to arrive before you can start processing it, then the
queue will be at least as long as the whole batch. If the same work is released in small
batches, the queue can be much smaller.

Consider the testing department bottleneck. Is there any way to even out the arrival of
work? You really want someone to be running acceptance tests for a project every day
rather than a suite of tests once a month. Can you negotiate the same amount of hours
spread evenly over the month and assure that there is a steady rate of testing work to be
done?

Software development organizations often control the arrival of work with a review
process that sets priorities and selects projects. If this is an annual event tied to the
budgeting process, then a year's worth of work arrives all at once. This makes for very
long queues. Even with a quarterly project approval process, the queues are still quite
large. Many managers still believe that it is good to group projects into a single priority-
setting process to have more projects to compare at one time. Queuing theory suggests
that they would probably be better off releasing projects more frequently—monthly or
even weekly—to even out the arrival of work in the development area.

Steady Rate of Service

Once variability has been removed from the work arriving in a queue, the next step is to
remove the variability in the processing time. Small work packages are a real help in
removing variability from processing time, because a small package has fewer things that
can go wrong. However, even with small work packages, it may be difficult to determine
how much time each work package will take. The easiest way to solve this problem is to
increase the number of servers that process work in a single queue. Banks and airport
ticket counters don't have an easy way to determine which customers will take a lot of
time, so they reduce the variability by having a single queue feed multiple stations. A few
of the stations may become stalled with customers who take a long time, but the main
line can still be served at a steady pace by the remaining stations.

Again, we see the importance of small work packages. Not only will small work
packages flow much more easily through your system, they will also allow parallel
processing of the small jobs by multiple teams so that if one is stalled by a problem, the
rest of the project can proceed without delay.

If you have a process that involves several steps, then the processing time at the earlier
steps will affect the rate at which work arrives at the later stations. If you have big
processing variations in upstream workstations, these cascade throughout the system.
Thus, it is a good idea to try to move any variability downstream.

The serious impact of upstream variation becomes very important to understand when
you use iterative development. Let's say you have a bottleneck at acceptance testing. If
acceptance testing is the last thing that happens before deployment, this bottleneck will
not appreciably slow down earlier work. But when you are doing iterations, acceptance
testing is no longer the last step; it is a vital part of every iteration and must be done
before proceeding with the next iteration. If you skip this vital step, you will not get the
feedback, which is a key purpose of the iteration in the first place. With iterative
development, acceptance testing moves far upstream, and any delays there will be
amplified in subsequent iterations. Thus, with iterative development, it is critically
important that you do not have a bottleneck at testing.

Slack

The most obvious way to reduce cycle time is to have plenty of capacity to process the
work. Short cycle times are not possible if resources are overloaded. You know that
traffic slows to a crawl when a highway reaches its capacity. Computer operations
managers know that as servers approach full utilization, the cycle time for processing
requests to that server lengthens dramatically.

Consider the testing department that has become a bottleneck. Unable to make a case that
more testers are needed, the manager tries to makes the best use of the available testers
by making sure that a good-sized batch of work is always waiting in the queue so the
testers are always busy. Developers keep coding while waiting for testing services,
because their manager also wants them to keep busy. Even though it is cheaper to fix a
bug immediately after it is coded than a week or two later, this system encourages
developers to create ever larger batches of code to be tested. The testing queue grows and
testing slows to a crawl. Testers start to test less thoroughly, errors are released, and still
the queue grows. The cost to the company of fully utilized testing capability can be
significant. This is a case where managers who do not understand queuing theory have
created policies that actually have the opposite effect than they intended.

Another self-defeating policy is to delay acceptance testing until all of the coding is
finished and unit tested. Again, this policy assures that work arrives at the testing
department in large batches. Figure 4.2 puts some numbers on the impact of the large
batches.

Figure 4.2. Effect of utilization and batch size on cycle time.[16]

[16] Note: This graph assumes that variability (in both arrival and processing time) is proportional to batch size. It is the higher variability that
causes lower utilization rates.

Assume that each large batch can be tested in 7 hours if nothing else were in the queue.
The chart in Figure 4.2 says that when the testing department is run at 50 percent
capacity, the time for a large job to get through testing will be about 25 hours, and at 85
percent capacity, the cycle time is up to 100 hours and increasing rapidly. This works just
like a traffic jam at rush hour; go above 85 percent capacity and gridlock is inevitable.

Now let's assume that the testing department can be persuaded that moving tests through
the department quickly is a better approach, so it removes the "complete systems only"
policy and accepts features for testing as soon as they are coded.

Assume that the small batches can move through the department in 4 hours at low levels
of utilization. Because batches are small, the department should be able to maintain a 5
hour turnaround time up to about 70 percent capacity, and things do not start getting slow
until about 90 percent capacity, at which point small jobs move through the department
eight times faster than large jobs. The bottom line of small batches? The department
moves jobs through much faster while running at a higher capacity.

Many consulting firms use applied ratio as a key management measurement, one that
they feel should be maximized, since utilization directly affects profits. Similar measures
have found their way into internal software organizations, where their tie to profitability
is more tenuous. It is difficult for those who think this way to understand that full
utilization provides no value to the overall value stream; in fact, it usually does more
harm than good. We would never run the servers in our computer rooms at full
utilization—why haven't we learned that lesson in software development?

In his book Slack, Tom DeMarco makes the point that having slack in an organization
gives it the capacity to change, to reinvent itself, and to marshal resources for growth.
Actually, queuing theory would suggest that slack serves an even more basic purpose.
Just as a highway cannot provide acceptable service without some slack in capacity, so
you probably are not providing your customers with the highest level of service if you
have no slack in your organization.

The Theory of Constraints
According to the theory of constraints,[17] the best way to optimize an
organization is to focus on the throughput of the organization, because this is the
key to generating profitable revenue. The way to increase throughput is to look
for the current bottleneck that is slowing things down and fix it. Once that is
done, find the next bottleneck and fix it. Keep this up and you will have a fast
moving value stream.

Note that it doesn't do any good to increase the utilization of non-bottleneck
areas. It doesn't matter how fast you develop software if you can't test it at the

same rate. It doesn't matter how fast you develop a system if you don't have the
people to deploy it. So, move people to the bottleneck; don't keep piling up work
that can't be used immediately.

[17] Goldratt, Theory of Constraints, and Goldratt, The Goal.

How Queues Work

Queuing theory is a well-known discipline that applies whenever something flows
through a constrained resource. Here is a quick summary of how queues work:

1. Measuring the amount of work waiting to be done (let's call this work-in-queue) is
equivalent to measuring the cycle time of a system.[18]

[18] This is Little's law. For details, see Reinertsen, Managing the Design Factory, 63.

2. As variability (in arrival time or processing time) increases, cycle time and work-
in-queue will increase.

3. As batch size increases, variability in arrival and processing time increases, and
therefore cycle time and work-in-queue will increase.

4. As utilization increases, cycle time will increase nonlinearly.
5. As variability increases, the nonlinear increase in cycle time happens at ever-

lower levels of utilization.
6. Continuous flow requires a reduction in variability.
7. Variability may be reduced by an even arrival of demand, small batches, an even

rate of processing, and parallel processing.
8. Decreasing variability early in the process has larger impact than decreasing

variability late in the process.

Software development managers tend to ignore cycle time, perhaps because they feel that
they are already getting things done as fast as they can. In fact, reducing batch sizes and
addressing capacity bottlenecks can reduce cycle time quite a bit, even in organizations
that consider themselves efficient already.

Tool 12: Cost Of Delay
A dollar saved is a dollar earned.[19]

[19] Inflated form of Ben Franklin's maxim "A penny saved is a penny earned."

Your developers bring you a request for a new development tool that they feel will speed
up development. You estimate how much of their time the tool will save and find that the
saved hours are worth less than the tool will cost. Can you justify buying the tool?

Conventional wisdom in product development says that there is a roughly even tradeoff
between development cost and the cost of development time, and under this wisdom, you

would turn down the request. However, in the book Developing Products in Half the
Time, Preston Smith and Donald Reinertsen suggest that the benefits of rapid
development are usually larger than you might expect. So, before you turn down the tool
request, you should put a price tag on time.

This is done by creating a simple economic model of a new product for the next few
years, basically a profit and loss statement (P&L). Then, a delay is added to the model
and the difference in total profit is calculated, giving a good idea of the impact of the
delay. The important thing is to get a good estimate from marketing about what delay will
do to sales volumes and market share. The model shows what the difference in revenue
and market share will do to profits. The result is often dramatic. If delay means loss of
early high pricing or long-term loss of market share, the cost of delay can be very high.
With just a month or two of delay, products can lose much of the overall profit of the
program.

Smith and Reinertsen show how to create economic models for changes in development
costs, fewer features, higher support costs, and so on. The result is a price tag on four key
leverage points for product development: development cost, unit cost, performance, and
introduction date. They found that an early introduction date was the dominant factor in
long term profitability for many, but not all, products. To find out what deliver as fast as
possible might mean to you, create an economic model of your business and use it to
drive development decisions.

An Accountant for Every Team
Every new product program at 3M has an accountant on the team. Every time
the team makes a presentation to management, the accountant presents a product
P&L. The team has worked with the accountant to project a unit cost, potential
selling price, and volume over three years. Young scientists at 3M learn how to
read a P&L and use it to guide their development decisions.

My team worked with products that used optical-grade plastics, which are very
expensive. As we worked with the accountant, we found that the unit cost was
likely to be too high to give good margins, based on the projected selling price
of the product. We didn't think the product could be sold for more, so we knew
we had to reduce the amount of the expensive plastic in the product.

We developed three P&Ls, showing a 30-percent, 60-percent, and 90-percent
reduction. These showed us that the 90-percent reduction gave us a dynamite
product, but at a 30-percent reduction, the product wasn't economically viable
and at 60 percent it was marginal.

So, we started a research program to figure out how to make the expensive
plastic very thin. The scientists knew what they needed to do and why, and
within a few months, they had the breakthrough we needed to make the product

economically viable.

—Mary

Software development is a discovery process in which technical people make continual
tradeoff decisions in order to reach what they consider an optimal result. Of course,
technical people bring their own unique perspectives to their work, so their decisions will
be influenced by their background and experience. One of the biggest challenges for
software development leaders is to assure that the constant tradeoff decisions being made
by everyone on the team produce an optimal result.

All too often, a software development team is told that it must meet cost, feature, and
introduction date objectives simultaneously; there can be no tradeoffs. This sends two
messages to the development team:

• Support costs aren't important because they weren't mentioned.
• When something has to give, make your own tradeoffs.

Since various team members are likely to have different perceptions of what is important,
the tradeoffs made by some will probably offset tradeoffs made by others—with the
result that all objectives will be compromised.

Give the team an economic model, and you have empowered the members to figure out
for themselves what is important for the business. You have given everyone the same
frame of reference so they can all work from the same assumptions. Finally, the team is
more likely to come up with an economic success, since the members now know what
economic success means.

Product Model

Let's look at an economic model for a software product. The first step is to develop a
simple baseline product P&L. The basic rule is to keep the model simple; after all, the
numbers start out as guesses—and increased precision is not going to make the numbers
more accurate. It is important to make sure everyone understands and buys into the
economic model, because then they are more likely to buy into any decisions based on
the model. In fact, to make your job easier and increase buy-in, we recommend that you
get help from your accountants in preparing this P&L. A simple baseline P&L for a
software product might look something like Table 4.1.

Table 4.1. Baseline Software P&L

 Assumptions Year 0 Year 1 Year 2 Year 3 Year 4

Revenue

Average Selling Price Decreases $1,000 $900 $810 $729 $65

Table 4.1. Baseline Software P&L

 Assumptions Year 0 Year 1 Year 2 Year 3 Year 4

10%/yr

Total Market Units 10,000 20,000 40,000 60,000 40,00

Market Share 30% 40% 50% 50% 50%

Units Sold 3,000 8,000 20,000 30,000 20,00

Total Revenue $3,000,000 $7,200,000 $16,200,000 $21,870,000 $13,122,00

Expense

Unit Mfg &
Distribution Cost

Decreases
5%/yr

$200 $190 $181 $171 $16

Unit Warranty &
Support Cost

Decreases
10%/yr

$200 $180 $162 $146 $13

Total Unit Cost $400 $370 $343 $317 $29

Manufacturing/Support
Cost

 $1,200,000 $2,960,000 $6,850,000 $9,518,250 $5,882,42

Gross Margin $ $1,800,000 $4,240,000 $9,350,000 $12,351,750 $7,239,57

Gross Margin % 60% 59% 58% 56% 55%

Development $4,000,000
launch

$1,500,000 $750,000 $750,000 $500,000 $500,00

Marketing 15% of sales $450,000 $1,080,000 $2,430,000 $3,280,500 $1,968,30

G&A 5% of sales $150,000 $360,000 $810,000 $1,093,500 $656,10

Total Expense $3,300,000 $5,150,000 $10,840,000 $14,392,250 $9,006,82

Profit (Loss) $(300,000) $2,050,000 $5,360,000 $7,477,750 $4,115,17

% of Revenue –10% 28% 33% 34% 31%

Cumulative Revenue $3,000,000 $10,200,000 $26,400,000 $48,270,000 $61,392,00

Cumulative Expense $4,000,000
launch

$7,300,000 $12,450,000 $23,290,000 $37,682,250 $46,689,07

Table 4.1. Baseline Software P&L

 Assumptions Year 0 Year 1 Year 2 Year 3 Year 4

Cumulative Profit ($4,000,000)
launch

$(4,300,000) $(2,250,000) $3,110,000 $10,587,750 $14,702,92

Cumulative Profit % of
Revenue

 –143% –22% 12% 22% 24%

This P&L shows that the year the product is introduced, the overall market opportunity is
10,000 units, growing to 20,000 the next year, 40,000 the following year, and so on. With
the currently planned introduction date, marketing estimates an initial market share of 30
percent, increasing to 50 percent in two years. The product will sell for $1,000 each,
decreasing at 10 percent per year. Manufacturing, distribution, warranty, and support
costs start at $400 per unit and decrease each year. The cumulative 5-year profit is about
$16,000,000.

This model can be varied in several ways. For instance, you might rerun the P&L with a
25 percent development cost overrun to see what that would do to the cumulative profit.
Or you might want to see how an additional 15 percent unit or warranty cost overrun
would affect cumulative profit. If you are considering eliminating features, your
marketing department might speculate that without these features they would sell 5
percent fewer units. By changing the baseline P&L, you can see how that would affect
cumulative profit.

The highest leverage point in this kind of economic model is frequently the cost of delay.
Your marketing department might suggest that a 6-month delay would decrease market
share from 30 percent to 10 percent the first year (customers are not going to wait), from
40 percent to 30 percent the second year, and from 50 percent to 40 percent in subsequent
years (your competitor will have a lead). Table 4.2 shows the resulting P&L.

Table 4.2. P&L: 6-Month Delay

 Assumptions Year 0 Year 1 Year 2 Year 3 Year 4

Revenue

Average Selling Price Decreases
10%/yr

$1,000 $900 $810 $729 $656

Total Market Units 10,000 20,000 40,000 60,000 40,000

Market Share 10% 30% 40% 40% 40%

Units Sold 1,000 6,000 16,000 24,000 16,000

Table 4.2. P&L: 6-Month Delay

 Assumptions Year 0 Year 1 Year 2 Year 3 Year 4

Total Revenue $1,000,000 $5,400,000 $12,960,000 $17,496,000 $10,497,60

Expense

Unit Mfg &
Distribution Cost

Decreases
5%/yr

$200 $190 $181 $171 $163

Unit Warranty &
Support Cost

Decreases
10%/yr

$200 $180 $162 $146 $131

Total Unit Cost $400 $370 $343 $317 $294

Manufacturing/Support
Cost

 $400,000 $2,220,000 $5,480,000 $7,614,600 $4,705,940

Gross Margin $ $600,000 $3,180,000 $7,480,000 $9,881,400 $5,791,660

Gross Margin % 60% 59% 58% 56% 55%

Development $4,000,000
launch

$1,500,000 $750,000 $750,000 $500,000 $500,000

Marketing 15% of sales $150,000 $810,000 $1,944,000 $2,624,400 $1,574,640

G&A 5% of sales $50,000 $270,000 $648,000 $874,800 $524,880

Total Expense $4,000,000
launch

$2,100,000 $4,050,000 $8,822,000 $11,613,800 $7,305,460

Profit (Loss) $(1,100,000) $1,350,000 $4,138,000 $5,882,200 $3,192,140

% of Revenue –110% 25% 32% 34% 30%

Cumulative Revenue $1,000,000 $6,400,000 $19,360,000 $36,856,000 $47,353,60

Cumulative Expense $4,000,000
launch

$6,100,000 $10,150,000 $18,972,000 $30,585,800 $37,891,26

Cumulative Profit ($4,000,000)
launch

$(5,100,000) $(3,750,000) $388,000 $6,270,200 $9,462,340

Cumulative Profit % of
Revenue

 -510% -59% 2% 17% 20%

The 6-month delay is projected to decrease cumulative profit approximately $5.6 million.
This translates to cost of over $31,000 per week of delay ($5.6 million ÷ 180 weeks). A

decision to spend $100,000 extra to speed up development by three months looks like a
good investment in this economic model.

Typically, P&L models are used for making go/no-go decisions about the investments
rather than for making tradeoff decisions as advocated here. Often, models used to make
investment decisions include a net present value or discounted cash flow calculation. For
product models used to make project-level tradeoff decisions rather than investment
decisions, we don't see a need for net present value, but the best approach is to use
whatever model your finance department favors. Just keep it simple.

Application Model

If your software development organization is not involved in product development, it is
useful to develop an economic model of each application from the customer point of
view. This is a simplified way of evaluating how different design decisions will affect the
business value received by the customer and is further discussed in Donald Reinertsen's
book Managing the Design Factory (see Chapter 2). In the same way that a simple P&L
helps a team make product tradeoff decisions, a simple look at the customer's economic
model helps the team make application tradeoff decisions.

The first step in developing an application model is to identify your customer's economic
drivers related to the application. If you are working with a company that can't supply
you with detailed financial numbers, even some rough estimates would be useful. Just as
with a product model, an accountant is your best friend when doing this exercise.

Assume, for instance, that you are providing customer support call center software. You
gather a small team and spend some time at your customer's site to understand the
company's economic drivers. You find that the underlying drivers are call handling time,
staffing levels, system support, and customer satisfaction.

The second step is to translate the drivers to economic terms. You find that your customer
produces a monthly status report that looks something like Table 4.3.

Table 4.3. Monthly Report for Call Cente

 Assumptions

calls per day 10,000

avg. minutes per call 0.53

total time (hours) per day 88

peak call rate 8.2

staff utilization 75%

required staffing level 14

Table 4.3. Monthly Report for Call Cente

 Assumptions

average hourly pay $7.50

regular hours in month 176

total regular monthly pay $18,480

% overtime 19%

$ overtime $1,980

total base pay $20,460

supervision $2,455 12% base pay

benefits $7,161 35% base pay

turnover 2

training $840 7 days

total salary and benefits $30,916

system admin $10,000

content maintenance $5,000

hardware $6,500

facilities $2,960

total monthly cost $55,376

revenue $60,000

profit $4,624

margin 8%

customer satisfaction 92%

first call resolution 58%

abandoned calls 3.60%

downtime hours 3.5

Your goal is to translate this information into an economic model that helps the
development team make tradeoffs. You find that your customer has four goals:

1. The biggest justification of this particular project is to reduce hardware and
system administration costs by moving to a new operating system.

2. The second goal is to lower the time per call. A 10 percent lower time per call
would allow the center to operate with two less people, but this would not cause
layoffs because there is a turnover of two people per month.

3. The third goal is to get more business. Your customer speculates that a 5 percent
increase in external customer satisfaction would help to secure a new contract
worth $10,000, which would generate an additional 2,000 calls per month.

4. Your customer also wants the system to be very easy to learn, because everyone
will have to be trained initially and two people a month will have to be trained on
an ongoing basis.

From this information, you put together the economic model in Table 4.4. You model
each goal separately in its own column and compare each one to the base.

Table 4.4. Monthly Economic Impact of Desirable System Features

Baseline

Goal 1:
New

operating
system

Goal 2:
$10,000 in

new
business

Goal 3:
10%
lower

time per
call

Goal 4:
50% less
training
required

One time
savings for

50%
reduction in

training

Revenue $60,000 $60,000 $70,000 $60,000 $60,000

Cost

Call
Center
Staffing

$30,916 $30,916 $36,737 $26,615 $30,496

Support
Staffing

$15,000 $10,000 $15,000 $15,000 $15,000

Hardware
&
Facilities

$9,460 $8,000 $9,460 $9,460 $9,460

Total $55,376 $48,916 $61,197 $51,495 $54,956

Profit $4,624 $11,084 $8,803 $8,505 $5,044

Profit
Margin

7.7% 18.5% 12.6% 14.2% 8.4%

Monthly Benefit $6,460 $4,179 $3,881 $420

Table 4.4. Monthly Economic Impact of Desirable System Features

Baseline

Goal 1:
New

operating
system

Goal 2:
$10,000 in

new
business

Goal 3:
10%
lower

time per
call

Goal 4:
50% less
training
required

One time
savings for

50%
reduction in

training

One Time Benefit $2,940

Looking at each goal in turn, you see the following:

1. The customer stands to gain $6,460 per month in hardware and support staff costs
as soon as the system is installed.

2. If new features lower call time by 10 percent, $3,881 will be realized monthly.
3. If the end customer satisfaction is increased by 5 percent and your customer can

actually get the $10,000 in new business, there would be a resulting monthly
benefit of $4,179.

4. Features that allow faster training will generate a one-time savings of $2,940, and
$420 per month thereafter.

Thus, the projected customer benefit is $14,520 per month, so each week of delay will
cost the customer over $3,000. (It's best not to make this number too precise and to
underestimate it rather than overestimate it.) The model also tells the team that speeding
up training provides a one-time benefit of $2,940 and a monthly benefit of $420 after
that, so they shouldn't spend a large amount of time adding features to speed up training.

Tradeoff Decisions

Tradeoffs are easiest to make if they are expressed in the same units. How can a
developer decide if it is better to save a week, save $10,000, or add new features? If all of
these decisions are expressed in dollars—or Euros, or yen—the decision will be more
straightforward. Thus, the reason to develop simple economic models of a development
project is to provide the development team with guidance in making tradeoffs.

Economic models have long been used when deciding what projects to fund, but their use
in making decisions during development has been limited. We suggest that basing
development decisions on economic models helps the development team make good
tradeoff decisions. Providing intelligent people with guidelines for making tradeoffs leads
to more effective decisions, to developers who feel empowered, and to an organization
that is most likely to be able to respond to and thrive in a competitive environment.

Finally, economic models may help you justify the cost of reducing cycle time,
eliminating bottlenecks, and purchasing tools that will allow you to deliver as fast as
possible.

Try This
1. Create a single place where everyone who is interested in a project can come to

see:
a. The goal of the current iteration, and

i. what has already been done
ii. what is being done

iii. what has yet to be done
b. The mission of the overall project, and

iii. what has already been done to meet the project mission
iv. what has yet to be done to meet the project mission

2. At the end of the next iteration, review your process with an eye for
understanding how everyone knows what to do. Ask the team to focus on the way
they decide how to spend their time. What would help them make faster and
better decisions about what is important? Pick the best two ideas and implement
them for the next iteration.

3. Find the three longest queues in your area and chart the cycle time for each job as
it goes through each queue. It might look something like Figure 4.3. Look for
patterns: Is variability high or low? Is there an upward or downward trend?

Figure 4.3. Cycle time chart showing high variability.

4. Pick the queue that represents your biggest bottleneck and form a bottleneck task
force. Help the task force use queuing theory to find ways to reduce the queue.
Measure the results.

5. Ask finance to assign an accountant to every development team, and have the
accountant work with the team to develop a simple economic model showing the
cost of delay, the cost of reduced features, the cost of maintenance, and so on.

Chapter 5. Empower the Team

Beyond Scientific Management

Tool 13: Self-Determination

Tool 14: Motivation

Tool 15: Leadership

Tool 16: Expertise

Try This

Beyond Scientific Management
When Henry Ford introduced the Model T Ford in 1908, it was so successful that Ford
had to invent continually better, faster ways to manufacture the car. The first moving
assembly line was introduced in 1913, and by 1927, the River Rouge plant in Dearborn,
Michigan, turned iron ore into finished cars in just 28 hours. Ford produced almost 17
million Model T's, converting the country from horses to suburbs in just two decades.

Touring an Auto Factory, circa
1915

Let's take a quick tour of Ford's Highland Park, Michigan, plant in 1915.[1] The
7,000 assembly-line workers here speak 50 languages and very few speak much
English. How they do know what to do? Here's what our tour guide tells us:

"A few years back, Frederick Taylor came out with this idea called scientific
management.[2] The idea is that you divide all the assembly jobs up into little
pieces and figure out how each little piece should be done, and then you teach a
worker to do just that one thing. This way, you can train a person in ten minutes
without having to say a word. Of course, it takes a whole lot of engineers to
figure out all the jobs.

"But that's okay, because the craft shops that used to make automobiles had to
close up shop—their cars cost too much compared to the ones we make on the
assembly line. So now those craft shop workers are our engineers. They're the
smart ones. They go out with stopwatches, time each job, and tell the workers
how to work faster.

"If they didn't do that, you'd be amazed at how slow the workers would be. But,
hey, if we can speed up the assembly line, we make more money, and that
means we can pay everyone more. Just last year Ford doubled everyone's
salaries to $5 a day. Most people around Detroit are lucky to make $11 a week."

[1] See Womack, Jones and Roos, The Machine That Changed the World, 31.

[2] Taylor's Principles of Scientific Management was originally published in 1911.

Ford's assembly line began the era of the industrial engineer and supervisor telling people
how to do their jobs and rewarding them with pay. At first the pay was impressive, but
after a while workers began to realize that the demeaning jobs they took to get
established in a new country were not temporary, but had trapped them with high pay.
Unions grew strong, and a pall of dissatisfaction settled on the industry.

It's interesting that report cards started to appear in our schools in the 1910s, just about
the time that scientific management was gaining credibility in industrial production.
Eventually, performance appraisals became the report cards of industry. For decades, it
was taken as a given that pay is the most effective motivator for workers and grades are
the best motivators for schoolchildren. It wasn't until the 1970s that these assumptions
began to be challenged.[3]

[3] See Herzberg's classic "One More Time: How Do You Motivate Employees?"

In the 1980s, it became apparent that manufacturing techniques pioneered by Toyota—
later called lean manufacturing—could produce high-quality products faster and cheaper
than scientific management techniques. With both its motivational and operational
theories called into question, managers began to move beyond scientific management.

So began a series of programs with names like MBO, TQM, Zero Defects, Optimized
Operations, Service Excellence, ISO9000, Total Improvement Program, and Customers
First, all aimed at enriching the work environment and the bottom line. Introduced with
great fanfare, occasionally successful, the vast assortments of programs generally
produced mediocre results. All too often, these programs did not change the reality of
how work got done. Frequently, the programs increased the intensity of factors leading to
job dissatisfaction (policy, supervision, administration) instead of increasing factors that
contribute to job satisfaction (achievement, recognition, responsibility).[4] While this is not
the fault of the program, it is a common side effect.

[4] The list of motivators and demotivators is from Herzberg, "One More Time: How Do You Motivate Employees?"

CMM

The best known software development improvement program is the Capability Maturity
Model, or CMM. As with other programs, CMM has had a range of results, from
dramatic success to disappointment. CMM has been used as a certification program
similar to ISO9000, especially by software development firms seeking to do business in
other countries. Insofar as it has been used as a certification program, CMM has had an
impact similar to ISO9000. Both tend to create bureaucracy and make change difficult,
even though it is not the intention of either program to do so.

ISO9000 programs should not be thought of as process improvement programs, because
they have a bias toward documenting and thus standardizing existing processes rather
than improving the processes. Since ISO9000 programs can create a bias against change,
it is best to implement them after fundamental improvements have been made.[5]
Similarly, when CMM programs are implemented with a focus on documentation and
conformance to a particular best way to do a job, they may standardize on less than ideal
practices and create a bias against change. Thus they may be better implemented separate
from—and after—process improvements.

[5] Imai, Gemba Kaizen, 60.

A bias against process change is not the most difficult issue with programs such as
ISO9000 and CMM. As frequently implemented, these programs tend to remove process
design and decision-making authority from developers and put it under the control of
central organizations. Developers often equate people from the central organization to the
stopwatch wielding industrial engineers from the days of scientific management who
know the one best way for them to do their job. Lean thinking capitalizes on the
intelligence of frontline workers, believing that they are the ones who should determine
and continually improve the way they do their jobs.

Watts Humphrey, who led the early development of CMM, believes that software
development cannot be successful without disciplined, motivated people.[6] We whole-
heartedly agree. We respectfully disagree, however, on the practices most likely to
produce success. We do not believe that focusing on getting things right the first time is
appropriate for a design environment; instead, experimentation and feedback are more
effective.[7] We believe that the critical factor in motivation is not measurement,[8] but
empowerment: moving decisions to the lowest possible level in an organization while
developing the capacity of those people to make decisions wisely.

[6] Humphrey, Winning with Software, 3.

[7] Ibid.; "To truly accelerate development work and optimize time-to-market, your people must do their jobs the right way the very first time"
(p. 10). "Require detailed and complete plans, review these plans, and then negotiate commitments with the people who will do the work" (p.
39). Humphrey calls this "rational management." It seems to us that rational management has a tendency to foster sequential development and
it does not deal well with uncertainty. Highsmith's "optimization paradox" discusses how increasing the focus on prediction and control induces
failure in uncertain environments. See Highsmith, Agile Software Development Ecosystems, 187.

[8] Humphrey, Winning with Software, 106–107, has a strong focus on measurements. Austin, Measuring and Managing Performance in
Organizations, 109–110, discusses why measurement-based practices such as management by objectives, and capability evaluations are largely
inappropriate for knowledge workers. See also Chapter 7, "See the Whole," in this book.

CMMI

CMM is scheduled to be replaced with the Capability Maturity Model Integration
(CMMI) suite by the end of 2003. After developing several maturity models, the
Software Engineering Institute (SEI) combined them into CMMI, which promotes a
single generic description of mature for software development, systems engineering,
product development, and other disciplines. Unfortunately, it appears that the software-
specific nature of CMM's key process areas (KPAs) will give way to a generic measure
of maturity, one with its roots in military procurement.

The CMMI definition of maturity is based on two assumptions:

• Assumption 1: A system is best managed by disaggregating it into identifiable
work products that are transformed from an input to an output state to achieve
specific goals.[9]

[9] CMMI-SW states: "The process supports and enables achievement of the specific goals of the process area by transforming
identifiable input work products to produce identifiable output work products" (p. 36). In Koskela and Howell, "The Underlying
Theory of Project Management Is Obsolete," we find a strong argument against this transformation theory. Lean thinking is based
on a flow theory, not a transformation theory.

• Assumption 2: A mature organization is one in which everything is carefully
planned and then controlled to meet the plan.

These assumptions sound rather like scientific management to us. We have a different
model of what maturity means:

• Lean Assumption 1: A mature organization looks at the whole system; it does not
focus on optimizing disaggregated parts.[10]

[10] See Chapter 7, "See the Whole."

• Lean Assumption 2; A mature organization focuses on learning effectively and
empowers the people who do the work to make decisions.

Fred Brooks, in Mythical Man Month, quotes Earl Wheeler, retired head of IBM's
software business: "The key thrust [of recent years] was delegating power down. It was
like magic! Improved quality, productivity, morale." He also quotes Jim McCarthy of
Microsoft: "I can't emphasize enough the importance of empowerment, of the team being
accountable to itself for its success."

An organization that respects software developers as professionals will expect them to
design their own jobs with proper training, coaching, and assistance. It will expect them
to improve continually the way they do their work as part of a learning process. Finally, it
will give them the time and equipment necessary to do their jobs well. In a lean
organization, the people who add value are the center of organizational energy. Frontline
workers have process design authority and decision-making responsibility; they are the
focus of resources, information and training.

Tool 13: Self-Determination
The NUMMI Mystery

In 1982, General Motors closed its Freemont, California, plant. No one was surprised; the
place was a disaster. Productivity was among the lowest of any GM plant, quality was
abysmal, and drug and alcohol abuse were rampant both on and off the job. Absenteeism
was so high that the plant employed 20 percent more workers than it needed just to
ensure an adequate labor force on any given day. The United Auto Workers local earned
a national reputation for militancy; from 1963 to 1982, wildcat strikes and sickouts closed
the plant four times. The backlog of unresolved grievances often exceeded 5,000.[11]

[11] Adler, "Time-and-Motion Regained," 98.

Two years later, the same plant was reopened by New United Motor Manufacturing, Inc.,
or NUMMI, a joint venture between Toyota and GM. Toyota managed the plant but was
required to rehire the former GM employees. Eighty-five percent of the hourly workers
were from the former GM plant, including the entire union leadership.

Within two years, NUMMI's productivity was higher than any GM plant—double that of
the original plant. Quality was much higher than any GM plant and nearly matched
Toyota's Japanese plants. Absenteeism was down to about 3 percent, and substance abuse
was a minimal problem. In 1991, after 8 years of operation, a total of only 700 grievances
had been filed, and 90 percent of the employees described themselves as "satisfied" or
"very satisfied."[12]

[12] Ibid., 99.

Clearly, something in the management practices made all the difference to NUMMI
employees, and those practices have been sustainable. As the NUMMI plant approaches
20 years in operation, it continues to top all other GM plants in productivity and quality,
while employee satisfaction remains very high. Other GM plants have been unable to
copy the management practices of NUMMI, although other Toyota-managed plants in the
United States have successfully done so with similar results.

Make no mistake about it: Automobile assembly is still difficult, repetitive work. At the
NUMMI plant, workers repeat the same actions approximately once a minute, and during
that minute, they are busy for 57 seconds. In the old days, they worked for only 45
seconds out of every minute, so they now work a lot harder—and they do exactly the
same thing every time. Exactly. If it sounds regimented, it is. Work was regimented in the
old GM plant also. In fact, there were 80 industrial engineers who went around with
stopwatches designing every single task. Then, they told the workers exactly how to do
the task. As you can imagine, the workers did not appreciate being told how to do their
jobs.

The first thing the managers at the NUMMI plant did was get stopwatches for everyone,
and they taught workers how to design their own jobs. All work at NUMMI is done in
teams of six to eight people, one of whom is the team leader. The team designs its own
work procedures, coordinating work standards with teams doing the same work on
alternate shifts. Management's role is to coach, train, and assist the teams. Engineers are
available if the team wants to call on them, but fundamentally, each team is responsible
for its own procedures, its own quality, for job rotation within the team, and for smooth
flow of parts from upstream and to downstream teams.

Jamie Hresko is a manufacturing manager at GM who was trying to unlock the secret of
NUMMI. He took time off from his job to secretly work as an ordinary worker at
NUMMI for a month, and he was amazed at what he found.[13] He thought his plant
trained and supported line workers, but the extent to which NUMMI workers were the
center of attention was well beyond his expectations. It seemed that everyone's job
existed solely to help the line workers, and the workers in turn were fully engaged in their
jobs. Training was extensive, the atmosphere was friendly and helpful, and it was crystal
clear what was important.

[13] See O'Reilly and Pfeffer, Hidden Value, 181–182.

So herein lies the puzzle. GM understands that focusing—really focusing—on the worker
is the key to success. They can and do send people to NUMMI to find out how to do this.
And still, they have been largely unsuccessful in doing what they know should be done.
Why?

We believe that transferring practices from one environment to another is often a
mistake. Instead, one must understand the fundamental principles behind practices and
transform those principles into new practices for a new environment. In fact, Toyota did
not transfer Japanese production practices en masse to NUMMI. But it did transfer its
belief that the foundation of human respect is to provide an environment where capable
workers actively participate in running and improving their work areas and are able to
fully use their capabilities.[14] It appears that GM has had a difficult time transferring the
same principle to its plants, and thus has failed to unleash the capabilities of front line
workers to the same extent as Toyota.

[14] See Ohno, The Toyota Product System, 7–8.

More Than Meets the Eye
A development group at a large company (let's call it the FIX-IT group) became
frustrated at working in a chaotic environment, so after a particularly difficult
delivery, the group members convinced their manager to give them some time to
put some discipline in place. They chose and implemented coding standards, a
configuration management system, an automated build process, and a unit
testing process.

The FIX-IT group was pleased to have the new disciplines in place, because the
members felt they were in a more professional environment and could take more
pride in their work. They decided to meet regularly to discuss improvements to
their environment. They standardized on templates and checklists that helped
them interact better with customers; worked with the database administrator to
write scripts for test environments; and added a support person to implement
and test the installation process. As time went on, the FIX-IT group delivered
software faster and had customers who were happier than those of other groups.
The FIX-IT group was also regarded as the best place to work by the developers
in the company.

A vice president decided that the success of the FIX-IT group should be
replicated in the rest of the company. A staff group was formed to document the
processes used by the FIX-IT group and teach them to the rest of the groups in
the company. The goal was to create uniform processes so the company could
deliver consistent results.

Not surprisingly, the staff group overlooked the principle behind the practices
used by the FIX-IT group—the principle that the developers were responsible
for defining and constantly redefining and improving their own practices. Since
redefining practices did not fit into the goal of uniformity, the staff group
considered it a bad habit that would have to stop. In addition, the staff group
noticed that the FIX-IT group's documentation was sketchy, and some important
processes seemed to be missing. The staff group was proud of its discovery that
not even the FIX-IT group was perfect.

One year later, the company had a book of documented processes that even the
most inexperienced developer could follow. Most development groups ignored
the staff group's efforts, including the FIX-IT group, which continued to adapt
its own work procedures, focusing on what it considered important. The FIX-IT
group continued to produce better software faster and had more satisfied
customers than any other group. The attempt to duplicate its success elsewhere,
however, was largely a failure.

—A Business Novelette

A Management Improvement Process

Today's organizations are littered with failed improvement programs, whether they go by
the name CMM, ISO9000, TQM, Six Sigma, or even Lean. It is notoriously difficult to
implement successful improvement programs, and even more difficult to sustain them
over time. One program, the Work-Out program, originally developed at General
Electric, is different. It was conceived of as a way to change the behavior of middle
managers and unleash the know-how of those closest to the work. "In most organizations
change efforts come and go—and somehow rarely make a difference. But at GE…one
particular change process helped spark a complete transformation—Work-Out."[15]

[15] Ulrich, Kerr, and Ashkenas, The GE Work-Out, 3.

At a Work-Out, 50 or so workers gather for two or three days and come up with
proposals that will help them do a better job. Teams come up with specific proposals for
doing away with processes that get in the way and implementing practices that will
deliver value faster. Before the Work-Out is over, managers are required to make a yes-
no decision on every proposal, either on the spot or within a month. Those who made
proposals are expected to be responsible for implementing them—immediately. The
combination of simple tools, immediate action, and participation of virtually everyone in
the company combined to make Work-Out a uniquely successful improvement program.

In most improvement programs managers tell workers how to do their jobs. In Work-Out
the tables are turned; workers tell managers how to let them do their jobs. A Work-Out is
a process that teaches managers how to listen to workers and take action on their
suggestions, and checks up on managers to be sure that they do it promptly. A Work-Out
assumes that workers know how to do their jobs and focuses management attention on
changing the systems that, in the eyes of the workers, prevent them from doing a good
job. It is not an accident that this sounds similar to the NUMMI approach.

Treat People Like Volunteers
A new project manager asked me for advice on how to get his team to do what
he wanted it to do. I could sense that he had a tendency to give orders to a team
that was largely more experienced than he was, and the team's negative reaction
was apparent. I had about five minutes to find a way to get him to appreciate
how his style was turning off the team; I had to think fast.

"Do you do any volunteer work?" I asked. "Do you coach a sport or anything
like that?" It was a gamble.

"Well," he said, "I am the choir director at my church." Jackpot!

"So, how do you get the choir to come to practice? How do you keep them
coming? How do you get the choir to sing together?" I asked.

He launched proudly into all the techniques he had developed for dealing with
volunteers. I could tell he was a good and popular choir director.

"Okay," I said. "You've just answered your question. Use the same techniques
leading your team that you use with your choir, and you will get them to do
what you want. If you tell them what to do, you'll fail."

The ill will on the team gradually dissipated and the project was a success.

—Mary

Tool 14: Motivation
Magic at 3M

Every so often, a group of people will band together to accomplish something great.
Excitement fills the air as the impossible challenge is tackled and the unbeatable foe is
conquered. Everyone is completely engaged in the task, dedicated to the purpose. Passion
and camaraderie create an intense atmosphere in which anything is possible. It's a
magical experience people remember fondly for the rest of their lives.

3M is one of those rare large companies in which the magic of engaged teams is easy to
find. At any given time, there are dozens of energized, self-organizing groups working on
commercializing new products. As a result, 3M has one of the most enviable records of
new product introductions in the world, regularly meeting its goal that each division has
30 percent of its sales generated by products introduced in the last 4 years. The torrent of
new products has kept the company broadly diversified and continually renewed for
decades. This has been going on for over 75 years.

How is this possible? How can a large organization develop such a stream of new
products by depending on groups that emerge spontaneously and operate largely outside
of management direction? How can such "organized chaos" possibly be sustained over
three generations?

3M has a simple, highly effective formula that allows the entrepreneurial spirit to
flourish. This formula was put in place by William McKnight, who led the company
through its formation and growth from the 1930s through the 1950s. Although he was
never on a new product team, he created the soul of a new product development machine.
At its heart are small, self-organizing groups that become passionate about a possibility
and are allowed to make it a reality. McKnight's vision is captured in quotes such as [16]

[16] Collins and Porras, Built to Last, 152.

"Hire good people, and leave them alone."

"If you put fences around people, you get sheep. Give people the room they need."

"Encourage, don't nitpick. Let people run with an idea."

"Give it a try—and quick!"

3M puts a great value on scientific research and encourages all of its scientists to be on
the lookout for new product opportunities. Scientists are expected to spend 15 percent of
their time on projects of their own choosing, preferably new product development
projects. This slack time creates an environment in which people have the time to play
around with new product ideas. The company has a broad array of forums for scientists to
meet each other, exchange knowledge, and discuss interesting ideas. Numerous

recognition programs reward scientists for contributions to successful new products. This
environment encourages groups to form spontaneously around a new product idea.

New product programs typically start with a champion who has an idea for a new
product. The champion recruits volunteers and rounds up enough resources to try out the
idea. The environment conspires to encourage teams to form around compelling ideas,
and compelling ideas have a tendency to inspire the team. First, the technology is refined,
and invariably inventions are made. During this formative time, the group will probably
acquire a few sponsoring managers who are expected to keep the project out of sight.
Sponsoring managers might help the team recruit members with access to materials and
laboratory equipment. Sample products are made and tested with potential customers.

When the team has done enough work to seek official status, it has to pass three simple
hurdles: The product must meet a real need, it must use 3M technology, and it must have
a good profit potential. Two commonly used hurdles are not present: There is no revenue
threshold and no need for a strategic fit with existing businesses. The original team
members continue to move the product toward commercialization and beyond. If they
end up creating a successful business, they can expect to end up running it. Or, they can
turn the business over to a division to run so that they are free to create the magic all over
again.

The critical invention that allowed all of this to happen was McKnight's invention of an
organization that continually evolves from the creativity and initiative of individual
employees rather than from the strategic planning of managers.

Purpose

"There is a great deal of evidence that people are hardwired to care about purposes,"
writes Kenneth Thomas in Intrinsic Motivation at Work. "There is also much evidence
that people suffer when they lack purpose" (p. 22). Intrinsic motivation comes from the
work we do, from pride in workmanship and a sense of helping a customer. Purpose is
what makes work energizing and engaging.

People need more than a list of tasks. If their work is to provide intrinsic motivation, they
need to understand and commit to the purpose of the work. Intrinsic motivation is
especially powerful if people on a team commit together to accomplishing a purpose they
care about. There are many things you can do to help a team gain and hold a sense of
purpose:

• Start with a clear and compelling purpose. Successful teams at 3M always
have a champion whose first job is to communicate a compelling vision of the
new product's potential in order to recruit volunteers. Team members who commit
to a compelling purpose will collaborate with passion to bring their baby to
market.

• Be sure the purpose is achievable. The fundamental rule of empowerment is to
make sure the team has within itself the capability to accomplish the purpose of

its work. If a team commits to accomplishing a business objective, it should have
access to the resources needed to accomplish that goal.

• Give the team access to customers. Talking to real, live customers is a great way
for team members to understand the purpose of what they are doing. It becomes
meaningful if they can see how their software is going to make life easier for real
people. This also gives team members insight into how their individual work fits
into the overall picture.

• Let the team make its own commitments. At the beginning of an iteration, the
team should negotiate with customers to understand their priorities and select the
work for the next iteration. No one should presume to tell the team how much
work it should be able to finish. The team makes the call, and when the members
commit to a set of features, they are making the commitment to each other.

• Management's role is to run interference. A highly motivated team does not
need to be told what to do, but it may need to give its leaders some advice. ("If
you do not replicate the customer environment, we simply will not be able to test
the system adequately.") It will probably need some resources. ("If we don't get
more support from a DBA, we won't make it.") It usually needs some protection.
("Kindly tell marketing that no, they can't add five more features to this month's
work.") Leaders may not be able to satisfy every request, but the team will
maintain momentum if its members know they have someone who is looking out
for them.

• Keep skeptics away from the team. Nothing kills a purpose faster than someone
who knows it can't be done and has plenty of good reasons why. The team does
not need to hear it.

In Search of Business Value
As a consultant at a large HMO, I interviewed an IT manager who set out to
make a difference for the business units in her company. She believed that the
way to do this was through ongoing, close collaboration with business unit
managers.

To get started, she asked her team to generate a long list of ideas that might be
interesting to business units. She then took the list to business unit managers and
used the list to help them imagine the business possibilities that might be
generated through different perspectives on information.

With a rough estimate of value from business managers plus a high-level
estimate of effort from her team, she found the highest value projects and then
helped the business managers to justify these projects.

Working as a team, analysts (some from the business unit, some from the IT
organization) defined the details of how the business value could be achieved,
focusing as much on changes in business processes as on software development.

As the system was developed, the team worked through each iteration to be sure
that the system fit into the business environment and that the business was
prepared to use it. Each team was dedicated to achieving the business value
behind the system, and because of this, almost all of these systems achieved a
business success.

Successful projects generate their own rewards, and developers in the company
lined up to work for this manager every time she staffed new projects.

—Tom

Think of a software development team as a multisided polygon, as in Figure 5.1. Each
side of the polygon has its goals. The customers would like the system to deliver business
value. Analysts or product managers help the customers articulate these features in detail
and make them understandable for the developers. Developers estimate the amount of
time needed and deliver working software. Testers help ensure that the system meets
customer needs by creating comprehensive customer tests. Support people deal with
deployment and user training, and make sure the help desk knows how to answer
questions. Together, this team has a purpose: Deliver business value.

Figure 5.1. The team polygon.

The number of sides of the polygon and the specific disciplines needed to achieve a
purpose will vary depending on the type of project. Some customers do not need analysts;

others need help translating their broad-brush view into detail that developers can work
on. Sometimes testers serve the role of analyst, and vice versa. Domain-savvy developers
often serve in the analyst role. The important thing is that analysts do not get in the way
of a direct developer-customer communication, but rather, facilitate understanding on
both sides.

The Building Blocks of Motivation

Intrinsic motivation is driven by self-determination and a sense of purpose, but it will not
flourish in a hostile climate. Research has shown that intrinsic motivation requires a
feeling of belonging, a feeling of safety, a sense of competence, and sense of progress.[17]

[17] Thomas, Intrinsic Motivation at Work, lists the building blocks of intrinsic motivation: choice (self determination), meaningfulness
(purpose), competence, and progress (p. 49). In Maslow, Frager, and Fadiman, Motivation and Personality, Abraham Maslow presents his
classic hierarchy of human needs: physiological, safety, belonging, esteem, and self-actualization.

Belonging

In today's work environment it takes a team to accomplish most purposes. On a healthy
team, everyone is clear on what the goal is and is committed to its success. Team
members respect each other and are honest with each other. Finally, the team must win or
lose as a group. Giving individuals credit for team efforts and fostering competition that
creates winners and losers is a good way to kill team motivation. If only a few members
of a team get to be winners, the other members learn to look out for themselves, not for
the overall good of the team.

Safety

One of the fastest ways to kill motivation is what is called in the U.S. Army a zero defects
mentality. A zero defects mentality is an atmosphere that tolerates absolutely no
mistakes; perfection is required down to the smallest detail. The army considers a zero
defects mentality to be a serious leadership problem, because it kills the initiative
necessary for success on a battlefield.

William McKnight of 3M was wise enough to understand this in 1949, when he said.[18]

[18] Paraphrased from Huck, Brand of the Tartan (p. 239), by 3M at http://www.3m.com/profile/looking/mcknight.jhtml, accessed July 25,
2002. Various versions of this remark by McKnight are widely distributed by 3M.

As our business grows, it becomes increasingly necessary to delegate responsibility and
to encourage men and women to exercise their initiative. This requires considerable
tolerance. Those men and women, to whom we delegate authority and responsibility, if
they are good people, are going to want to do their jobs in their own way. Mistakes will
be made. But if a person is essentially right, the mistakes he or she makes are not as
serious in the long run as the mistakes management will make if it undertakes to tell those
under their authority exactly how they must do their jobs.

Competence

http://www.3m.com/profile/looking/mcknight.jhtml

People need to believe they are capable of doing a good job; they want to be involved in
something that they believe will work. It is very motivating to be part of a winning team,
very demotivating to believe that failure is inevitable. An undisciplined work
environment does not generate a sense of freedom; it creates a sense of doom.

Software development environments must be disciplined in order for work to proceed
smoothly, rapidly, and productively. Basic good practices such as using a version
controlled code repository, coding standards, a build process, and automated testing are
required for rapid development. Also important is a mechanism for sharing ideas and
improving designs, perhaps by using pair programming, code reviews, or similar
approaches.

A sense of competence comes from knowledge and skill, positive feedback, high
standards, and meeting a difficult challenge. A leader who delegates and trusts workers
must nevertheless verify that they are on the right track and provide the necessary
guidance to allow them to be successful.

Progress

Even a highly motivated team will only work so long before members need to feel they
have accomplished something. This reaffirms the purpose and keeps everyone fired up. If
there is no other reason to develop software in iterations—and there are many!—this is a
compelling reason by itself. Every iteration, the team gets to put its best efforts in front of
customers and find out how it has done. Of course, there's some risk that the customer
won't be pleased, but it's better to find that out earlier than later. Most often, customers
are delighted to see working software that they can actually use. The meaningfulness of
the work is enhanced and the team is reenergized.

When a team reaches a particularly important objective, it's time for a celebration. Team
members celebrate small accomplishments by congratulating each other. They celebrate
medium-sized accomplishments by escaping for a while to have some fun. Important
accomplishments should result in public recognition, preferably immediately. Projects
should have meaningful measurements that show progress toward the goal posted in a
place for everyone to see.[19]

[19] See the section "Information Radiators" in Chapter 4, "Deliver as Fast as Possible."

The Dirty Coffee Cup
Dee Hock relates how the early management team at Visa confidently
committed to the board that it would implement an authorization system in a
year. Then, it hired a consultant who told the team it couldn't be done, so the
team members decided to do it themselves. The tasks were laid out on a large
linear calendar. Someone hung a coffee cup on a string to mark the current date.
As tasks were completed, they were removed from the calendar. Any task that

got on the wrong side of the string was descended upon by the entire team and
quickly conquered. Every day, the string moved, and the tasks were taken off
the calendar. When the project was completed on time, the dirty coffee cup got a
large amount of the credit.[20]

[20] Hock, Birth of the Chaordic Age, 203–208.

Long Days and Late Nights

People who are passionately involved in something often find that it dominates their
lives. They think about it all the time, and their subconscious takes over when they are
not consciously focused on the task. They begin to avoid doing less interesting tasks that
interfere with their passion. Their single-minded focus on the task at hand may turn into
an obsession.

Passionate teams will put in long hours and late nights in order to accomplish their
purpose. There is a lot of debate about whether this is bad or good. After all, the people
are doing what they love, and they choose to spend the long hours.

A couple of cautions are in order. First, long hours and late nights are not a sustainable
mode of operating, and generally they do not result in better work. People get careless
when they are tired; it's often better to quit for the day at a reasonable hour and come
back fresh the next day.

Second, excited, passionate teams may create a climate in which people are expected to
work long hours and late nights. This is not fair for those who would not choose such
dedication but for peer pressure, and it may result in subtle discrimination. Parents should
not have to apologize for coaching their kids' teams in the evening. Women should not
feel they have to leave the software development profession because they don't see how
long hours and family commitments can coexist. Those who love to exercise every day
should have time to do it without feeling guilty.

It is better to encourage moderation than heroism. If a dedicated team is working at a
sustainable pace and an emergency comes up, the members will rise to the occasion. If
they are seriously overcommitted already, they can't respond to an emergency.

Tool 15: Leadership
Leadership

"No one has yet figured out how to manage people effectively into battle; they must be
led," wrote John Kotter in "What Leaders Really Do." Kotter draws a sharp distinction
between managers and leaders, summarized in Table 5.1.

Table 5.1. Managers vs. Leaders

Managers Leaders

Cope with Complexity

• Plan and Budget
• Organize and Staff
• Track and Control

Cope with Change

• Set Direction
• Align People
• Enable Motivation

Respected Leaders

It is not an accident that every major new product development program at 3M is led by a
champion. Innovation at 3M is brought about by excited, motivated teams, and if you
look behind a passionate team, you will find a passionate leader. 3M new product
development teams are led by a product champion who probably wrote the initial product
concept, gathered management support for the program, and recruited most of the team.
The champion interprets the product vision for the team, thus representing the customer
who, after all, is not even aware of the new product yet. The champion sets the pace of
development and determines how decisions are made. A champion is also expected to
keep working on a good idea even if the program is killed by management.

A similar role is played by the chief engineer at Toyota, who spends time studying the
target market, writes the vehicle concept document, establishes the overall design, sets
the schedule, and is responsible, in the end, for the economic performance of the vehicle.
In contrast to the coordinating role of a new vehicle manager at U.S. auto companies, the
chief engineer has complete responsibility for the vehicle and has the authority necessary
to make all program decisions. The Toyota chief engineer has been called a heavyweight
program manager,[21] but this is a misnomer, because a chief engineer is much more a
leader than a manager. Perhaps the correct characterization of a chief engineer is a
respected leader. The emphasis of the chief engineer role is on setting direction, aligning
the organization, and motivating the team.

[21] Sobek, Ward, and Liker, "Toyota's Principles of Set-Based Concurrent Engineering"; Clark and Fujimoto, Product Development
Performance.

Product champions at 3M and chief engineers at Toyota have a strong sense of product
ownership. In both 3M and Toyota, the product produced by a champion or chief
engineer often bears his or her name (Fuji-san's car or Art Fry's Post-It® Notes). At 3M,
the champion is largely self-nominating, and the roles in both companies hold great
stature. It might seem that a strong sense of ownership would lead chief engineers and
champions to exercise a great deal of control over the development of their product, but
neither of these leaders has direct authority over the people working on the product. They
fully understand that leveraging the talents of a large pool of experts is far more effective
than trying to control the work. Thus, they lead the development team instead of trying to

manage it. It is because of their dedication and passion that champions and chief
engineers excel at inspiring technical teams.

Master Developers

In an extensive study of large system design,[22] Bill Curtis and his coauthors found that
for most large systems, a single or small team of exceptional designers emerge to assume
primary responsibility for the design. Exceptional designers exercise leadership through
their superior knowledge rather than bestowed authority. Their deep understanding of
both the customers and the technical issues gain them the respect of the development
team. Exceptional designers are people who are extremely familiar with the application
domain and are skilled at communicating their technical vision to the development team.
They are usually consumed with the success of their systems.

[22] Curtis, Kransner, and Iscoe, "A field Study of the Software Design Process for Large Systems," 1272.

Notice that the exceptional designer identified by Curtis and his colleagues has the same
characteristics we noted in a respected leader such as a chief engineer or product
champion. In software development we have used terms such as systems engineer, chief
programmer, and architect to designate the role of the exceptional designer. For purposes
of this book, we use the term master developer to designate the role of respected leader of
a software development project.

The role of a master developer is essential. However, it is not necessary to identify a
master developer at the beginning of every project. For small systems, a master developer
will tend to emerge in a self-organizing team. Even in large systems, Curtis and
colleagues found that exceptional designers exercised leadership because of their
knowledge, not because they were designated leaders. If a master developer is appointed,
be sure that the person is a respected leader who will empower the team. A chief architect
who does not collaborate with the developers can prevent the emergence of the right kind
of design leadership.

Master developers have extensive experience in the domain and the technology; they
understand both the customers and developers. They understand the system's constraints,
interactions, unstated requirements, exception conditions, and likely direction of change.
They look at the system from a fairly high level of abstraction, yet can drill down to the
complexity and detail that both developers and customers must cope with. They have the
wisdom to guide market tradeoffs in product development and business tradeoffs in
internal development. If a development team does not have this kind of a leader, it will
seek one out, because teams understand that such leadership is a key to making their
efforts a success.

Since master developers are perceived as the most knowledgeable people, they become
the focal point of communication.[23] Organizations with architects who serve in an
advisory role will find that these architects are not likely to serve in the role we define as
master developer. Master developers are part of the team, enmeshed in the details of the

work. They provide the leadership necessary for the team to make good decisions, make
rapid progress, and develop high-quality software.

[23] Ibid., 1272.

The master developer is like the conductor of a musical group, coordinating the efforts of
the musicians and helping them to play together.[24] Some teams are like jazz bands, so
they need a leader who encourages improvisation. Some teams are like symphony
orchestras, so they need a leader who keeps everyone on the same sheet of music.
Conductors have to be deeply familiar with each instrument and with the music, yet they
don't play in the band or tell the musicians what to do. They let the music provide
detailed guidance; their job is to bring out the best in the musicians, both individually and
as a group.

[24] Ohno, The Toyota Production System, describes the metaphor of workers as members of a sports team and managers as coaches who help
the team reach peak performance (pp. 23–25).

The Fuzzy Front End

A consistent criticism of iterative approaches is that they do not provide for design prior
to the beginning of programming. We suspect that this misconception is an indication of
a deeper concern; the underlying issue is most likely a difference of perspective on the
level of design detail desirable prior to beginning other areas of development. Those with
a bias toward sequential development would like to see all design done prior to the start
of programming. Agile approaches recognize that architectures evolve and mature; the
practical approach is to provide for an emerging design rather than try to stop it.

The real question is, When has enough design been done for developers to start working?
This is where master developers fit in—they are the ones who make the call. It is the
responsibility of master developers to judge the level of initial conceptual design
necessary at the beginning of concurrent development, facilitate the emergence of the
design as development proceeds, and assure that there are no downstream surprises that
should have been anticipated.

Development should begin as soon as a conceptual design is articulated at a high level. A
single team working on a modest problem might start with development immediately and
allow a master developer to emerge. A multiteam system will require more coordination.
Some domains might lend themselves to immediate experimentation; others may have
concerns, such as safety or security, which require more consideration. Quite often, the
architecture of a system is predetermined or obvious from the nature of the problem,
other times there are several architectural options to be considered.

Some organizations prefer to have a standard process for dealing with the fuzzy front end
of product development, which is fine; but a hope that a standard process will enable less
experienced designers to come up with a great design is misguided. As Fred Brooks
notes, "Great designs come from great designers. Software construction is a creative
process. Sound methodology can empower and liberate the creative mind; it cannot

enflame or inspire the drudge."[25] For a large system that requires a new architecture, we
agree with Brooks:[26] "Design must proceed from one mind or a small group of agreeing
minds." The best approach for designing a new architecture is to put a few of your wisest
people together and have them start working on it.[27]

[25] Brooks, "No Silver Bullet: Essence and Accidents of Software Engineering."

[26] Brooks, Mythical Man Month, 233.

[27] Hohmann, Beyond Software Architecture.

Where Do Master Developers Come From?

Master developers grow into their role through extensive experience in the technology
and domain being addressed by the system, coupled with excellent abstraction and
communication skills. There is no substitute for experience. As Pete McBreen explains in
Software Craftsmanship,[28] learning the skill of software development is like learning a
craft. New programmers start as apprentices to master craftsmen. As they become skilled,
they teach other apprentices and eventually journey to work with other master craftsmen.
Journeymen disseminate ideas and develop broad skills, eventually becoming master
craftsmen themselves.

[28] See McBreen, Software Craftsmanship, 82. We like Luke Hohmann's guidance: "Staff one journeyman for important projects. Staff one
master for mission-critical projects. Staff one realist for every three optimists" (Journey of the Software Professional, 310-311).

Leaders only flourish in organizations that want them to be there. An organization has to
value leadership in order to develop leaders. We notice that organizations that hold
technical leaders in high esteem seem to have plenty of these leaders grow up from the
ranks. They have a built-in leadership apprenticeship program because they have an
assortment of different programs where people can learn the craft of leadership. They
often have dual ladders, which allow technical leaders to achieve the same status and pay
as supervisors and managers.

People respond to the expectations of their management. Software development leaders
will not flourish in an organization that values process, documentation, and conformance
to plan above all else. An organization will get what it values, and the Agile Manifesto[29]
does us a great service in shifting our perception of value from process to people, from
documentation to code, from contracts to collaboration, from plans to action.

[29] www.agilemanifesto.org.

Project Management

Against this backdrop, let's examine the role of a project manager in agile development.
Often, the software project manager does not have a technical background and is
generally not responsible for developing a deep understanding of the technical aspects of
the project. Thus, the project manager usually does not play the role of master developer.

On the other hand, agile development is based on short iterations in which team members
make their own commitments and monitor their own progress toward meeting those
commitments. Although a high-level list of features may be arranged into a long-range
iteration release plan, this plan does not drive day-to-day work. Pull systems structure the
work itself to signal to developers what to do, so in a properly structured lean
environment, a project manager does not assign tasks or monitor their completion. If the
team is empowered to make its own decisions, what is the job of the project manager?

The 22 tools in this book help to define the role of project leadership in agile software
development. Project leaders start by identifying waste and sketching a value stream map
of the current development process, and tackle the biggest bottlenecks. They coordinate
iteration planning meetings and daily status meetings, provide information radiators, and
help the team get the resources it needs to meet commitments. They coordinate multiple
teams by insuring that synchronization is regular and thorough. They ensure that the
development environment has standard tools, such as source control and automated
testing, and make sure that refactoring and integrated acceptance testing are being done.
They work with accounting to create financial models so that the team can make good
tradeoff decisions. They provide a motivating environment and keep skeptics at bay,
organize celebrations and send the team home at night.

Project leaders play an important role in an agile project; it's just not the role they learned
at their project management class. Instead of scheduling with Pert and Gantt charts, they
create a release plan with frequent milestones and keep the focus on meeting iteration
commitments. Instead of worrying about scope creep, they worry about creeping
elegance; instead of worrying about change approval processes, they worry about change-
tolerant design practices. They make sure that testing and integration are part of
development instead of a separate and later event. They make sure that the people
involved in deployment, training, and customer support are fully involved from the start.

Lean Project Management
Training

Most of the topics covered in a traditional project management course are not
what an agile project leader needs to know. We recommend an alternate toolkit
for project leaders:

1. Seeing Waste 12. Cost of Delay

2. Value Stream Mapping 13. Self Determination

3. Feedback 14. Motivation

4. Iterations 15. Leadership

5. Synchronization 16. Expertise

6. Set-Based Development 17. Perceived Integrity

7. Options Thinking 18. Conceptual Integrity

8. Last Responsible Moment 19. Testing

9. Making Decisions 20. Refactoring

10. Pull Systems 21. Measurements

11. Queuing Theory 22. Contracts

Tool 16: Expertise
Nucor[30]
[30] Information in this section is from Gupta and Govindarajan, "Knowledge Management's Social Dimension: Lessons from Nucor Steel." See
also Christensen, The Innovator's Dilemma, 101–108; and Collins, Good To Great.

Nucor opened its first steel mill in South Carolina in 1968, just as the steel industry in the
United States was entering troubled times. Even as the rest of the industry decayed,
Nucor's sales grew 17 percent per year for the next 30 years, while maintaining some of
the highest profit margins in the industry. Having started from scratch 35 years ago,
Nucor is the largest steel producer in the United States, with over $4 billion in sales.
Nucor was the first mini-mill company to make flat-rolled steel and the first to
commercialize thin-slab casting. It did not invent these processes; every steel company
had access to the same technologies. It was simply the best at adopting breakthrough
technologies, beating its competitors by years.

Nucor employees at all levels have a clear goal: productivity. Incentives based on work
group productivity are the core of Nucor's compensation plan. Interestingly, Nucor avoids
the suboptimization of typical measurement systems by basing incentives one level
higher than you would expect.[31] A plant manager is not paid based on his or her plant's
productivity, but on the productivity of all plants; workers' incentive pay is based on the
productivity of a group of 30 or 40 people. However, Nucor does not simply reward
productivity; it makes sure that everyone has the opportunity and the expertise to become
more productive.

[31] See "Tool 21: Measurements" in Chapter 7.

Nucor's competitive advantage is a pervasive expertise in building and running steel
mini-mills and in adopting the best technology available as early as possible. This
expertise is not an accident. First, Nucor hires intelligent, motivated people. Then, it
trains them continuously across many functions. Finally, it encourages experimentation
by individuals and self-organizing teams, tolerates failure, and aggressively spreads the
knowledge gained through experimentation throughout the company.

Nucor attributes its incredible track record to its ability to develop expertise in all
workers and its ability to tap into and spread this expertise throughout the company.
Nucor has learned that knowledge is shared in two ways: Some knowledge can be
codified and shared by documentation, but much knowledge is tacit knowledge that will
only be shared through conversation. Therefore, it involves production workers in the
selection of equipment, transfers people frequently both within and between plants, and
sends a crew of experienced workers to a new plant to help it start up.

Xerox[32]
[32] Information in this section is from Mitchell, "Share...and Share Alike." See also Brown and Duguid, "Balancing Act: How to Capture
Knowledge Without Killing It."

Xerox has some 25,000 repair technicians fixing copying machines, and the company had
developed extensive documentation on how to repair a balky machine. Researchers at
Xerox Palo Alto Research Center (PARC) were working on artificial intelligence, and
they considered replacing the paper documentation used by repair technicians with an
electronic system. Luckily, they asked the technicians who often gathered for lunch in the
PARC cafeteria what they thought of the idea. The technicians told them the paper
documentation was useless for the tough problems they encountered. The way they
solved vexing problems was by finding out how other technicians had fixed similar
problems.

The PARC researchers were intrigued, so they studied various groups of repair
technicians and found that, indeed, the way all of the technicians solved tough repair
problems was by trading war stories at informal gatherings. They decided to start up a
database of tips for technicians, but found managers were opposed to the idea. It was felt
technicians did not have enough expertise to provide valuable tips to each other, and
besides, managers knew that the way to insure quality of service was through a
standardized process.

Management resistance was a fortunate turn of events, because the database of tips was
developed underground, largely by PARC researchers and technicians in France.
Together they developed a way to have technicians test the tips, combine and edit them,
and post the good ones into a database along with the name of the person submitting the
tip. Tests showed that the tip system increased productivity by 10 percent in two months.
Word spread through the underground that the system was really useful, and technicians
who would not have trusted yet another management initiative were begging for the
system.

What PARC researchers discovered is that technicians across the company had developed
small communities of expertise to deal with difficult repair problems that fell off the map
of the official documentation. Together with PARC, technicians found a way to spread
the community across the company. In effect, the technicians developed a community of
scientists who discovered solutions through experimentation, wrote up the results, and
submitted them for publication. The tips were reviewed and replicated by peers, and

published with due credit in a database widely used by the community. Useful tips gained
wide peer recognition for the technician who submitted it.

In a paper summarizing the effort, PARC director John Seely Brown notes that the
technicians developed a community of expertise similar to the way scientists develop
such communities. Scientists work in small groups and circulate ideas through peer
review and publication. Most scientists don't get paid for scientific articles, but they earn
status and "bragging rights" among their peers.[33] The same dynamic seems to be the
motivator in the open source community.[34]

[33] Brown and Duguid, "Balancing Act: How to Capture Knowledge Without Killing It."

[34] See Raymond, The Cathedral and the Bazaar.

Communities of Expertise

Software development is a complex endeavor with many areas of specialized knowledge.
On the one hand, there is the technical knowledge—there are database experts and user
interface experts, embedded code experts and middleware experts. On the other hand,
there is a great deal of domain knowledge—if your company writes health-care software
or security software, it is important to develop expertise in these domains. If you are
going to have a competitive advantage in the marketplace, you need to have areas of
expertise in your organization that don't exist in competing companies. Even if your
organization serves a customer internal to your company, you would do well to
understand what particular expertise your group brings to the company that can't be
obtained by outsourcing.

The traditional way to develop communities of expertise in a company is to divide the
organization into functions that match the core competencies needed by the organization.
Each function hires and trains people, establishes standards, and develops expertise for its
particular competency. Functions supply staff to value-adding teams that develop a
product or system under the guidance of a program leader.

There are inherent problems with this matrix structure. First, there is the potential for
workers to feel split loyalties when they have two managers to satisfy, and second, there
is the danger that one side of the matrix will dominate the other. However, successful
matrix structures exist in many companies, and a close look at these companies reveals
that success is determined by the way managers view their jobs. In companies with
successful matrix management, functional managers view their jobs as mentors and
teachers. They make sure that there are masters who help to develop journeymen and
apprentices through a progressive series of work assignments with appropriate support
and coaching. At the same time, matrixed value-added team leaders view their jobs as
enablers and motivators who gather resources and remove obstacles, and as guides who
represent the voice of the customer to the team.

For example, at 3M, new scientists are hired into a function, where they work daily with
colleagues who have deep knowledge of their specialty—be it making ultra-clear

polymers or the weathering of clear plastics or designing precise optical structures to
bend light. When these scientists get together on a product team to design an ultra-bright
traffic sign material, they bring to the project the collective knowledge of their
disciplines. Functional managers at 3M are skilled in their discipline and see their jobs as
teacher and mentor. They are rewarded if their function contributes in a meaningful way
to bringing innovative new products to market. Thus, functional managers encourage and
help their people to contribute their expertise to new product development programs.

The Toyota product development organization is also a matrix organization. The chief
engineers lead the team, but the deep technical expertise needed to design a car resides in
the functions. Engineers stay in the same function for perhaps a decade before they are
considered really experienced body or engine or layout engineers. During this time, they
are taught and mentored by managers who are experts in their area. Functional managers
at Toyota are respected in their fields, and they have the stature to act as a counterbalance
to a chief engineer at times when major tradeoff decisions must be made.

Matrix organizational structures are very useful for providing communities of expertise,
but even if a company does not use a matrix structure, it is imperative to have
communities of expertise. The first step is to identify the technical and domain-specific
competencies that are critical to the organization's success. These might include
competencies such as database administration, user interface design, security,
architecture, embedded programming, testing, and safety analysis. Many companies then
create forums—monthly meetings, newsletters, speakers—for these communities. If there
are not enough people in a critical area (say, database administration) to form an internal
community, then external communities of expertise are usually available.

Standards

Software development needs standards. Naming standards, language standards, code
checkout and check-in standards, build standards, and so on are pretty much required for
a well-functioning development team. Standards are usually developed by the relevant
community of expertise or, when necessary, by the program team. However, it is usually
better for a program team to work with existing standards than to develop their own. One
way to discover where a community of expertise is needed is to identify where standards
are lacking.

What State Do You Live In?
When I order something on the Web, I frequently encounter the dreaded but
ubiquitous state drop-down box. I live in Minnesota, so all I want to do is type
two keystrokes—MN—in the field for my state. But no! I have to use a drop-
down box.

For years, I tackled this problem by moving my hand from the keyboard to the
mouse. I clicked on the drop-down box and got a list with a scroll bar, which I

clicked a couple of times (Darn! Too far, have to back up.…) and then clicked
on Minnesota. I assure you, this takes a whole lot longer than typing MN.

A few months ago I learned I could type M in the field and get Maine, then use
the down arrow four times to get Maryland, Massachusetts, Michigan, and
Minnesota. But wait. Some drop-down lists have Maine, Manitoba, Marshall
Islands, Maryland, Massachusetts, Michigan, Micronesia, then Minnesota. I kid
you not.

Just recently, I learned that I could type M in the box five times and get
Minnesota. Who would have guessed? I've been entering MN in drop-down
boxes for a decade, and I didn't know that. I must admit that typing five M's
beats using a mouse, but it's not nearly as good as just typing MN. For one thing,
I often hit the M an extra time or two, and there's no easy way to back up.

Why do I encounter that annoying state drop-down box almost every time I
place an order on the Internet? Clearly, someone wants to be sure that I don't
mistype MN. Since M and N are right next to each other on the keyboard, I
rarely get them wrong. But I do find that I come from Mississippi rather too
frequently. Or Micronesia.

When I encounter a state drop-down box, I figure that it was put there by
someone in California or Washington, because those folks get their state by
simply typing the first letter, so they just don't understand. And I assume that the
offending company does not have minimum acceptable standards for user
interfaces, because if it did, it would not dare throw a 50-item drop-down list at
a customer about to place an order.

—Mary

A 50-state drop-down box is an example of a common user interface design where
standards seem to be lacking.[35] Such an affront to users would not survive in a company
with a user interface or usability center of excellence, where learning occurs and expertise
develops through experimentation and knowledge sharing. If you find areas where
standards seem to be lacking and sloppy work is evident, foster communities of expertise
and ask the communities to develop standards. Developers appreciate reasonable
standards, especially if they have a hand in developing them and keeping them current.

[35] See more usability annoyances in Johnson, GUI Bloopers.

And customers appreciate standards even more.

Try This
1. At the end of each iteration, do a process check with the team. Asks two

questions:

a. What is slowing you down or getting in the way of doing a good job?
b. What would help things move faster, better, cheaper?

Make a list of good and bad practices. Decide which items on the first list can be
eliminated and which on the second list can be implemented. Then make it
happen. Don't do this just once—repeat it after each iteration.

2. Make sure that the development team starts each iteration by writing down the
goal of the iteration. The goal should be one or two sentences that give the
iteration a theme related to the business value it will deliver. Post the goal in a
prominent spot and refer to it when the team is struggling with a tough decision.

3. Use pair programming or design reviews within the framework of software
craftsmanship. Encourage pair programming for the expertise sharing it provides.
If design reviews are held, assure that the agenda and tenor of the meeting focus
on learning and sharing expertise rather than on ferreting out mistakes.

4. Ask each person on the development team to write down one specialty area in
which the team is low on expertise. List everyone's answers and look for a
pattern. Have team members pick their top candidate and see which one gets the
most votes. Then work with the team to come up with a plan to make that
expertise more available to the team. You might use the following strategies:

a. Buy everyone who is interested a relevant book and meet once a week at
lunch to discuss a chapter.

b. Find a guru in the specialty in question and have him or her pair with
various team members, as availability permits, so they can strengthen their
skill in the area.

c. Set up a three-person subcommittee to establish team conventions for the
area in question. Be sure they evaluate any corporate or industry standards
in preference to designing their own.

Chapter 6. Build Integrity In
Integrity

Tool 17: Perceived Integrity

Tool 18: Conceptual Integrity

Tool 19: Refactoring

Tool 20: Testing

Try This

Integrity

In the late 1980s Kim Clark of the Harvard Business School set out to examine how some
companies could consistently develop superior products. He studied the automotive
market because cars are highly complex and development requires hundreds of people
over dozens of months. He looked for critical differentiators between average and high-
performing companies, and found that the key difference was something he called
product integrity. He found that product integrity has two dimensions: external integrity
and internal integrity.[1] In this book, we rename these two dimensions: perceived integrity
and conceptual integrity. Perceived integrity means that the totality of the product
achieves a balance of function, usability, reliability, and economy that delights
customers. Conceptual integrity means that the system's central concepts work together
as a smooth, cohesive whole.

[1] Clark and Fujimoto, Product Development Performance, 30. Clark and Fujimoto define the terms as follows: "Product integrity has both
internal and external dimensions. Internal integrity refers to consistency between the function and structure of a product—e.g., the parts fit
well, components match and work well together, layout achieves maximum space efficiency. External integrity is a measure of how well a
product's function, structure, and semantics fit the customer's objectives, values, production system, lifestyle, use pattern, and self-identity."

Perceived Integrity

Perceived Integrity: Google
I like Google. I use it several times a day. I've tried other search engines,
especially new ones trying to compete with Google. But somehow their search
results are never as good as Google's. I didn't always use Google. In the early
days I read reviews of search engines and tried many of them. But shortly after
Google started searching PDF files, I became a permanent fan.

There are a lot of things I like about Google. I like the speed. I like the way
results are displayed. I like having the Google toolbar on my browser. Google
translates Web sites for me. I don't have to use my ad blocker to keep Google
from annoying me. And it's free.

But what I really like about Google is that I don't have to spell everything
perfectly. Google detects typos and politely asks if I might have meant error
instead of eror. I find myself disappointed when I do any other kind of search,
because I have to remember to watch my spelling.

I imagine Google has lots of other features that I like, but I'm not even aware
they're there. It seems to me that the designers were inside my head when they
designed Google. I certainly couldn't have told them what I wanted in a search
engine. Somehow, they just knew. How did they do that?

—Mary

In our opinion, Google gets high marks for perceived integrity. Perception is in the eyes
of the beholder, so Google might not strike you as such a great service. But you have
your favorite software tools. Sometimes you come across software that suits you so well

that you think the designer must have been inside your head.

Perceived integrity is affected by the customer's whole experience of a system: how it's
advertised, delivered, installed, accessed; how intuitive it is to use; how well it deals with
idiosyncrasies; how well it keeps up with changes in the domain; how much it cost; how
timely it is; how well it solves the problem.

The measure of perceived integrity is roughly equivalent to market share, or perhaps a
better term might be mindshare. If you had to rebuild your computer tomorrow, loaded
with only the software you regularly use, how many products would you load? If you
wiped out all your bookmarks, which ones would you add back immediately? These are
the products and services you perceive to be relevant to your life, the products with
perceived integrity.

Conceptual Integrity

Conceptual Integrity: Two Airline
Reservation Systems

I have a lot of frequent flier miles, and I make a lot of airline reservations; some
are regular reservations, and some are frequent flier reservations. Until recently,
my local airline had two completely different reservation systems—one for
making regular reservations and one for making frequent flier reservations.
Every time I made frequent flier reservations, I wondered, "Why couldn't they
just let me use their regular reservation system? I'm doing the same thing; I just
pay with different currency."

The system for regular reservations is identical to a system used at a popular
travel Web site. It is pretty clear this component is from an outside vendor, so it
didn't have the capability to deal with the idiosyncrasies of paying for a ticket
with frequent flier payment miles. Thus, the airline developed its own
reservation system for frequent fliers.

The inconsistency had an explanation, and no doubt an economic justification.
Nevertheless, the dual reservations systems demonstrate a lack of conceptual
integrity in the airline's reservation service.

Just recently, I was pleasantly surprised to discover that the frequent flier
system had been completely integrated into the regular reservation system.
Clearly, the airline had recognized the dissonance and eliminated it.

—Mary

Conceptual integrity means that a system's central concepts work together as a smooth,
cohesive whole. The components match and work well together; the architecture achieves

an effective balance between flexibility, maintainability, efficiency, and responsiveness.
When a single airline Web site has two different reservation systems, this is a clear
indication that two distinctly different design concepts are being used for the central
concept of make a reservation.

Conceptual integrity is a prerequisite for perceived integrity. When a system does not
have a consistent set of design ideas, usability will suffer, because the user does not have
a single metaphor for the application, strategies for doing the application, and user-
interface tactics.[2]

[2] See Brooks, Mythical Man Month, 255.

Conceptual integrity emerges as the system evolves and matures. In the airline example,
the regular reservation system has undergone several generations of growth and change,
and as a separate component, it has maintained conceptual integrity. However, when
placed side by side with a completely different reservation system, the overall reservation
process did not have conceptual integrity, and this created a dissonance that was
perceived by a user who used both systems.

Although conceptual integrity is necessary for perceived integrity, it is not sufficient. If
the most elegant architecture in the world does not do an exceptional job of meeting
users' needs, users will not notice the underlying conceptual integrity. It is for this reason
that a system's architecture must evolve and mature; perceived integrity will change over
time, and thus the underlying architecture must do so also. As new features are added to a
system to maintain perceived integrity, the underlying capability of the architecture to
support the features in a cohesive manner must also be added.

The Key to Integrity

The fundamental thesis of Kim Clark and Takahiro Fujimoto's book Product
Development Performance is that integrity is achieved through excellent, detailed
information flow. Perceived integrity is a reflection of the integrity of the information
flow from customers and users to developers. Conceptual integrity is a reflection of the
integrity of the upstream/downstream technical information flow. See Figure 6.1.

Figure 6.1. Information flow produces integrity.

The way to build a system with high perceived and conceptual integrity is to have
excellent information flows both from customer to development team and between the
upstream and downstream processes of the development team. The information flow
must take into account both the current and potential uses of the system.

This is consistent with the findings of Bill Curtis and his colleagues in "A Field Study of
the Software Design Process for Large Systems," which concludes that the three
fundamental requirements for improved software development performance are

• Increased application domain knowledge across the entire software development
staff.

• Acceptance of change as an ordinary process and the capability to accommodate
emergent design decisions.

• An environment that enhances communication to integrate people, tools, and
information.

Tool 17: Perceived Integrity
Decisions that affect perceived integrity are made every day, mostly at the lowest levels
of the development organization. Companies that consistently achieve perceived integrity
have a way of constantly keeping customer values in front of the technical people making
detailed design decisions. In most Japanese automakers, this is done by a chief engineer,
who has developed a vision of what the target customer segment wants in a car. The chief
engineer spends a lot of time walking around, talking with the engineers as they make
tradeoffs, making sure that these engineers have a good idea of what the customer will

find important. If the vision of perceived integrity isn't refreshed regularly, the engineers
have a tendency to get lost in the technical details and forget the customer values.

Chief engineers are among the most highly skilled engineers in the organization. They
have added to their engineering skills the ability to understand their target customer base
and create a vision of a car that these customers will buy. In addition, they must have the
leadership skills necessary to transmit this vision on a daily basis to the people making
detailed decisions and tradeoffs. The chief engineer is responsible for the technical
architecture of the car, including all the technical details. However, it is understood that a
car is too complex a system for a single person or a small group to design, so the role of
the chief engineer is to facilitate tradeoffs that will create the optimum perceived integrity
as the design of the vehicle emerges. Therefore, the chief engineer must understand what
the engineers are grappling with as they proceed with the many tradeoffs they must make,
in order to help them understand how their decisions will affect the integrity of the
product.

Sequential software development attempts to transmit the concept of perceived integrity
to programmers through a multistage process. First, requirements are gathered from
customers and written down. Then, these requirements are subjected to analysis, usually
by people other than those who gathered requirements. Analysis is an attempt to
understand, in more technical terms, what the requirements mean, using various diagrams
or models. Traditionally, analysis is not supposed to deal with implementation details; it
is simply a step in refining the requirements. The analysis is then used to design how the
software will actually be implemented. This is typically done by yet a different group of
people. The design is then turned over to still another group, the programmers, who are
supposed to write the code.

What's wrong with this picture? First, as we all know, customers of a software system are
generally not able to define what they will perceive as integrity any more than they are
able to describe accurately what they want in a car. Customers know what their problems
are, but quite often, they can't describe the solution. They will know a good system when
they see it, but they can't envision it beforehand. To make matters worse, as their
circumstances change, so will customers' perception of system integrity.

The problems with sequential development do not go away even if customers can
envision and someone can document an accurate set of requirements. Requirements are
traditionally written down and handed off to a team of analysts, which does an analysis
and hands off the results to designers, who design the software and hand off the results to
programmers. It's the programmers who are going to be making day-to-day decisions on
exactly how to write the code. They are two or three documents away from an
understanding of the customer perception of system integrity. At each document hand-
off, a considerable amount of information has been lost or misinterpreted, not to mention
key details and future perspectives that were not obtained in the first place.

Where is the equivalent of the chief engineer? Where is the master developer who
understands both what the customer will value and what kinds of tradeoffs the

programmers have to make? Who will refresh the programmers' minds about what the
customer really wants and guide them over time as they make tradeoffs to insure that the
result is a system with integrity? If a process does not provide an accurate, detailed
information flow from the customer to the developers, the resulting product will lack
perceived integrity. It is hard to imagine that this kind of information can be transmitted
through multiple iterations of documents handed off to multiple layers of people.

So what is the alternative? There are several techniques that can be used to establish first-
class customer–developer information flows:

• Smaller systems should be developed by a single team that has immediate access
to the people who will judge the system's integrity. The team should use short
iterations and show each iteration to a broad range of people who will know
integrity when they see it, so they can make course corrections based on feedback.

• Customer tests provide excellent customer–developer communication.
• Complex system should be represented using a language and a set of models that

the customers understand and the programmers can use without intervening
refinement.

• Large systems should have a master developer who has deep customer
understanding and excellent technical credentials, and whose role is to facilitate
the design as it emerges, representing the customer's interests to the developers.

These approaches are not mutually exclusive. Even top-notch master developers benefit
from frequent iterations, just as chief engineers benefit from frequent and increasingly
detailed prototypes. No matter what other communication techniques are used, customer
tests should be prepared that convey examples of how the system works. These tests help
customers understand how the system will behave so developers can be sure that their
work satisfies the customers' expectations.

Model-Driven Design

In Domain Driven Design Eric Evans advocates model-driven design, that is, the
construction of a domain model such that software implementation can flow directly from
this model. Domain models must be both understood and directly usable by the customers
or customer representatives and by the developers actually writing the code. Evans
advocates this domain model as a ubiquitous language; that is, developers and customers
alike should use the same words to mean the same things; typically, the words should
come from the customers.[3] This is the only way the two sides can talk meaningfully and
that the customers can validate the developers' understanding of their problem.
Developers will have additional deeper models of technical infrastructure issues, but all
business rules, business process, and domain-related issues will be implemented and
validated from the jointly evolved domain model level. There are many ways to model
anything. The joint modeling ensures that the results will be both a correct representation
of the domain issues and at the same time be effectively implementable in software.
Model-driven design is a valuable approach for complex systems, as it lets everyone
speak the same language.

[3] See the discussion of ubiquitous language in Evans, Domain Driven Design.

Models capture how the system appears to the user, how it will deal with meaningful
concepts and rules, and how it provides value. The right kind of model will depend on the
domain and how its details might best be abstracted into a concise format.

A Matrix Model
After spending a couple of weeks trying to understand a complex entity
registration system, I realized that the entire system boiled down to 25 entities
and about 150 transactions that could happen to the entities. This meant there
were almost 4,000 possible combinations, although in reality, many of the
combinations were invalid, and many valid combinations resulted in the same
action.

I created a matrix with entities across the top and transactions down the side. If a
square in the matrix was filled in, that meant the entity-transaction pair was
valid. The filled-in squares pointed to the actions required for that entity-
transaction pair. This model of the system ended up as a 23-page spreadsheet,
which fully described the business rules, right down to the details of how to
populate user interface screens.

The customer loved this matrix model and spent a great amount of time assuring
that every detail was correct. The programmers could understand the model and
program directly from it. When a question arose, the developers and customer
pored over the matrix together to clarify the point, sometimes improving the
model a bit. When the question was resolved, the matrix was updated. It was the
only requirements document we used.

—Mary

We have used a collection of models to support excellent customer–developer
information flow during development of complex systems:

• A conceptual domain model. This might be a class model of the basic entities in
the system, whether they are events, documents, transactions, representations of
physical items, or whatever. Or it can be a matrix like the one described in the
sidebar. Whatever its form, the domain model must include both the key concepts
in the users' mental models and the relationships among these concepts. It should
not be highly detailed or comprehensive but rather needs to focus on the key ideas
and concerns. It is meant to capture the users' understanding of the system's
domain.

• A glossary. This defines the terms found in the domain model and ensures a
consistent language for the team. It is the ubiquitous language advocated by
Evans. It can exist in the heads of the team, arising from ongoing team

conversations, or it could be a written document if everyone cannot be collocated
to share in the conversations. It contains any semantics, rules, and policies of the
domain not captured in the domain model. All terms should be in domain
language, not technical language.

• A use case model. The domain model and glossary are static views of the
domain. A use case model is a dynamic view of the system and is useful for
capturing tacit knowledge about what usability really means in this domain. It
organizes and details the customers' goals and subgoals for interacting with the
domain model and drives the workflow and navigation.

• Qualifiers. Early implementations of a system are often coded and tested in a
development environment, where it is difficult to simulate all of the interactions
and loads that the production system might experience. Developers should
understand what multiplier or quantifier might be applied to the basic
functionality to achieve business value. This would include number of users,
acceptable response time, required availability, projections for growth, possible
business impact of defects, need for aggressive security or safety, and so on.

The developers writing the business layer and presentation layer of the code should use
these models directly, without translation. When either is speaking of the same concept,
both customers and developers should use the same words, generally words drawn from
the domain or a metaphor of the domain. If models are translated or different language is
used, a large amount of information will be lost or garbled. In addition, software directly
reflecting the domain model will be more robust to changing business needs than
software with significantly different internal structures chosen for purely technical
reasons.

One way to determine if a model is useful is to observe whether it is kept up to date.
Some believe that it is important to keep a model up to date so that it can be used, but we
think the opposite is true. When a model ceases to be useful, it will no longer be
maintained. It is okay to create models that are useful for a time and eventually fall into
disuse. But it is a waste to create and maintain models simply because it seems like a
good idea. You know you have devised a useful model when it is eagerly referenced and
maintained.

When models are used, they should be viewed at a level of detail appropriate to engage
the customer or customer representative. The best way to do this is to start with a high-
level abstraction and add detail when it is time to begin implementation of a particular
area. For example, with the matrix model in the sidebar, there was one top-level matrix
that exploded into detailed business rules. As each category of business rules came under
development, the detailed spreadsheet concerning those business rules was fleshed out in
detail.

People can deal with only a limited number of concepts at a time, so in a complex
software system, communication will of necessity be limited to only a handful of
concepts at a time. The key to communication about complex systems is to hide details
behind abstractions when a broad picture is desired and move to lower levels of

abstraction to flesh out the details. Models are useful tools for creating abstractions and
enabling communication on broader topics. Iterations are the key mechanism to trigger
the movement from abstractions to implementation of details.

Tests are the best way to remember the details of what was agreed to and ensure that the
features continue to work as the system evolves. Returning to the matrix model, both
working code and acceptance tests were produced from the spreadsheets during each
iteration. At the end of an iteration, the customer checked to see that the general concept
was acceptable, while a suite of regression tests was used to demonstrate that the new
business rules were correct and that previously implemented business rules still worked
correctly.

Maintaining Perceived Integrity

Even good customer–developer information flows may not capture the strategic need for
applications to change in the future. Most software systems are dynamic over time; well
over half of the spending on an application will occur after it goes into production.[4]
Systems must be able to adapt to both business and technical change in an economical
manner.

[4] The percentage of software lifecycle cost attributed to maintenance ranges between 40 percent and 90 percent. See Kajko-Mattsson et al.,
"Taxonomy of Problem Management Activities."

One of the key approaches to incorporating change into an information infrastructure is to
ensure that the development process itself incorporates ongoing change. One of the fears
of those considering an iterative development approach is that later iterations will
introduce capabilities that require change to the design. However, if a system is built
under the paradigm that everything must be known up front so the optimal design can be
found, then it will probably not be adaptable to change in the future. A change-tolerant
design process is more likely to result in a change-tolerant system.

Maintaining institutional memory about a system is key to assuring its long-term
integrity. There have been many attempts to use documentation created during design to
do this. However, design documentation rarely reflects the system as it was actually built,
so it is widely ignored by maintenance programmers. If this is the only purpose
documentation serves, it was a waste to create it. One way to maintain intuitional
memory about a system is to make the developers responsible for ongoing updates.
Alternately, the developers and maintenance programmers can work jointly over a period
of time to transfer tacit knowledge. You can also create an as-built model of the system
after it is developed. But the best way to maintain institutional knowledge about a system
and keep it maintainable is to deliver a suite of automated tests along with the code,
supplemented by a high-level overview model created at the end of the initial
development effort.

Tool 18: Conceptual Integrity

Conceptual integrity means that a system's central concepts work together as a smooth,
cohesive whole. The components match and work well together; the architecture achieves
an effective balance between flexibility, maintainability, efficiency, and responsiveness.
The architecture of a software system refers to the way in which the system is structured
to provide the desired features and capabilities. An effective architecture is what gives a
system conceptual integrity.

How is conceptual integrity achieved? In designing a complex machine like an
automobile, hundreds of engineers are involved over a period of about three years.
Hundreds of specialized parts are developed by specialized engineering groups, and
thousands upon thousands of detailed decisions and tradeoffs are made. The key to
achieving conceptual product integrity in an automobile is the effectiveness of the
communication mechanisms developed among these groups as all of these decisions are
made.[5]

[5] Clark and Fujimoto, Product Development Performance, 30–31.

An automobile's architecture is not something that is decided at the beginning of a
development effort. True, a car has an engine, a body, a drive train, and so forth. But
layout and styling engineers have very different ideas about how a car should look. And
manufacturing engineers have quite a different view how new parts should fit together
than do the engineers who design the parts. In a very real sense, the architecture of the
automobile emerges as these groups work together. If they work together effectively, the
product will have conceptual integrity.

There are two key practices used by automotive companies to achieve conceptual
integrity. First, the use of existing parts immediately removes many degrees of freedom
and thus reduces the complexity and need for communication. When a new car has novel
body styling and a new engine, it helps to use a proven suspension system.

The second practice automotive companies use to achieve conceptual integrity is to use
integrated problem solving to assure excellent technical information flow. As we noted
earlier, Clark and Fujimoto's research showed that conceptual integrity is a reflection of
the integrity of the upstream and downstream technical information flow in the product
development process.[6] Product development is a system of interconnected problem-
solving cycles, and frequent problem-solving cycles that effectively span upstream and
downstream engineers are common practice in automotive companies with high product
integrity.[7]

[6] Ibid., 30.

[7] Ibid., 206.

Integra Integrity
My 2002 Integra has an elegant but simple vent system for directing airflow

from the dashboard. This seemingly minor touch makes the car "feel right"
whenever I drive it. It contributes nicely to the overall theme of the Integra: high
performance at reasonable cost. The designer of the vent system certainly
understood the Integra theme.

But a system that is so functional, yet so apparently inexpensive, was not
designed by a single person in isolation. The designer must have gotten input
from a number of people. Many related factors must have been considered. First,
there had to be close synchronization with airflow engineers, because the
airflow is excellent. Then, someone had to be thinking about parts pricing,
manufacturing cost, assembly techniques, and finally, maintenance.

If developing this vent system had been simple, then other cars would have this
elegantly functional system. I get the feeling that many people had to be talking
to each other to get this detail just right.

—Tom

Just what does integrated problem solving mean in practice? It means that[8]

[8] Ibid., 211.

• Understanding the problem and solving the problem happen at the same time, not
sequentially.

• Preliminary information is released early; information flow is not delayed until
complete information is available.

• Information is transmitted frequently in small batches, not all at once in a large
batch.

• Information flows in two directions, not just one.
• The preferred media for transmitting information is face-to-face communication

as opposed to documents and email.

Without integrated problem solving, designers decide in isolation what combination of
features and capabilities will provide the best value to customers. When design is
completed, a large batch of information is sent from the designers to those who must
decide the best way to develop that value at acceptable cost and speed. This "throw it
over the wall" approach might be diagramed as in Figure 6.2.

Figure 6.2. Requirements before design.

With integrated problem solving, illustrated in Figure 6.3, the picture changes to one of
early, frequent, and bilateral communication. This rich, bilateral communication
deemphasizes control mechanisms in favor of face-to-face discussions, small batches,
speed, and flow.

Figure 6.3. Concurrent requirements and development.

Software Architecture Basics

Car architecture starts with the basics: an engine, a body, a drive train, and so forth.
Similarly, software architecture for most complex systems usually starts with the standard
pattern of architectural layers. Layers give a solid foundation to system architecture. The
basics in software development are[9]

[9] See, for example, Fowler, Patterns of Enterprise Application Architecture, 20.

• Presentation (user interface)
• Domain (business logic)
• Data Source (persistence, messaging)

Some authors identify additional layers: [10]

[10] See, for example, Hohmann, Beyond Software Architecture.

• Presentation (user interface)
• Services (transaction management)
• Domain (business logic)
• Translation (mapping, wrappers)
• Data Source (persistence, messaging)

Lower layers should not depend on higher layers—so, for instance, the database does not
know about the business logic, and the business logic is independent of the user interface.
It should be possible to test each layer independently from other layers by simulating the
behavior of other layers. Layers provide high cohesion within the layer and separation of
concerns between the layers, two fundamental architectural patterns in software design.
These two patterns are used iteratively to achieve system integrity.

The conceptual structure of each layer is another area that needs early consideration.
Particular attention should be paid to the presentation layer, since conceptual integrity in
user interface design is a primary driver of perceived integrity. In addition, it can be

difficult to modify a user interface once it is fielded, since it is harder to change user
habits than it is to change code. Larry Constantine and Lucy Lockwood's book Software
for Use gives excellent guidance in usage-centered design.

One of the functions of software architecture is to allow systems to adapt to both business
and technical change in an economical manner. Since you can't build complete flexibility
into a system, you should try to group things that are likely to change together and hide
them from the rest of the system. Putting things that vary together—by making them a
component or service—and hiding them from the rest of the system allows changes to be
made that have only local impact and do not disrupt huge parts of the system. Several
books discuss how to do this, including excellent texts by Evans,[11] Fowler,[12] Larman,[13]
and Martin.[14] If you have done this wisely, the system should be easier to change in the
future.

[11] Evans, Domain Driven Design.

[12] Fowler, Patterns of Enterprise Application Architecture.

[13] Larman, Applying UML and Patterns.

[14] Martin, Agile Software Development.

Even while designing to accommodate change, watch out for the temptation to spend too
much time puzzling over what a system might need in the future in order to design a great
architecture from the start. As we have seen, predicting the future tends to be a waste of
time and resources. It is better to take a breadth-first approach and get the basics right.
Then, let the details emerge and plan on regular refactoring to keep the architecture
healthy.

Emerging Integrity

How can you be sure that a good architecture will emerge? How can you be sure your
system will have conceptual integrity? The practices used in automotive product
development can be equally effective in software development.

First, use existing parts when possible. This means use off-the-shelf software when
possible. It means putting a wrapper around legacy databases if you can. Use standards
such as XML and Web-browser clients. Allow users to export data to spreadsheets and
manipulate it. By fixing as many points of the system as feasible with existing software
and standards, you reduce the communication required, clearing the path for better
communication on the remainder of the system.

Second, use integrated problem solving. This means getting started on writing software
before the design details are finalized. Show partially complete software to customers and
users to get their feedback. Make sure developers have access to customers or customer
representatives to get questions answered as soon as they arise. Run usability tests on
each feature as soon as it is developed. Develop and run customer tests throughout each
iteration, not just at the end. Use the synchronization and set-based design tools described

in Chapter 2, "Amplify Learning," to increase communication among multiple or
dispersed teams.

Third, be sure there are experienced developers involved in all critical areas. There will
probably be a great difference between a user interface designed by someone who
understands how to design and test for usability and someone who does not. Stored
procedures written by developers with little experience with database transactions are not
likely to be as robust as those written by developers who have dealt with database
lockups. A person writing embedded code to control a machine for the first time will not
have the same appreciation of timing problems as someone who has had a few machines
run away on her. Certainly not everyone developing a system can or should be highly
experienced, but a complex system requires developers on the team who understand the
complexities of various technical areas in the system as well as the patterns generally
used to deal with those complexities.

Finally, complex systems require the leadership of a master developer with the skills to
facilitate collaborative efforts across multiple development teams. For example, assume
there are different technical teams working on the user interface and the database. As
developers on each team make decisions and tradeoffs, it is important to integrate their
problem-solving efforts with each other as well as with the needs of the customer. The
communication necessary to assure this happens would be the responsibility of the master
developer.

Tool 19: Refactoring
Engineering historian Henry Petroski has written extensively about how design actually
takes place.[15] Engineers start with something that works, learn from its weaknesses, and
improve the design. Improvement comes not just from meeting customer demands or
adding features; improvements are also necessary because complex systems have effects
that are not well understood at design time. Suboptimal choices are an intrinsic part of the
process of engineering complex designs in the real world. It is not reasonable to expect a
flawless design that anticipates all likely contingencies and cascading effects of simple
changes. Design researcher Donald Norman notes that it takes five or six attempts to
really get a product right.[16]

[15] See, for example, Petroski, Design Paradigms.

[16] Norman, The Design of Everyday Things, 29.

Most of the concerns we hear about iterative development involve fears that an iterative
approach will result in an ineffective architecture or design. Where do people get the idea
that all good design happens at the beginning of a project? Many people involved in
developing products understand that great designs evolve over time. The more complex
the system, the more important design evolution becomes.

This thinking is echoed in lean manufacturing practices, where continuous improvement
is a key strategy. No one expects a manufacturing process to be perfect—it is simply too

complex. Instead, production workers are expected to stop the line when things are not
perfect, find the root cause, and fix it before continuing with manufacturing. The Toyota
Production System started out with a few practices, which were continuously improved
by thousands of production workers over decades. Even today, this effective,
comprehensive manufacturing system is still being improved.

We need to adopt the attitude that the internal structure of a system will require
continuous improvement as the system evolves. Just as manufacturing processes are
continuously improved by production workers, so must a software system be
continuously improved by developers. In fact, you are using many software products that
have been through multiple releases; no doubt, the design of each product has been
improved several times. Refactoring—improving the design as the system develops—is
not just for commercial software. Without continuous improvement, any software system
will suffer. Internal structures will become calcified and fragile. In a surprisingly short
time, the system will cease to be useful.

Keeping Architecture Healthy

The need for refactoring arises as architecture evolves and matures, and new features are
requested by users. New features can be added one at a time to the code, but generally
new features are related, and often it would be better to add an architectural capability to
support the new feature set.[17] This often comes about naturally as a refactoring to remove
duplication when you add the second or third of a set of related items.

[17] See Hohmann, Beyond Software Architecture, for a discussion of adding architectural capabilities to support features.

Entering Addresses
I was working on a data entry application that started with the entry of a name
and address. We put in the code for a name and address. Later, the application
was expanded, and now we had to enter names and addresses in five different
places. Each place had a slightly different twist. In one place, only a Minnesota
address was valid, in another place there had to be a country code, in a third
place the address was to default to a previous field, in the fourth place the
address needed to provide for multiple names.

At this point the address entry features were crying out for a general-purpose
address entry capability in the architecture, one that could handle field defaults,
multiple entries in a field, field validation, and optional fields. Rather than code
each feature, we needed an architectural capability for address entry.

—Mary

If features such as address entry are added to the system in several different places with a
different twist at each place, the system will lose conceptual integrity. Resist the

temptation of the brute force approach and add the architectural capability. If you let crud
build up in the system, its integrity will begin to degrade, and you will eventually have to
pay the debt.[18] Regular refactoring is what keeps systems healthy over time.

[18] Ibid.

A Reward for Developers
Microsoft keeps the same team working on a product such as Excel over
multiple releases. After the team has worked hard to complete a release, the
members are rewarded with a couple of months in which they are allowed to
clean up the underlying structures of the code that bothered them the most while
working on the release.[19]

[19] Cusumano, Microsoft Secrets, 280–281.

Maintaining Conceptual Integrity

There are several good books and other sources of information on refactoring,[20] so we
will not attempt to cover the same ground. Instead, we highlight the key characteristics of
a system with conceptual integrity. When a system begins to lose these characteristics, it's
time to refactor.

[20] See Fowler, Refactoring; Beck, Test-Driven Design; Shalloway and Trott, Design Patterns Explained. See also www.refactoring.com.

1. Simplicity. In almost every field, a simple, functional design is the best design.
Experienced developers understand how to simplify complex code, and in fact,
most software development patterns are aimed at bringing simplicity to a complex
system.

2. Clarity. Code must be easy to understand by all those who will eventually work
with it. Every element should be named to communicate clearly what it is or does
without the need for comments. Well-understood naming conventions, using a
common language, code clarity, simple notation, encapsulation, and sparse,
focused comments are but a few of the techniques that contribute to easily
understood code.

3. Suitability for Use. Every design has to accomplish its intended purpose. A fork
that is difficult to eat with is not well designed. A user interface that is not
intuitive is not suitable for a consumer Web site. When tests show performance
has degraded to an unacceptable level, the issue should be promptly addressed
even if it means changing the design.

4. No Repetition. Identical code should never exist in two or more places.
Repetition indicates an emerging pattern and should send up a flare calling for
design clarification. When changes have to be made in more than one place, the
possibility for error grows exponentially, so duplication is one of the biggest
enemies of flexibility. The evil of duplication extends beyond code. Every piece

of knowledge should have a single, authoritative, ambiguous representation in the
system.[21]

[21] See Hunt and Thomas, The Pragmatic Programmer, 26–33, on the DRY (Don't Repeat Yourself) principle.

5. No Extra Features. When code is no longer needed, the waste involved in
maintaining it is large. If it is there, it has to be stored, compiled, integrated, and
tested every time the code is touched. Get rid of it![22] The same is true of just-in-
case features that anticipate possible future needs. Anticipating the future is
usually futile and consumes valuable resources. You can take an option on the
future by delaying decisions, but don't predict the future by providing extra
features before they are needed.

[22] This is very difficult to do with user-visible features of software products; somewhere, some user probably has come to depend
on the feature. This emphasizes the need for not adding just-in-case features in the first place.

Good design evolves over the life of a system, but this does not happen by accident; poor
code does not get better by being ignored. When a developer finds something wrong with
the code base, something that interferes with the smooth flow of development or its
smooth execution, then she or he should stop the line—stop adding new features. The
team should take the time to find and fix the root cause of the problem before proceeding
with more development.

Useful refactoring requires a good sense of design. Inexperienced teams have been
known to change code repeatedly without improving the design; we have heard
complaints that some teams spend too much time perfecting unimportant details.
However, we have also heard experienced designers say that the one mistake they made
in developing a system was not refactoring aggressively enough. Clearly, the amount of
refactoring that is appropriate for a system is a design judgment.

Isn't Refactoring Rework?

Conventional wisdom holds that sequential development should result in better products
with less risk, while overlapping design and development will lead to expensive and
time-consuming rework. On the contrary, as we discussed in detail in Chapter 3, "Decide
as Late as Possible," concurrent development usually results in better, cheaper products,
faster and with less risk. Concurrent development means that the design of the product
emerges throughout the development process. Improving a design during the
development process is most certainly not rework; it is good design practice.

Okay, you say, but there isn't time to stop development to improve the design. We would
argue that there isn't time not to refactor. Work will only go slower as the code becomes
complex and obscure. As suggested by Figure 6.4, incurring a refactoring debt will kill
team productivity. Just like advertising, refactoring doesn't cost, it pays. No one at Toyota
would think that stopping a line to find and fix a problem slows things down. They know
that focusing on relentless improvement makes the line go faster.

Figure 6.4. Continuously improving design sustains productivity.[23]

[23] This is the inverse of the cost of change curve. Changes will happen. If your practices and discipline keep the cost of change low, your
productivity will be sustained even when change happens.

Refactoring is not waste; on the contrary, refactoring is a key method for avoiding waste
in providing business value to customers. A well-designed code base is the foundation of
a system that can respond to the needs of customers both during development and
throughout the useful life of the system.

A key tool that goes hand in hand with refactoring, and in fact makes refactoring
possible, is automated testing. This is covered in the next section.

Tool 20: Testing
Imagine a complex assembly machine that puts together videocassettes. It has 15
assembly steps, each followed by a test step: position, test, position, test.… At one step, a
robot puts a part in place; at the next step a sensor checks to be sure that the part is there.
As you move down the manufacturing line, you find that every time something is done, a
test follows to be sure it was done correctly. These tests assure that there are no missing
or misaligned parts and that all the parts fit together as the product is being assembled.
When a videocassette passes these tests, you know it was put together the way it was
designed.

During manufacturing, a representative sample of videocassettes are pulled off the line
and put into a test bed to be sure that they function smoothly and play back high quality
video in a variety of machines currently in use by consumers. These tests show that the
videocassettes will work correctly when they are actually used.

In software development, we also test that design intent is achieved and that the system
does what customers want it to do. When developers write code, there should be a test to
be sure that each feature works as intended and that all of the pieces work together. These
tests have been categorized as unit tests, system tests, and integration tests. As we move
from programming one module at a time to programming entire capabilities and features,
the distinction between unit, system, and integration tests has less meaning. A better
name for these tests might be developer tests, because their purpose is to assure that code
does what the developer intended it to do.

Tests to be sure that the system does what customers want have been called acceptance
tests, but this term has traditionally been used to refer to tests that run at the end of
development. A better name for tests that make sure that a system does what customers
intend is customer tests, since their purpose is to assure that the system will do what
customers expect it to do. Customer tests are run throughout the development, not just at
the end.

Tests play several pivotal roles during the software development process. First, tests
unambiguously communicate how things are supposed to work. Second, they provide
feedback on whether the system actually works the way it is supposed to work. Third,
tests provide the scaffolding that allows developers to make changes throughout the
development process, making tools such as last responsible moment, set-based
development, and refactoring useful in practice. When development is done, the test suite
provides an accurate representation of how the system was actually built. Finally, by
developing and maintaining test suites for all systems in production, making changes to
production systems that interact with each other can be done safely by running a full suite
of tests for all related applications.

Communication

When a product is released to manufacturing, tests are released along with it to tell the
manufacturing organization exactly what constitutes an acceptable product. In the same
way, developer tests convey exactly how the system is supposed to work internally, while
customer tests convey by example exactly what customers need an application to do.

Customer tests can be a viable replacement for, or supplement to, most requirements
documents. Suppose a developer has a conversation with a customer about details of a
feature. The conversation should not be considered complete until it is expressed as a
customer test. Whether the test is written by a customer representative, tester, or
developer, it is a precise description of how the feature should work for the customer.

Now imagine a quick design session among developers determining how the feature will
be implemented. The implementation is not complete until the design details are
exercised by developer tests. By documenting the design in tests, developers can write
code with a clear understanding of exactly what it is supposed to do. This is a good way
to refine thinking and help developers write code with conceptual integrity.

There are alternatives to writing tests as a communication device prior to coding, but
there is no alternative to writing tests to demonstrate whether the system does what it is
supposed to do. So, you may as well get double duty out of tests by using them to
document what the system is supposed to do, just as manufacturing often uses tests to
convey product specifications.

Feedback

When a developer writes code, she or he should get immediate feedback about whether
the code works as intended. In other words, there should be a test for each mechanism the
developer implements. In fact, developers will find a way to test their code as soon as it is
written anyway; this is how code is developed. Why not capture that test and use it? You
are going to test the system anyway, so you may as well capitalize on the fact that
development is a cycle of experiments with a successful test at the end of each cycle.

The reason you are developing software in short iterations is so that you can provide
feedback about how the system works to the customers or customer representatives and
get their input on how to proceed. In order to get that feedback, you need to show them
what the software developed during the iteration does for them. In other words, you need
a set of demos or scripts that demonstrate the developed functionality. These need to be
understood by customers well enough to be sure that everything they care about is
successfully implemented in the iteration. So, why not have testers on the team to write
customer tests during each iteration? Since you are going to demonstrate features at the
end of the iteration anyway, you may as well capture the demonstration in tests.

As long as you've got them, developer and customer tests should be automated as much
as possible[24] and run as part of the daily build. If the tests are not automated or if they
take too much time, they won't be run often enough. Big batches of changes will be made
before testing, which will make failure much more likely, and it will be much more
difficult to tell which change caused the tests to fail.

[24] For a discussion on deciding when to automate tests, see Marick, "When Should a Test Be Automated?"

Scaffolding

Scaffolding is a supporting framework that allows workers to do things that would
otherwise be dangerous. If you develop software in iterations, delay decisions until the
last responsible moment, and use set-based development and refactoring, you are going
to be making serious changes to code once it has been written. This is dangerous, as we
all know, because changes tend to have unintended consequences. Any nontrivial system

requires that hundreds of thousands of details must all be correct at the same time. Many
of these details interact with each other in ways far too complex to anticipate. The larger
the code base, the more devious the interactions might be. To make changes safely, there
must be a way to immediately find and fix unintended consequences. The most effective
way to facilitate change is to have an automated test suite that tests the mechanisms the
developers intend to implement and the behavior the customers need to have. A test suite
will find unintended consequences right away, and if it is good, it will also pinpoint the
cause of the problem.

In this sense, automated test suites are scaffolding that provides safety and access to the
builders of the software system as they complete the construction of a partially built
edifice. You can't effectively use the other tools in this chapter without this scaffolding. It
may seem like writing tests slows down development; in fact, testing does not cost, it
pays, both during development and over the system's lifecycle.

When you think about it, the tests are there for you to find, formalize, and automate,
because developers somehow check their work as they code, and ways are found to
demonstrate to customers how the system works at the end of iterations. The thing you
need to do is capture those tests, make sure they are correct and complete, put them under
version control, automate them, consider them as part of the released product, and
continue to use and improve them. You might end up with as many lines of test code as
of product code, but the benefit will far outweigh the cost.

As-Built

The Importance of As-Built
Drawings

At the end of July 2002, news stories told of the dramatic rescue of nine men
from the flooded Quecreek coalmine near Somerset, Pennsylvania. The men
were trapped deep in the mine after they drilled into an abandoned mine full of
water.

Drawings of the abandoned mine had not been updated to show a large cavern
that was dug just before the old mine was closed. An updated map was
subsequently found, but it was not available to the miners as they worked. So
they drilled into the water-filled cavern, not knowing it was there.

Mining is not the only industry with inaccurate maps. It's a safe bet that your
city does not have accurate as-built maps of its underground infrastructure. For
that matter, few buildings have accurate as-built or as-maintained drawings.

It doesn't come as a surprise that it is difficult, if not impossible, to maintain accurate as-
built documentation of software. Heroic attempts are made to do this with safety-critical
software, but as the coalmine accident shows, there can always be lapses. However, if a

system has a comprehensive test suite that contains both developer tests and customer
tests, those tests will in fact be an accurate as-built reflection of the system. If the tests
are clear and well organized, they are an invaluable resource for understanding how the
system works from a developer's and a customer's point of view.

The other thing a test suite does is give an indication of the health of the as-built system.
Defect counts, types, and trends are a very good indication of whether a system is
converging, when a product is ready to ship or deploy, and how robust the system is.

The bottom line is, you should have complete, automated (as far as practical) suites of
developer and customer tests. They should be subject to the same discipline in design,
semantics, versioning, builds, synchronization, and refactoring as the system itself. If
there doesn't seem to be enough time, the first thing to do is reallocate the effort used in
requirements documentation to writing customer tests. Require developers to write and
automate their own developer tests, while providing training and coaching in test
development and automation. You will get more payoffs from an effective test program
than from most other investments you might make.

Maintenance

The software industry needs to find a way to make software easy to change after it is
running in production, since well over half of development occurs after initial release.
Furthermore, making changes to production software has to be economical—that is,
changes must be made relatively quickly and at a reasonable cost. There are many ways
to make software more changeable—layering, clumping, and hiding potential variability;
components; use of commercial software; and so on. It is also a good idea to have the
development team retain responsibility for application maintenance to preserve domain
learning. All of these techniques are important, but we must add one other mechanism
that to the list: maintaining a set of comprehensive tests throughout the lifecycle of the
system. If a scaffolding of tests was built during development, all you have to do is re-
erect the scaffolding and proceed with the changes. Then, the system can be safely
repaired and refactored throughout its useful life. Scaffolding is as useful for maintenance
as it was for the original construction.

Let's say you have a complex system with many applications using common services—a
common database, middleware, or hardware, for example. You know enough about
complex systems by now to suspect that a change in any one application could have an
adverse reaction on an unrelated application. Since you don't have a reliable set of as-
built documentation, you have to figure out for yourself how all the systems actually
work before you can safely change any of them. No wonder maintenance is so difficult.

What you need is the test suite for each application, developed as scaffolding for change
during development. These tests, assuming you keep them healthy, constitute an accurate
set of as-built documentation for all the applications in your environment. If each
application has an up-to-date test suite to prove its integrity, you can test the entire
environment before a change is released.

Try This
1. Pick one of your current systems and find out if it has a common language. Chat

with the customers and write down a glossary of what they consider key terms
that they use when talking about the system. Take this glossary to the
development team and find out if they use the same words or if they have a
technical translation for some domain terms. Next, ask the developers to identify
in the code the names they use for each word in the combined glossary. Finally,
see if there are any key classes in the systems that are not represented in the
glossary. If you detect that there are two or three different vocabularies in use,
explain to the development team why it is important for them to use the domain
language, even among themselves.

2. Hold a team meeting and invite any of the following people who normally would
not be there. People who will

a. test the system
b. deploy the system
c. train the users
d. be responsible for operating the system in production
e. work at a help desk for the system
f. maintain the system
g. develop or maintain any system accessing the same data

Have the assembled group brainstorm any concerns they have about the system
under development. Then, use prioritization to pick the three most important
issues. Form a joint committee of interested parties to address the three issues.
Meet again in two weeks to be sure the three issues have been resolved, and
repeat the process.

3. Put five sheets of flip chart paper on the wall in the team room. Label the top of
each sheet:

a. Simplicity
b. Clarity
c. Suitability for Use
d. No Repetition
e. No Extra Features

Ask each developer to note on the appropriate piece of paper anything in the
current system that does not seem to meet the standard. For instance, if they detect
repetition, they would note the culprits on the No Repetition sheet. When
refactoring has removed an offending item, it is crossed off the list. At the end of
the iteration, let the team take a day or two to clean up the worst offenders on the
charts.

4. Estimate the average cycle time of the following:
a. Time from writing feature until developer test is run.

b. Time from writing feature until it is integrated into system and automated
developer test suite is run.

c. Time from writing feature until customer test is run.
d. Time from writing feature until usability test is run.
e. Time from writing feature until deployment.

Next, write down a target cycle time for each item. Attack this list from top to
bottom: Work with the team to come up with a plan to bring each cycle time
down to its target number, and one by one, close the gap.

Chapter 7. See the Whole
Systems Thinking

Tool 21: Measurements

Tool 22: Contracts

Try This

Systems Thinking
A system consists of interdependent and interacting parts joined by a purpose. A system
is not just the sum of its parts—it is the product of their interactions. The best parts do not
necessarily make the best system; the ability of a system to achieve its purpose depends
on how well the parts work together, not just how well they perform individually.

Systems thinking looks at organizations as systems; it analyzes how the parts of an
organization interrelate and how the organization as a whole performs over time. When
this analysis is done by constructing a computer simulation of the organization's
behavior, it is called system dynamics. System dynamics analysts construct a computer
model by interviewing people to discover the organization's operating policy for making
decisions and the feedback loops within the organization. Analysts generally find broad
agreement within an organization on how decisions are made, and they find that most
people make consistent decisions based on appropriate data. However, the computer
simulation usually reveals surprising unintended consequences of seemingly correct
policies, pointing out that that the broader impact of local policies is not well understood.

Systems dynamics guru Jay Forrester reports that a computer model based on known
policies in a company often predicts the very difficulties that the company has been
experiencing. He notes that the policies established to solve a problem will often
exacerbates the problem, creating a downward spiral: As a problem gets worse, managers
apply even more aggressively the very policies that are causing the problem.[1]

[1] Forrester, System Dynamics and the Lessons of 35 Years.

We often see this dynamic in software development. When an organization experiences
software development problems, there is a tendency to impose a more "disciplined"
process on the organization, usually one with more rigorous sequential processing:
Document requirements more completely, obtain written customer approval, control
changes more carefully, and trace each requirement to the code. If an organization lacks
basic development discipline, the imposition of a rigorous sequential process may
initially improve the situation. Systems thinking warns that just because things get better
does not mean the "cure" is the right one. The delayed effects of a sequential process in
an evolving environment will eventually take their toll; it will become increasingly
difficult to keep the system in line with current customer needs. At that point, pushing an
even more rigorous sequential process will initiate a downward spiral.

One of the basic patterns in systems thinking is called limits to growth.[2] Even as a
process produces a desired result, it creates a secondary effect that balances and
eventually slows down the success. If you continue to push on the same process for
increased success, you will amplify the secondary effect and start a downward spiral.
Instead of pushing growth, find and remove the limits to growth.

[2] Senge, The Fifth Discipline, 95.

Finding and removing the limits to growth is the fundamental teaching of the theory of
constraints.[3] The idea is to seek out and remove the current constraint to growth,
recognizing that the constraint will move to another place once the current constraint is
addressed, so this is an ongoing process. In fact, policies from the past may actually
become today's constraints.[4]

[3] See Goldratt, The Goal, and Theory of Constraints.

[4] See Goldratt, Necessary But Not Sufficient, 125, 210.

A second basic pattern in systems thinking is called shifting the burden.[5] In this pattern,
an underlying problem produces symptoms that can't be ignored. However, the
underlying problem is difficult to confront, so people address the symptoms instead of the
root cause of the problem. Unfortunately, the quick fix allows the underlying problem to
grow worse, unnoticed because its symptoms have been covered up.

[5] Senge, The Fifth Discipline, 104.

Lean thinking uses five whys[6] to counter the tendency to shift the burden to symptoms
rather than addressing the root cause of a problem. The five whys work like this: Say you
have a problem with an increasing number of defects. You ask why the defects occur and
find out that a new module has been added that has unintended consequences. Next, you
ask why the new module generates defects in other modules.

[6] Ohno, The Toyota Production System, 17.

You find out that it was not tested. You ask why it was not tested and find out that the
developers were under pressure to deliver it before it was tested. You ask why there was

such pressure and find out that someone thought that developers work better with hard
deadlines, so an artificial deadline was enforced. But you are not done. You have at least
one more why to ask before you arrive at the root of the problem. You ask why someone
felt that artificial deadlines were necessary and find that the manager has an intense fear
of software schedule overruns. So, you spend time with this manager explaining how the
backlog burndown chart[7] works and how it shows that the system is converging, and slip
in an explanation of how the unreasonable schedule pressure is actually increasing
defects and prolonging the schedule.

[7] See Chapter 2, "Amplify Learning," Figure 2-6.

A third basic pattern in systems thinking is suboptimization. The more complex a system,
the more temptation there is to divide it into parts and manage the parts locally. Local
management tends to create local measurements of performance. These local
measurements often create systemwide effects that decrease overall performance, yet the
impact of local optimization on overall results is often hidden. We discuss this pattern in
depth in the next section.

Tool 21: Measurements
Lance Armstrong won the Tour de France each year from 1999 to 2002, yet he won only
a few of the daily stages:

1999: Won 4 out of 21 stages 2001: Won 4 out of 21 stages

2000: Won 1 out of 21 stages 2002: Won 1 out of 21 stages

Armstrong knows that winning the race is not about winning stages. If he had focused on
winning each stage, his chances of winning the race would have been slim to none. The
Tour de France is not a race where winning each day is an attainable objective. Of course,
if a rider could win every day, he certainly would win the race. But bicycle racers know
that trying to win every stage is a very bad strategy. The idea is to keep ahead of every
else's overall time, not to exhaust oneself by trying to beat a fresh new competitor every
day.

We have a tendency to decompose a big job into smaller tasks, sort of like the stages of
the Tour de France. It seems obvious, then, that the way to get the best overall result is to
optimize the results of each individual job, because we believe that if we get top
measurements on each task, they will add up to the top measurement on the job. But just
like the Tour de France, optimizing every task is often a very bad strategy.

Machine Utilization
At our video tape manufacturing plant, we used big, expensive machines to
make video tape. Very expensive. Each product made on these machines had to

help pay for the machine. The monthly depreciation of a machine was charged
to products based on their time in the machine.

We never knew exactly how much our products were going to be charged for
machine time. If a machine spent half a month undergoing maintenance, the
monthly depreciation was spread across only half the usual number of products,
so a product made on the machine that month was charged twice as much.

Machine costs were a big part of unit costs, so obviously the way to lower unit
costs was to run the machine flat out all month, spreading its monthly
depreciation across as many units as possible. And that's what we did. That's
what everybody did. It only made sense.

But running a machine flat out is sort of like trying to win every stage of the
Tour de France—it gives good numbers in the short run, but they don't add up to
final profits. Why? When a machine runs flat out, it builds up inventory. A pile
of stuff is needed in front of the machine to keep it busy, and a pile of stuff
collects at the back of the machine as it makes stuff that isn't really needed.
These mounds of inventory clog the arteries of the plant and make it very
inefficient.

That's what we learned when lean production came to our plant in the 1980s.
One of our sister plants went from shipping in 6 weeks to shipping in 6 days,
using one-tenth the floor space, and making better product while they were at it.
When we stopped trying to make every machine as productive as possible,
profits improved.

The culprit was measurements. We were rewarded for high machine utilization
and low unit costs. Our accounting system also perversely rewarded us for
keeping inventory high, because inventory comes out on the asset side of the
books. When we decided not to make anything until it was needed, we reduced
machine utilization, increased unit costs, and lowered assets. Our cost
accountants were not happy to see all of these numbers move in the "wrong"
direction.

Cost accounting theory told our accountants that the total cost of production
equals the sum of the costs of each operation.[8] It took them a while to
understand that low unit cost and high utilization did not necessarily increase
profitability, and in fact often had a negative effect on it.[9]

—Mary

[8] See Koskela, An Exploration Toward Production Theory and Its Application to Construction.

[9] This is the subject of The Goal, by Eliyahu M. Goldratt.

Local Optimization

We recently encountered a testing department that is measured on the applied ratio of
testers, that is, the percent of the available testing hours that are recharged to other
departments. To drive applied ratio numbers up, the department manager keeps the
number of testers low and lets a big pile of work stack up ahead of every tester to be sure
everyone always has plenty of work to do. The customer departments with systems to test
have to wait a long time for testing, which increases their cycle time, reduces their
feedback, and generally results in poorer quality products with more defects. This drives
up the amount of testing needed, thus driving up the workload of the testing department.

Focusing on applied ratio in testing is the same as focusing on machine utilization in
manufacturing. Although manufacturing managers and their accountants have learned
that this is a suboptimizing measurement, this testing department and its accountants has
yet to learn the same lesson.

One of the more challenging problems in measuring performance is that measurements
occur at local levels, but maximizing local measurements is often at crosspurposes with
optimizing the organization as a whole. Yet it is often not apparent that local optimization
is hurting the entire organization, as in the case of the testing department. The costs of
accumulating inventory—whether it is work waiting to be done or extra features added
just-in-case—are hidden to the measurement system. The economic benefit of the rapid
flow of value through the value stream is also hard to measure, yet increasing flow is an
excellent way to identify and eliminate the waste created by suboptimizing
measurements.

Focusing exclusively on local measurements has a tendency to inhibit collaboration
beyond the area being measured, because there is no reward for it. Using the testing
department again, the testers were not measured on their ability to collaborate with
developers and help decrease defects, so they probably didn't get involved in improving
the development process. As we saw in Chapter 5, "Empower the Team," Nucor
addresses this issue by basing incentives on measurements one level higher than one
would expect. If we applied the same concept in this case, developers and testers would
be jointly recognized for a low defect rate, giving them more incentive to collaborate.

Why Do We Suboptimize?[10]
[10] See also Austin, Measuring and Managing Performance in Organizations, Chapter 14.

While Lance Armstrong knows not to try to win every stage of a bicycle race, sub-
optimizing behavior is not so obvious to others. The detrimental effects of local
measurements on overall performance are usually hidden, and so we persist in using sub-
optimized measurements out of superstition and habit.

Superstition

Superstition is an unsubstantiated association of cause and effect. Some superstitions are
harmless. For instance, you wear your red shirt and your team wins. In fact, every time
you wear your red shirt, the team wins, and when you forget, it loses. You know your red
shirt isn't causing the team to win, but you'd like to think it is.

Some superstitions are more harmful. For instance, when the applied ratio of testers is
high, profits go up. You assume a high applied ratio goes straight to the bottom line.
When applied ratio goes up further and profits fall, you attribute the fall to something
else. You have a superstition that high applied ratio means high profits.

Habit

The testing department manager may be optimizing applied ratio out of habit—that's the
way the department has always been run. The typical project measurements of cost and
schedule control are often done out of habit also. You might not really believe they are
the most important measurements of a project's success, but they are what everyone
measures, so they must be important.

The Unimportance of Cost and
Schedule

I led several new product development programs at 3M, and I never thought
much about cost and schedule. Development costs that occur before a product is
released to the market are not tracked to the product.

New-to-the-world products are expected to be based on inventions, and
everyone knows you can't schedule an invention. For such a product, the cost of
delay is relatively low, because there is no competition to take the market away.
There is great eagerness to get the product on the market as fast as possible, and
a simple version of the product is often test-marketed as early as possible. Still,
schedule is simply one of a number of tradeoffs considered by the development
team.

For line extension products, schedule is often driven by a marketing request to
place the new product in an annual show. The development team works very
hard to accommodate such a request, with the clear recognition that if a product
does not pass quality tests, it misses the show.

What really drove our new product development programs was the P&L our
team accountant developed early and updated often. This and the marketing plan
told us the whole story—where we needed to reduce unit cost, when we had to
introduce the product, how many features we needed at introduction, how to
make tradeoffs. Who needs cost and schedule control when you are navigating

from a business plan?

Many people are jarred by the idea that a company that develops new products
so successfully does not manage product development projects by cost or
schedule. Why? They have fallen into the habit of thinking that cost and
schedule are the important things in managing a project. It's hard for them to
think of these as suboptimizing measurements. Yet a focus on cost and schedule
would have distracted us from our ultimate objective: Develop and
commercialize a profitable new product that meets a customer need and has a
competitive advantage.

—Mary

Measuring Performance

"When you try to measure performance, particularly the performance of knowledge
workers, you're positively courting dysfunction." These are particularly strong words
from Tom DeMarco and Timothy Lister in the forward to Rob Austin's book Measuring
and Managing Performance in Organizations, but if you read the book, you might have
second thoughts about measuring performance.

Austin's theory makes a lot of sense.[11] His premise is that people will try to optimize the
measurements that their performance is measured against. So far, you probably agree.
The problem is, it is very difficult to measure everything that is important with
knowledge work, especially where each effort is unique and uncertainty reigns. You
probably agree with that too. So you measure what you can—that should make enough
things work right that you will get the overall results you want, right?

[11] Ibid., Chapters 5 to 10.

Not exactly. The basic rule that you get what you measure still holds. If you cannot
measure everything that is important, partial measurements are very likely to turn into
suboptimized measurements. If you can't measure everything that is necessary to
optimize the overall business goal, then you are better off without the suboptimizing
partial measurements. Otherwise, you are in serious danger of encouraging suboptimized
behavior.

Our culture is adverse to this conclusion; performance measurements seem so
fundamental to the way we do business. Austin notes that since most managers want to
use performance measures, they try to create measurements that will cover everything.
They do this in three ways:[12]

[12] Ibid., 103–104.

1. Standardize. Standardize by abstracting the development process into sequential
phases and standardize on how each phase should be done. Then, measure
conformance to the process.

2. Specify. Create a detailed specification or plan, measure performance against
plan, and find variation from the plan.

3. Decompose. Break big tasks into little tasks and measure each individual task.

If Austin is right on this, traditional software development management practices come
from a desire to measure complex, unstructured work by disaggregation. Unfortunately,
such measures will most likely encourage suboptimizing behavior because they still do
not measure everything that is important. The way to be sure that everything is measured
is by aggregation, not disaggregation. That is, move the measurement one level up, not
one level down. Recall that Nucor measures group, not individual, productivity; 3M
measures profitability of the business created by a product, not its development costs.

Information Measurements

Measurements are important for tracking the progress of software development. For
example, defect counts are very important in gauging the readiness of software for
release. However, information measurements, not performance measurements, should be
used for this purpose. Information measurements are obtained by aggregating data to hide
individual performance. A defect measurement system is a performance measurement
system if it attributes defects to individuals; it becomes an informational system if it
aggregates defects by feature. Austin is quite explicit that it is important to aggregate
performance measurements rather than attribute them to individuals.[13]

[13] Ibid., Chapter 13.

But why shouldn't defects be tracked by developer? Wouldn't that help developers
improve their level of performance? The problem with attributing defects to developers
lies in the assumption that individuals personally cause the defects. It was once thought
that factory workers personally caused quality defects, and if they would only be more
careful, there would be fewer defects. Then, we learned from the quality movement in the
1980s that less than 20 percent of all quality defects are under the worker's control; the
rest are rooted in the prevailing systems and procedures, which are under management
control, not worker control.[14]

[14] This is attributed both to Joseph M. Juran and to W. Edwards Demming. See Juran, Juran's Quality Handbook, and Demming, Out of
Crisis.

We submit that the same insight is true in most software development environments: The
vast majority of defects have their root cause in the development systems and procedures,
and trying to attribute defects to individual developers is a case of shifting the burden.
We are not looking for the root causes of the problems if we trace defects to individuals;
rather, we are hiding them. The way to find the root cause of defects is to encourage the
entire development organization to collaborate in seeking them out. Attributing defects to
individuals discourages such collaboration, while aggregating them into informational
measurements that are not traced to individuals assists in finding their cause.

Tool 22: Contracts

Can There Be Trust Between Firms?

We often hear the lament, "Agile development sounds good, but how does it apply to me?
I have to work under contract." Without doubt, the biggest barrier to using agile practices
is the sharp line between one firm and another. Each firm is expected to look out for its
own interests, with the understanding that the other firm will be doing the same thing. It
would seem, then, that the only safe approach is to write an airtight contract, because
people move to new jobs, rules change, and then the only thing that matters is what's in
the contract.

Actually, there is a better way, one that was pioneered by Toyota when it started working
with U.S. suppliers in 1988 and was documented by Jeffrey Dyer in Collaborative
Advantage. Of course, Toyota negotiated contracts with its suppliers, but the contracts
were not the primary vehicles that protected the suppliers' interests. In a surprisingly
short time, suppliers developed trust in Toyota, and in 1998, Toyota was rated by auto
suppliers as the most trusted automaker in the country, scoring twice as high as General
Motors.[15] Trust in this case has a specific meaning:

[15] Dyer, Collaborative Advantage, 90.

• The extent to which the automaker can be trusted to treat a supplier fairly.
• The extent to which the automaker might try to take unfair advantage of the

supplier.
• The automaker's reputation for fairness among the supplier community.

This kind of trust does not come from individuals trusting each other. Suppliers may trust
an individual purchasing agent completely. But they can't trust that the same person will
be there a year later, or that whoever is there still will be playing by the same set of rules.
Suppliers developed "a greater trust in the fairness, stability, and predictability of
Toyota's routines and processes."[16]

[16] Ibid. 100.

Dyer notes that suppliers share proprietary information with Toyota, confident that it will
not find its way to their competitors, as sometimes happened with General Motors.
Suppliers invest in specialized equipment for Toyota, knowing that Toyota does repeat
business with its suppliers 90 percent of the time, while they had only a 50 percent
chance of repeat business from GM. Suppliers let Toyota experts into their plants to teach
them the Toyota Production System, understanding that Toyota will not demand price
reductions based on their findings, as GM has been known to do.[17]

[17] Ibid., 94, 97, 101–103.

It's not that Toyota doesn't look out for its own best interests; it's just that Toyota
understands that a strong supplier network is far more beneficial to its interests than
short-term gains that come from taking advantage of a supplier. Toyota, in the United
States, obtains about three-quarters of its components from suppliers, while U.S.

automakers obtain less than half of their components from suppliers. Yet Toyota spends
half as much money and half as much time on procurement as GM. In addition, suppliers
are more productive and produce better quality in manufacturing cells devoted to
Toyota.[18] As an organization, Toyota is keenly aware that partnership relationships rather
than arm's-length relationships with the bulk of its suppliers better serve its best interests.

[18] Ibid., 5–7.

Another company that achieves high value from partnerships with suppliers is Dell,
which thus far has outperformed and outlasted most of its competitors in the highly
competitive market of selling personal computers. To do this, Michael Dell focused
company efforts on understanding the perception of value in high-margin customer
segments and then delivering that value as rapidly as possible. This means the company
does not focus on making hardware or software; that would be a distraction. Instead, Dell
has worked to establish sophisticated win-win arrangements with its suppliers, which
operate to the mutual benefit of both parties.[19]

[19] See Magretta, "The Power of Integration: An Interview With Michael Dell."

But Software Is Different

You might be saying to yourself that good supplier relationships are important when the
supplier is developing something it can manufacture many times over, like a disk drive or
a taillight. But in software, we develop a system only once; it is complex and expensive;
it is subject to many changes; and if not done right, the financial impact can be
tremendous. Where is the parallel to this in manufacturing?

At the beginning of Chapter 3, "Decide as Late as Possible," we discussed the large and
expensive metal dies used to stamp out vehicle body panels. The cost of these dies
accounts for close to half of a new model's capital investment. They are complex,
expensive, and subject to many changes, even after the design is supposedly frozen.
Correcting a mistake made in cutting a die is very time consuming and it's expensive to
start over again. Yet in the late 1980s Toyota developed dies for half the cost and in as
little as half the time using concurrent development practices, compared to the typical
U.S. company using sequential development. Moreover, the resulting dies gave Toyota a
significant cost advantage in the manufacturing process.[20]

[20] See Clark and Fujimoto, Product Development Performance, 187, 234–237; see also Womack, Jones, and Roos, The Machine That
Changed the World, 111.

Tool and die makers are supplier companies in both the United States and Japan. U.S.
automakers waited until the design specs were frozen, and then sent the final design to
the die cutting supplier, which triggered the process of ordering the block of steel and
cutting it. Changes had to be approved and officially sent to the supplier by the
purchasing department. Since suppliers had to bid low to get the job, they made most of
their profits from the change orders, which amounted to 30 percent to 50 percent of the
die cost.[21]

[21] . Clark and Fujimoto, Product Development Performance, 187.

In Japan, the tool and die suppliers start working on a die at the same time the car design
is started. Die cutters are expected to know what a die for a part will involve, and they are
in constant communication with the designer. Suppose that a body engineer wants a
change made. The body engineer goes directly to the die-cutting shop, discusses the
proposed change with the die engineers, checks production feasibility, and together they
decide what to do. The die shop makes the changes in the milling machine and keeps on
cutting the die. Paperwork and approvals follow later.[22]

[22] . Ibid., 236–237.

In Toyota, tool and die contracts are target-cost contracts; the supplier and automaker
agree on the total target cost of the tools, including all changes. Typically, changes add
10 percent to 20 percent to the base cost, and this is covered in the original contract. If the
target cost cannot be met, the parties negotiate who is to bear the added cost, and
generally, Toyota ends up with the larger share. This kind of arrangement gives the
engineers in both companies incentives to work together to keep the cost within target.

In the United States, toolmakers had fixed-price contracts that went to the lowest bidder,
so they viewed engineering changes as profit-making opportunities.[23] To contain costs,
automakers put a rigorous change approval process in place, similar to the change
approval processes found in many software development contracts. When you look at the
overall result, the U.S. approach almost doubled the cost and time necessary to make a
die.[24] Moreover, it resulted in a lower quality die.[25]

[23] . Ibid., 187.

[24] Ibid., 187, 234–237; see also Womack, Jones, and Roos, The Machine That Changed the World, 111.

[25] Due to superior die quality, typical Japanese stamping in 1990 took five shots per panel, compared to seven in the United States, saving
manufacturing time (Clark and Fujimoto, Product Development Performance, 186).

We believe that the overall impact of many contracting and scope control policies in
software development is in the same ballpark. That is, a fixed-price contract with a
vendor hoping to profit from changes, combined with rigorous change approval
mechanisms to contain cost, may approximately double the cost and time it takes to
develop the software, while producing a lower quality result.

The Purpose of Contracts

Dyer defines trust as "one party's confidence that the other party…will fulfill its promises
and will not exploit its vulnerabilities."[26] Many people think that the reason for contracts
is to substitute for this trust. Conventional wisdom says that all eventualities should be
spelled out in a contract so the parties cannot possibly take advantage of each other.

[26] Dyer, Collaborative Advantage, 88.

Many enterprises find it almost impossible to select suppliers using a process that values
good faith or to write contracts that assume that the other party will act in good faith. It is
widely held that the purpose of contracts is to limit the natural tendency of one party to
take advantage of the other party as it looks out for its own interests.[27] However, if
damaging behavior can be limited through the relationship rather than the contract, all
manner of benefits in terms of speed, flexibility, cost, and information exchange can
result. Unfortunately, these benefits are counterintuitive and difficult for a public official
to explain to a newspaper reporter.

[27] Thompson, "Public Economics and Public Administration."

Let's take a step back and examine why companies work with suppliers in the first place.
As our world gets more complex, there is a great value in specializing. If you were going
to have a rare kind of surgery, you would want to go to a hospital that specializes in it. If
Dell wants the best video display card, it collaborates with the company that makes that
card. If you want the best software for a particular area, you are likely to seek out the
companies that are experts in providing that kind of software.

Another reason to outsource software development is to reduce costs and improve the
likelihood of success. For example, an organization might find that salaries at a vendor
are lower than their own salaries. Or it might negotiate a fixed price for a system that is
lower than the internal cost to do the same work. It may find that an experienced software
development vendor might have skills sets that are not available internally.

Let's examine the cost side of the equation. Money actually paid to vendors is only part of
the story. In addition, there are transaction costs—the cost of selecting potential vendors,
negotiating and renegotiating agreements, monitoring and enforcing the agreement,
billing and tracking payments. As we demonstrated in the die-cutting example in the
previous section, the cost of trying to control changes can add huge hidden costs to a
contract, and you can expect such costs to escalate in an evolving domain.

Dyer finds that the second kind of costs, transaction costs, dominate most vendor-supplier
relationships.[28] So, when evaluating the cost of outsourcing, it is imperative that all costs
are considered: direct costs, obvious transaction costs, and hidden costs that come from
arm's-length relationships and change intolerance. These costs will be especially high in
an environment that is going to change despite heroic efforts to keep change at bay.

[28] Dyer, Collaborative Advantage, 91–96.

Let us turn our attention to the third cost of outsourcing, the lost opportunity cost that
may result if the communication bandwidth between customer and vendor is narrow. As
we saw in Chapter 6, "Build Integrity In," system integrity depends on broad, early, and
frequent communication between customer and developer. Lack of communication
between customer and vendor is a frequent cause of system failure.[29] Bear this in mind if
increasing the chance of success is a reason for outsourcing.

[29] See Ripin and Sayles, Insider Strategies for Outsourcing Information Systems, 43, 58–59.

Contracts that focus on keeping parties from taking advantage of each other have a lot of
built-in control mechanisms and communication gates that have a tendency to raise costs
and reduce the collaboration critical to success. Contracts that focus on supporting
collaboration are more likely to reduce costs and result in successful contracts.

Fixed-Price Contracts

Let's examine the most commonly used contract designed to protect the customer, the
fixed-price contract. Sometimes corporate budgeting cycles and related processes require
fixed-price contracts. For many government entities, the law requires fixed-price
contracts—often awarded to the lowest bidder. As we saw in the die-cutting example, this
practice encourages vendors to bid low and make their profit on changes. Another
motivator for fixed-price contracts is the desire of a customer to transfer risk to the
vendor. In practice, the customer can't really transfer the bulk of the risk. If the contract
doesn't work out, the customer will suffer.

As we noted in Chapter 2, "Amplify Learning" it is a good idea to develop software in
short iterations driven by immediate customer needs, developing high-priority features
first and stopping when resources run out. However, this approach is very risky for
vendors working under fixed-price contracts, because they frequently have difficulty
obtaining customer agreement that the work is done when the money runs out. Therefore,
vendors tend to protect themselves by creating a detailed specification and keeping it
under strict change control, charging extra for any changes. The result may be a
substantial increase in cost or a very disappointed customer.

Fixed Price—Unhappy Customers
"I ran a software development company which prided itself in not exceeding the
price and schedule quoted at the beginning of an engagement. In a three-year
period, we had 78 projects, and 77 of them were delivered on time, on budget,
and in scope. Then I surveyed the customers and found out that none of them
was happy! The systems that we delivered did not solve their problems. Sure,
we had protected ourselves by being on time, on budget, and in scope, but in
doing this, we could not deliver what the customers really wanted. That's why I
sold my business."

— A colleague (who wishes to remain anonymous)

Risk should be born by the party best able to manage it, and in a fixed-price contract, risk
is seemingly transferred to the vendor. If a problem is technically complex, then the
vendor is most likely to be in a position to manage the associated risk, so it is appropriate
for the vendor to assume the risk. However, if a problem is uncertain or changing, then
the customer is in the best position to manage the risk, so fixed-price contracts should be
avoided. If a fixed-price contract cannot be avoided, then the customer should be willing
to incur a substantial cost beyond the fixed price, due to the certainty of changes.

Fixed-price contracts may involve significant risk in estimating the cost prior to doing
any work. A competent vendor will include this risk in the bid. A vendor that does not
understand the complexity of the problem is likely to underbid. The process of selecting a
vendor for a fixed-price contract has a tendency to favor the most optimistic—or the most
desperate—vendor.[30] Consequently, the vendor least likely to understand the project's
complexity is likely to be selected. Thus, fixed-price contracts tend to select the vendor
most likely to get in trouble.

[30] . Thompson, "Public Economics and Public Administration" in Handbook of Public Administration.

Therefore, it is quite common for the customer to find a vendor unable to deliver on a
fixed-price contract. By the time this becomes apparent, the customer rarely has the
option to choose another vendor, so the customer must often come to the rescue.
Alternately, the vendor may attempt to recoup its loss through change orders, which leads
the customer to aggressively avoid any change to the contract. Faced with no other way
to recover a loss, a vendor will be motivated to find ways to deliver less than the
customer really wants.

A fixed-price contract is biased in favor of the customer at the expense of the vendor,
making it necessary for vendors to aggressively protect their interests, at the expense of
the customer. It is not a climate in which organizational trust has much soil in which to
grow.

Time-and-Materials Contracts

"Customers should prefer flexible-price contracts to fixed-price contracts where it is
cheaper for the customer to deal with uncertainty than it is for the contractor to do so or
where the customer is more concerned with the ability of the contractor to provide a
product that works than with price," writes Fred Thompson in "Public Economics and
Public Administration."

The flexible-price contract, also known as a time-and-materials or time-and-expenses
contract, is designed to deal with uncertainty and complexity, but it does not do away
with risk; it simply shifts it from the vendor to the customer. In the 1970s, the U.S.
Department of Defense (DoD) experienced some very high-profile bailouts on fixed-price
contracts, so it began to use more time-and-materials contracts in situations where the
government was better able to manage the risk.

On the downside from a vendor perspective, time-and-materials contracts offer less
security than fixed-price contracts. However, these contracts are usually considered a
good deal for vendors for as long as they last. In fact, vendors generally have little
incentive to be efficient, because the longer the work takes, the more money they make.
To control self-serving behavior on the part of time-and-materials vendors, DoD
developed extensive vendor control mechanisms, which contributed to the development
of the discipline of project management.

Time-and-materials contracts mark a significant increase in contract transaction costs.
Companies with DoD contracts not only hire administrators to oversee compliance with
contract requirements, they also add accountants to sort out allowable and unallowable
costs. High transaction costs would be reasonable if they added value, but in fact
transaction costs are by definition nonvalue-adding costs. Thompson notes, "Controls
contribute nothing of positive value; their singular purpose lies in helping us to avoid
waste. To the extent that they do what they are supposed to do, they can generate
substantial savings. But it must be recognized that controls are themselves very costly."

One way to avoid the high cost of controls is not to use them. Thompson suggests that
when the costs of controls are high, it might be better to keep work inside a vertical
organization, where presumably administration will control self-serving behavior.
Unfortunately, vertical integration does not always work to minimize control costs. In
fact, many organizations find themselves using DoD-style project management controls
internally. It seems incongruous that cost, schedule, and scope control mechanisms that
add cost but not value and that were invented to prevent contractual parties from taking
advantage of each other would come to dominate development inside of companies—the
very place where they should not be needed.

Time-and-material contracts can be used for agile software development as long as the
contract allows for concurrent development and collaboration between the parties. The
first step is to change the control mechanism from one that favors sequential development
to one that favors concurrent development. After establishing a conceptual design and the
overall capability of the system, sketch out a tentative release plan and begin iterations as
soon as possible so the customer can see working code and offer concrete, timely
feedback. As velocity becomes established, modify the release plan and level of resources
if necessary.

The problem with time-and-material contracts is that once the system is partially
deployed, the customer is dependent on the vendor, while the vendor has limited
incentive to reduce costs. Agile development mitigates this bias in favor of the vendor by
having the vendor deliver value for the money spent at the end of every iteration. Each
iteration, the customer schedules the most valuable remaining features, insists on delivery
of working, integrated code, and evaluates the value delivered. This gives the customer
the option to terminate the contract at any point and still obtain value for the investment
up to that time.

When you think about it, concurrent development is a safer approach for time-and-
materials contracts than is sequential development and its associated controls.
Exchanging incremental value for incremental pay protects both vendor and customer.
However, this approach requires that the project management systems commonly used
for sequential development be set aside. More importantly, there must be ongoing
collaboration between working-level people in the vendor and customer shops.

Multistage Contracts

Multistage contracts attempt to deal with the unknowns and risks inherent in fixed-price
contracts, matching the risks to the dollars spent over time. There are two types of
multistage contracts: those intended to lead to a large fixed-price contract and those that
retain their multistage character throughout.

Multistage contracts that morph into large fixed-price contracts start with one or two
short contracts for learning enough about the problem to enable a fixed-price bid on the
overall system. Usually, only one vendor is involved, so this kind of contract is not
generally appropriate when bidding is required.[31] Assuming the vendor remains the same
throughout, the customer and vendor increase their learning, reducing the risk of big
surprises on either side. However, the incentive to freeze the specification and not allow
changes in the final stage is, if anything, higher. There will be less sympathy for a change
in the specification if the vendor was paid to get it right in the early stages. Thus, this
type of multistage contract retains the problems of a fixed-price contract if uncertainty or
change is involved after the body of the contract is awarded.

[31] Sometimes, multistaged, fixed-price contracts are set up so that one vendor is selected to write a specification, and that specification is let
out for bid. In this case, there is a decision to make: Is the vendor who wrote the specification allowed to bid? Behind the question lies the
assumption that this vendor has obtained superior knowledge that is not found in the specification. Of course, this is the case because a great
deal of domain knowledge is tacit knowledge that cannot be transferred in writing. If the vendor who wrote the specification is not allowed to
bid, then all of its tacit knowledge has been wasted, and to the vendors allowed to bid on the contract, this is no different from a single fixed-
price contract.

The second type of multistage contract, which retains its multistage character throughout
development, presents a good opportunity for agile development, because it is easy to
adapt to iterative development. However, these contracts are not without risks, the
biggest risk being that each party has frequent opportunities to abandon the relationship.
Multistage contracts create what might be called a bilateral monopoly,[32] that is, both
sides come to depend on each other. If one party ends its involvement, the other party
may have a lot to lose.

[32] See Thompson, Handbook of Public Administration.

One way to mitigate the risk posed by the bilateral monopoly in multistage contracts is to
deliver value with each increment in proportion to the money spent. As in time-and-
material contracts, it is a good idea to implement the highest priority customer features
first and deliver working, integrated code with each iteration.

Another way to mitigate the risk of termination in a multistage contract is to address the
risk through the relationship—that is, the parties develop a trust that the relationship will
continue as long as expected value is delivered. In Agile Software Development
Ecosystems, Jim Highsmith discusses delivered-feature contracts (pp. 74–75). These are
fixed-schedule, variable-scope contracts in which the customer evaluates the value
delivered after each iteration. If the work is acceptable, the contract continues into the
next iteration. Although there is no contractual obligation for both parties to continue
working together, their trust in each other builds at the same rate that their dependence
upon each other deepens.

Multistage contracts will rapidly get expensive if a contract must be negotiated for each
stage. Thus, these contracts are usually governed by a master contract negotiated at an
early stage, with work orders executed against the master contract for each iteration.[33]

[33] See Pitette, "Progressive Acquisition and the RUP: Comparing and Combining Iterative Processes for Acquisition and Software
Development"; see also Wideman, "Progressive Acquisition and the RUP," Parts I and II.

Tailoring Multistage Contracts to
the Domain

Tim works in a company that sells cutting-edge software to large companies.
The software supports innovative hardware that is constantly evolving. In such a
changing environment, you would think that development would be kept
internal, but such is not the case. Small, venture-funded startup companies
develop new techniques faster than Tim's company can internally. It is Tim's job
to contract with these small companies to develop portions of the software his
company will sell.

One of the big issues in contract negotiations is ownership of intellectual
property, which tends to make contract negotiations arduous and not something
you would want to do every few weeks. Yet the technology is changing so fast
that Tim's company doesn't know exactly what it wants a supplier to do beyond
the next three or four months. Further, the small companies are eager to have
extended contracts to show their venture funders.

The first principle Tim employs is to split the risk by splitting development into
two contracts. The first contract is for proof of concept, and the second is used
to finalize the product. Prior to negotiating the first contract, there is a short (2 to
3 week) collaboration period between both parties, using a time and materials
contract, to establish an overall plan. This makes the first contract easier to
negotiate.

Since the first contract is for a proof of principle or "rough draft," the supplier
has full responsibility for the system from architecture to implementation. This
is a fixed-price contract, and the supplier is usually expected to work for cost
plus a small profit, with the assumption that success at this stage would lead to
future profits. This contract can be canceled if it is not proceeding satisfactorily.

Assuming the first contract goes well, Tim's company has learned enough about
the vendor's work to commit to buying a minimum number of days on a time
and materials basis. Of course, given the rapidly changing technology, Tim's
company does not attempt to specify exactly what is to be done, but generally it
finds that it can keep its vendors usefully occupied at the guaranteed level of
commitment. During this second contract, Tim's company takes over more
responsibility in guiding development, since the objective is to deliver a quality

product without defects.

Once the software is released, the vendor is expected to provide a warranty, for
example, 3 months of free defect fixes, to ensure it delivers high quality by
delivery date. For additional warranty, Tim prefers a fixed-price support fee
with a guaranteed service level. Tim is careful to separate warranty requests
from upgrade requests, even when the vendor is contracted with separately to
provide upgrades.

—Based on conversations and email with Tim Ocock

Target-Cost Contracts

The problem with traditional fixed-price contracts is that they encourage self-serving
behavior on the part of the customer and defensive behavior on the part of the vendor.
The problem with traditional time-and-materials contracts is exactly the opposite: They
encourage self-serving behavior on the part of vendor and defensive, control-oriented
behavior on the part of customers. What we need is a middle ground, one in which risk is
shared and both parties have incentives to look out for the overall interests of the joint
effort.

There are no canned answers to the contract dilemma, because in the end, no contract can
fully prevent parties from taking advantage of each other. Contracts do not create
confidence that the other party will honor its commitments and not exploit vulnerabilities
(Dyer's definition of trust). There are, however, contract forms that make it easier for
parties to share in the problems and rewards brought about by their relationship. One
example is a target-cost contract. While the target-cost contract is not a panacea, it is at
least a platform on which a partnership can be built.

Target-cost contracts are structured so that the total cost—including changes—is the joint
responsibility of the customer and vendor. What makes a target-cost contract different
from a fixed-price contract is that if target cost is exceeded, both parties will end up
paying more, and if total cost is under the target cost, both parties will share in the
benefits. What makes a target-cost contract different from a time-and-materials contract
is that vendors do not gain added profit if they work longer, but they may receive a
benefit if they are under cost or schedule.

In a target-cost software development contract, the parties start with a general agreement
of what is to be accomplished, recognizing that the details cannot be known until mutual
work is done. They then come to an agreement on the target cost for the system and agree
upon a schedule. In this type of contract, the target cost is understood to be very
important, so the design and detailed features will be focused on meeting the target cost.
There is a commitment on the part of both parties to meet target cost, and this is
understood to require a joint effort of both the technical people and users on both sides.

A target-cost contract recognizes that the actual costs will not necessarily be the same as
the target costs, so it provides for a fair allocation of any costs over the target costs, or a
fair sharing of any benefits if costs are below target costs. These contracts must give the
customer an incentive to keep demands for features in line with target costs, while giving
the vendor incentives that favor completing the work under the target cost. Usually, the
customer incentive is provided for by a clause triggering equitable cost-sharing
negotiations should the actual cost vary significantly from the target cost. One of the
following usually provides for the vendor incentive:

• Cost plus fixed fee: The target cost does not include profit for the vendor; a
separate fee is included to provide vendor profit. The fee is generally paid after
the work is successfully completed. If total cost exceeds target cost, the vendor
works at cost for the remainder of the contract. If total cost is lower than target
cost, the vendor receives a higher profit margin. A bonus for coming in below
target cost may be included.

• Profit not to exceed: The target cost includes the vendor profit. The vendor
agrees to reduce rates and exclude profit after the target cost is reached. If total
cost exceeds target cost, the vendor works at cost. However, in this case the
vendor has no incentive to come in under target cost unless there is a bonus for
early completion.

The most valuable part of target-cost contracts is that they more accurately communicate
management intent to the frontline workers of both parties and encourage them to work
together to achieve this intent. If cost expectations are not made clear to the working
teams from the beginning, the resulting design is unlikely to meet the target. Target-cost
contracts must leave the details of the scope to the discretion of the technical teams,
because reducing scope is the most fertile ground for cost control.

Target-Cost Contract Example
The customer had a fixed budget for the project, and that was not going to
change. It wanted two data entry applications moved to a Windows
environment, plus a Web front end developed so that its customers might enter
some of their own data. The legacy database needed to be modified to support
current practice or converted to a new database system.

The problem was initially divided into four components: two applications, the
database, and the Web interface. A team was formed for each component and
given a budget expressed in terms of staff days. Team membership included the
customer manager responsible for the area, a master developer, an analyst/
tester, and an operations/help desk representative. Each application team got 35
percent of the budget, the database team got 15 percent of the budget, and the
Web team got 10 percent of the budget. Five percent was held in reserve for
contingencies.

Each team was chartered to figure out how to develop and deploy its portion of
the system within budget. As teams developed a preliminary release plan, they
started making tradeoffs immediately to keep within their staff-day budgets. The
application teams realized that their jobs would be a lot easier if the database
were converted rather than wrappered, but the database team did not have
enough staff hours in its budget. The DBA convinced the application teams that
they would be better off with a lower budget and more sophisticated database
support, so each application team gave the database team a portion of its budget.

With that decided, the teams got to work on iterations, with highest priority
items first. The database team was particularly devoted and quickly began
populating two new development databases with sample legacy data, one for
each application. It would merge the two databases later.

The application and Web teams had a useful database starting with the first
iteration, so they had a reasonably good rendition of the main data entry screen
at the end of the first iteration. Each iteration resulted in working, tested
software, but all teams decided to delay moving the system into production until
a more complete system was available. There was no good way to integrate the
old and new systems, so going into production would require more or less
complete functionality. However, it was agreed that the applications could go
live independently and that the Web front end could follow either application.

As time went on, the applications and Web teams discovered they all needed the
same financial features, so they agreed to pool some of their staff days and
charter a subteam to develop the joint financial functions.

As the budgets approached 50 percent depleted, the teams took a close look at
their velocity and got a good picture of how they were doing on their staff-day
targets. They did some hard thinking about what they really needed. At this
point, it was especially important for the customer managers to feel obligated to
negotiate. If this had been a fixed-price contract, they probably would not have
felt the need to dig deeply to find features they could do without. However, the
customer managers felt responsible for meeting their team's staff-day targets,
and being managers, they were used to that. So, they were quite aggressive in
discarding features.

With 70 percent of its budget used up, one application team decided it was ready
to go live and spend the remainder of its budget after startup. The team found
that deployment was more difficult than expected, especially because of the new
financial features. But after all the problems were resolved, it still had 10
percent of its budget left to deal with issues uncovered by production. At about
the same time, the Web team went through an easy startup, which was lucky,
because it was almost out of staff-days.

The remaining application team had a challenging problem with the legacy

database, but on the bright side, the other application team had gotten the
financial system working. The team burned up 90 percent of its budget before
going live, and needed some of the 5 percent contingency to complete
deployment. This left the team with scant funds to do any improvements after
production started, so it seemed likely it would have to wait until the next
budgeting cycle and get a special allocation.

Fortunately, the local maintenance programmers had been involved in the effort,
and they were ready to take over more responsibility. Their time was not
charged to the project, so they could work on the system without jeopardizing
the budget. They were able to add critically needed features with some guidance
from the original developers, and in the process they became confident of their
ability to support the system.

—A Business Novelette

Target-Schedule Contracts

Sometimes schedule is more important than cost, although cost is rarely unimportant. If
the number of people working on the system does not change and no components are
purchased or licensed, then target cost and target schedule are the same thing.[34] Software
product companies often meet hard schedules for product upgrades by fixing the
resources and the schedule, and working on the highest priority items first. When time
runs out, the low-priority features are left undone, but the release meets the overall intent
of product marketing.

[34] If components will be licensed or purchased, see Hohmann, Beyond Software Architecture.

In the same way, a target-cost contract can usually be run as a target-schedule contract by
fixing the resources and schedule. Features should be addressed in priority order, and
each iteration should deliver working, tested, integrated, deployable software. Well
before the deadline, the software should actually be deployed. Then, iterations can
continue to deal with issues that arise in production. With this approach, the completed
work will be on schedule and on budget by definition, and the delivered features should
meet the overall intent of the contract.

If schedule really is the only thing that is important, then a target-schedule contract is
more appropriate than a target-cost contract. This allows the team to add resources or
license components as needed to meet the schedule. The more degrees of freedom that a
target contract leaves to the workers, the easier it will be for them to figure out how to
meet the target.

Shared-Benefit Contracts

Target-cost and target-schedule contracts set up an environment in which teams work
effectively across company boundaries because it is clear that both companies will share

the risks and rewards of the work. This is the key to collaborative contracts; the people
doing the work must perceive that both parties have a stake in the results of their efforts.
A profit-sharing contract is another effective mechanism for sharing risks and rewards if
you are developing products for sale. Tim Ocock's company (see sidebar, "Tailoring
Multistage Contracts to the Domain") frequently uses profit-sharing contracts.

In a co-source contract, both companies share responsibility for developing a system, and
the vendor is also expected to transfer its expertise to the customer. A co-source contract
is successful if the vendor works itself out of a job by helping the customers develop the
capability to do the work themselves. Co-sourcing is a fundamentally collaborative
approach, so co-source contracts do not tend to create motivation for self-serving
behavior. Bruce Ferguson's company (see sidebar "Agile Contracts Make Business
Sense") prefers to use a co-source arrangement whenever possible.

Agile Contracts Make Business
Sense

Bruce is the vice president of sales in a company that prides itself on using agile
practices to develop systems in large companies. Its preferred approach is to co-
source the work—that is, half of the work will be done by Bruce's company and
the other half by people in the client company. In this case, Bruce's company
quite often does not manage the project, although it has a project leader for its
team who works closely with the client project manager.

Bruce finds that no two situations are the same, so one needs to take an agile
approach to establishing a contract for software development. The first thing to
determine is whether the client is sold on an agile approach, whether they can be
sold, or at least whether they can trust an agile approach. Bruce works from
three levels of estimates: ballpark, budgetary, and bull's eye. He notes that
everyone starts with a ballpark estimate. It's when you get to the budgetary
estimate that you switch to an agile focus and convince people that they will get
more for their money if they do not attempt to define all of the functionality and
do all of the planning up front. Bruce finds that 60 percent to 70 percent of the
time, he can sell an agile approach.

Bruce notes that an agile approach must be sold at a high enough level to
influence procurement practices, so it is important that the person agreeing to try
an agile approach is willing to champion the agile approach to his or her
management. If people back down from an agile approach when they encounter
difficulties, then they haven't really been sold on the approach.

Bruce tries to avoid tying pricing to deliverables; if pricing is tied to a
deliverable, it must be a very small chunk of work. This is the essence of an
agile approach, and it often runs counter to the procurement practices of the

client. However, if a person high enough in the client company has agreed to use
an agile approach, then these procurement and legal issues will be addressed by
that champion.

If the client has gotten to the point of agreeing to an agile approach at a level
sufficiently high to precipitate a change in procurement practice, then Bruce can
rely on the client to put together an appropriate contract. The secret is not in the
contract wording itself, but in having a sponsor at a high enough level who
understands that the company can benefit more by allowing the system to evolve
rather than be specified in detail at the beginning.

Bruce has found that once a client has experienced an agile project, the nature of
the contract is not much of an issue for subsequent agile projects. Results talk!

—Based on conversations and email with Bruce Ferguson

The Key: Optional Scope[35]
[35] See Beck, "Optional Scope Contracts."

We have noted several types of contracts that can work for agile software development:

• Time-and-material contracts using concurrent development with highest priority
features implemented first and working, integrated code delivered at each
iteration so that the customer may easily manage cost by limiting scope.

• Multistage contracts using a master contract and work orders to release each
iteration, with similar emphasis on concurrent development, highest priority
features first, and working, integrated code delivered at each iteration.

• Target-cost contracts, which charter the frontline workers of both parties to work
together to come up with a solution to the problem that meets a target cost, giving
them the freedom to limit scope as a primary mechanism to achieve the target
cost.

• Shared-benefit contracts that assume the parties will modify what they are doing
as time goes on to achieve mutual benefit.

There is a common theme here: All of these contracts are mechanisms that avoid fixing
scope in detail. This should not come as a surprise. Jim Johnson of the Standish Group
noted 64 percent of the features in a typical system are rarely or never used, suggesting
that the most fertile ground for productivity improvement in software development lies in
not implementing features that are not needed.[36] As Barry Boehm and Philip Papaccio
noted in 1988,[37] the best way to develop low-cost, high-quality software is to write less
code. Chartering a software development team to accomplish a purpose within cost and
schedule constraints is about the same as asking them to figure out which features to
leave out of the system.

[36] Johnson, "ROI, It's Your Job."

[37] Boehm and Papaccio, "Understanding and Controlling Software Costs."

Conventional wisdom holds that specifying and controlling scope in a contract is
necessary to protect an organization from self-serving behavior on the part of the other
party. However, the effect of this protection is a suboptimized value stream. Although it
seems counterintuitive, rigid control of scope tends to expand, not reduce, the scope. This
in turn leads to a significant increase in the cost of the features as well as the cost of the
control system. The bottom line? Organizations that use outsourcing as a way to save
money will save more money overall if they collaborate with vendors by using some
form of optional scope contract.

Establishing a partnership relationship with vendors generally happens at the initiation of
the customer, and it is not as simple as using any specific form of contract. Both parties
need a clear understanding of the value they could bring to each other if they focus on
mutual benefit instead of individual benefit. Partnerships require consistent practices so
partners develop confidence that commitments will be honored and vulnerabilities will
not be exploited, even if individuals change. This in turn requires creative agreements
that do not try to cover every eventuality, but instead provide ways to deal with
unpredictable future events in a manner that both sides will perceive as fair and equitable.

Try This
1. Make sure your defect measurement system is an informational measurement

system rather than a performance measurement system.
a. Are defects traceable back to the developer who caused the defect? Why?

If there is no good reason, then eliminate the person's identity from the
defect reporting system; don't even collect the names.

b. If there is a reason why you need a developer's identity (e.g., the developer
must fix the code), then be sure that an individual developer is the only
one who sees the reports related to his or her work. Aggregate all defect
reports; do not publicly display or manage from defect measurements
sorted by developer.

2. Whether you outsource or are a contractor, the first step to using agile methods
under contract is to figure out a way to make scope optional. Ask your legal team
to scour the available literature on methods to provide adequate protection to your
company without using a fixed-scope specification.

Chapter 8. Instructions and Warranty

Caution—Use Only as Directed

Instructions

Troubleshooting Guide

Warranty

Caution—Use Only as Directed
Toolkits are usually packaged with instruction sheets and a warranty card, which
most of us try to ignore. After all, a tool isn't very user-friendly if you have to
read how to operate it. Worse, most instruction sheets start out by listing
everything that can go wrong if you use the tools incorrectly. Following this
time-honored pattern, we begin the instructions for this lean toolkit with a
disclaimer.

• If today's problems come from yesterday's solutions,[1] then tomorrow's problems
will come from today's solutions. Avoid creating a pendulum that swings from
high ceremony to low ceremony and back; look for the balance point of the lean
principles.

[1] Senge, The Fifth Discipline, 57.

o Eliminate waste does not mean throw away all documentation.
o Amplify learning does not mean keep on changing your mind.
o Decide as late as possible does not mean procrastinate.
o Deliver as fast as possible does not mean rush and do sloppy work.
o Empower the team does not mean abandon leadership.
o Build integrity in does not mean big, upfront design.
o See the whole does not mean ignore the details.

• One team's prescription is another team's poison. Do not arbitrarily adopt
practices that work in other organizations; use the thinking tools in this book to
translate lean principles into agile practices that match your environment.

o The "right" amount of feature analysis and traceability depends on the
nature of the system and the probability of change. Caution:

 Putting a rocket into orbit is different than approving a loan.
 Fixing legacy code is different than creating a Web brochure.

o The "right" amount of user interaction design depends on the users of the
system, their background, and how they might use the system. Caution:

 The perceived integrity of the system rests on the user interface.
 It's a lot more difficult to refactor users than it is to refactor code.

Instructions

The standard disclaimer is followed by instructions, which illustrate a few basic
applications of the tools. Here we give instructions for applications of the lean
toolkit within individual spheres of influence, in different size companies, and
for different types of work.

The 22 tools in this toolkit should be used to translate the seven lean principles into agile
practices that will work in your organization. Many books and articles describe alternate
agile practices and techniques in some detail. How you use these will differ depending on
your sphere of influence, the size of your company, and the type of work you do.

Sphere of Influence

Lean principles break down barriers, and thus they work best when a senior leader
champions them. However, they can be adapted and applied to any level of an
organization. Senior management support helps, but it is not essential for lean principles
to work. Instead of waiting for lean thinking to descend from above, use it to change your
corner of the world. Practice the Art of the Possible.[2]

[2] This phrase is from Ken Schwaber.

• Understand lean thinking. Develop a clear idea of how the lean principles might
work in your environment and what kinds of improvements they might bring
about.

• Create a coalition. Find like-minded souls, especially among your peers, and
form a study group. Create a group consensus about how to translate the
principles into agile practices that make sense and will have an impact on your
problems.

• In the face of resistance, address the fear.
o Resistance indicates a perceived threat to a largely unconscious belief

system, one that has no doubt successfully guided the organization in the
past. A organization's belief system leads to actions that reinforce the
beliefs, creating a self-fulfilling prophecy that tends to blocks out new
ideas.[3]

[3] Jeffrey Goldstein, The Unshackled Organization, 85.

o Resistance is a sign that you have triggered a fear. This isn't all bad; it
means you have injected a new idea into the system, which is the first step
to changing the belief system.

o Recognize that resistance is a symptom, and the cause lies in the belief
system that is being threatened. You need to uncover and address the
belief system that underlies the fear.[4] Of course, this isn't easy, because
the belief system has no doubt led to success in the past, so it will fight
back with many varieties of self-fulfilling prophecies.

[4] See Goldstein, The Unshackled Organization, Chapter 6–8 for ideas on how to do this.

o You have some help these days, because the belief in the fundamental
validity of sequential software development is being called into question
and has already been dismissed in highly successful product development
organizations.

• Accommodate with minimum waste. If you can't eliminate unnecessary
documentation and reports, do them at as high a level as possible. Try to keep
your plan at the release level—you have to do that much planning anyway. Write
summary documentation—if you write things that ordinary people can
comprehend in a short time it might help keep people out of your hair. Write
design summary documents for maintenance support only after you have finished
your coding—otherwise you're going to have to write them twice.

• In the face of indifference, get started. If you are facing indifference rather than
resistance, you might take this as tacit approval and simply start using agile
practices in your sphere of influence. Or, if you have a small coalition of like
minds, the group might develop a good story about how agile practices can
benefit your organization, get a hearing, and ask for a chance to try things out on a
larger scale.

• In the face of support, act. Don't let your sponsor down. Get moving!
• Think big; act small; fail fast; learn rapidly. Once you actually get started, use

lean principles to implement lean principles. And good luck.

Large Company

If you work in a large company, you probably have an improvement program or two to
deal with: Six Sigma and CMM are but a couple of examples. Realistically, these
programs are probably not going to go away, so instead of fighting them, try to leverage
them. No doubt these programs were put into place to cure yesterday's ills, and if they are
causing you problems, it's probably a case of overcompensation.

• Exploit Six Sigma. There are two different flavors of Six-Sigma programs: one
for production and one for development. The production flavor focuses on
reducing variation; the development version focuses on ensuring fitness for use.
Make sure your program is the one focused on development, and if it isn't, build a
coalition and lobby hard to get it changed. Once you are using the right program,
bring your development approach in line with customer expectations,
emphasizing that change tolerance is a key customer expectation. Turn your local
black belt loose on getting unlimited access to real customers, on assisting the
customers to define and communicate what is really critical to quality, and on
improving your testing capability. Find out how your Six-Sigma program
incorporates the GE Work-Out concept and exploit that to move the focus of
decision making to the development teams.

• Work with CMM. If you are dealing with CMM, recognize that each key process
area (KPA) in CMM addresses a factor that has caused problems in some
software development project in the past. Agile approaches effectively address
virtually all of these factors in some way, and therefore a competent assessor
should recognize a well-implemented agile ecosystem at CMM level 3 or higher.[5]
The approach may not be traditional, but it works. CMM is not supposed to
dictate approach, but only assess if the existing approach addresses known
software development failure modes.

[5] Mark Paulk, a senior member of the technical staff at SEI and project leader for CMM version 1.1, reached this conclusion in
"Extreme Programming from a CMM Perspective."

• Be wary of CMMI. CMMI is slated to replace CMM by the end of 2003.
Unfortunately, it is designed to cover many areas beyond software development,
and thus it is based on a more general set of underlying fears, mostly ones that
have arisen in the course of military procurement.

If you are faced with CMMI, we suggest you learn about the struggles of the U.S.
military acquisition organization to become more agile. Over the past decade, a
series of directives and regulations have attempted to bring the same lean thinking
to DoD acquisition, which makes U.S. military logistics among the best in the
world. In late 2002 Deputy Secretary of Defense Paul Wolfwoitz canceled earlier
attempts and tried again to "…create an acquisition policy environment that
fosters efficiency, flexibility, creativity, and innovation."[6] He lists 30 principles
and policies behind the new defense acquisition system. At the top of the list are
many of the principles and tools found in this book: decentralized responsibility,
processes tailored to each program, learning and innovation, reduced cycle time,
collaboration, a total systems approach.

[6] See http://dod5000.dau.mil for more information. Quote is from DEPSESDEF Memo issued October 30, 2002. Downloaded
January 26, 2003.

Incorporating lean principles into the military procurement system practices has
proven to be a daunting task. However, by tracking the efforts, you can come up
with a good set of justifications for adopting lean principles in your organization.

• Be careful with PMI. The Project Management Institute (PMI) sponsors a
certification program for project managers. PMI's teachings are based on the same
theories as CMMI: namely, that work should be decomposed and tasks managed
individually, that creating and following a plan is the essence of project
management, and that scope control is fundamental. This view of project
management tends to encourage local suboptimization. As noted in Chapter 2,
"Amplify Learning," it often creates a downward spiral in managing the scope of
a project: The harder you try to manage scope, the more scope customers require.
While many good techniques can be learned in the course of obtaining PMI
certification, its theoretical foundation tends to be incompatible with lean
thinking.[7]

[7] See Koskela, "The Underlying Theory of Project Management Is Obsolete."

Small Company

If you work for a small company, you probably are wondering how to put disciplines in
place and where to find the time to do it. Discipline is fundamental to good software
development, but the traditional disciplines of software engineering and project
management are not necessarily the most effective approaches. Don't bring in a cure that
will be worse than the disease.

http://dod5000.dau.mil

• Start with hygiene. First of all, make sure that you have basic professional
software development practices in place: a version-controlled code repository,
coding standards, build automation, comprehensive testing, etc.

• Hire the right people. Hire for skill and experience. There's no substitute for
capable people, especially if you work in a small company.

• .Focus Do not try to do too many things at once or to improve everything at the
same time. Find the one unique thing that you can do better than anyone else and
focus all of your attention on doing that very well. Collaborate with others to
provide breadth.

• Use Work-Out. The original intent of GE Work-Out was to deal with the very
problem you are probably having—not enough time. People usually know what is
wrong with their work areas and how to fix things, but they don't have the
authority or encouragement to make changes. Managers with the authority don't
have the time. Work-Out is a forum that gives people the encouragement and
authority to fix their work processes themselves.

Special Work Environments

Not all work environments are alike, but some pose more challenge than others. Here are
a few ideas for adapting lean principles to some special environments.

• Government contractor. Government contracting is subject to public scrutiny.
The benefits of lean approaches are often counterintuitive and difficult to prove to
skeptics. These two facts make it challenging to use agile practices in government
contracts. However, there is hope, because the U.S. military acquisition
organization, along with several of its European counterparts, has come to realize
that evolutionary procurement is a better approach. (See previous section on
CMMI.) We can only hope that as iterative development becomes acceptable in
military contracting, it will become more acceptable for other government
agencies at the regional and local levels.

• When failure is not an option. Sometimes software can kill people if it
malfunctions, and when that is the case, there are many regulations on how to
assure the software is failsafe. However, even safety-critical systems can be
improved with agile software development approaches. Generally a process that
encourages safety evaluations periodically throughout development will be
superior to a process that depends upon a one-time safety evaluation at the
beginning of a project.[8]

[8] See Poppendieck, "Using XP for Safety-Critical Software."

• Embedded software and hardware control. Whether safety-critical or not,
software that controls hardware presents a testing challenge because the hardware
is being developed at the same time as the software. Three strategies should be
used for this kind of software. First, always build a hardware simulator to test the
software as it is developed. Consider the simulator part of the software
deliverable. Second, adopt concurrent engineering practices. Develop frequent
prototypes involving both hardware and software early and often throughout

development. Third, use set-based development, described in Chapter 2. Set-based
development works like a funnel: Early in development there is wide tolerance for
experimentation; as development proceeds the tolerances are gradually narrowed.
This is particularly appropriate for embedded software, where tolerance for
change will narrow as the hardware design is finalized. For embedded software, it
may also be appropriate to increase process formality as development proceeds.

• Global development. Development teams will not always be located in the same
room, in the same company, or even in the same country. Global development is a
fact of life, and agile approaches must adapt to this reality. In Chapter 2 we
discuss various methods of synchronization that maximize the communications in
dispersed teams. When agile practices are used with global teams, use the
frequent milestones of an iterative development cycle to keep people from drifting
apart. Invest in collaboration support tools such as shared source code repositories
and build systems, collaborative IDEs, and video conferencing. Instant messaging
is very useful, but may require some adjustment of work hours when time zones
are far apart. Finally, there is no substitute for getting people together in the same
room, so plan on team member rotation, focused especially on sharing tacit
domain knowledge.[9]

[9] See Simons, "Internationally Agile."

• Maintenance. Agile practices rule in software maintenance departments. In fact,
these folks are wondering why it took the rest of the software development
community so long to figure out how to develop production-ready software.

Troubleshooting Guide

Of course, an instruction sheet should have a troubleshooting guide.

• In case of difficulty, additional applications of the principle see the whole are
recommended. In particular, apply the following three high leverage practices:

o When a problem appears, stop everything: find and fix its root cause.
o Identify your biggest constraint and direct all effort toward removing it.
o Move your focus up one level and optimize the whole system.

Warranty
Finally, every toolkit comes with a warranty. Here's ours.

Lean principles are warranted to be tried and proven in many disciplines, and when
properly applied, they are warranted to work for software development. Proper
application means that all of the lean principles are employed and that thinking tools are
used to translate them into agile practices appropriate for the environment. This warranty
is invalid if practices are transferred directly from other disciplines or domains without
thinking, or if the principles of empower the team and build integrity in are ignored.

Bibliography
Adler, Paul S. "Time-and-Motion Regained." Harvard Business Review 71(1): January–
February 1993, 97–107.

Austin, Robert D. Measuring and Managing Performance in Organizations. Dorset
Publishing House, 1996.

Ballard, Glenn. "Positive vs. Negative Iteration in Design." Proceedings Eighth Annual
Conference of the International Group for Lean Construction, IGLC-6, Brighton, UK,
July 17–19, 2000.

Battin, Robert D., Ron Crocker, Joe Kreidler, and K. Subramanian. "Leveraging
Resources in Global Software Development." IEEE Software 18(2): March/April 2001.

Beck, Kent. Test-Driven Design, By Example. Addison-Wesley, 2002.

Beck, Kent, and Martin Fowler. Planning Extreme Programming. Addison-Wesley,
2001.

Beck, Kent. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

Beck, Kent, and Dave Cleal. "Optional Scope Contracts." Unpublished, 1999. Available:
http://www.xprogramming.com/ftp/Optional+scope+contracts.pdf.

Beinhocker, Eric D. "Robust Adaptive Strategies." Sloan Management Review 40(3):
Spring 1999, 95–106.

Boehm, B. W. "Industrial Software Metrics Top 10 List." IEEE Software 4(5): September
1987, 84–85.

Boehm, Barry, and Philip N. Papaccio. "Understanding and Controlling Software Costs."
IEEE Transactions on Software Engineering 14(10): October 1988, 1462–1477.

Boehm, Barry, and Victor R. Basili. "Software Defect Reduction List." IEEE Computer
34(1): January, 2001.

Bonabeau, Eric, and Christopher Meyer. "Swarm Intelligence." Harvard Business Review
79(5): May 2001, 106–114.

Brooks, Frederick P., Jr. "No Silver Bullet: Essence and Accidents of Software
Engineering." Information Processing 1986, Proceedings of the IFIP Tenth World
Computing Conference, H.-J. Kugler (ed.), Elsevier Scientific Publishing Company,
Amsterdam, 1986, 1069–1076.

http://www.xprogramming.com/ftp/Optional+scope+contracts.pdf

Brooks, Frederick P., Jr. Mythical Man Month: Essays on Software Engineering,
Anniversary Edition. Addison-Wesley, 1995. Originally published in 1975.

Brown, John Seely, and Paul Duguid. "Balancing Act: How to Capture Knowledge
Without Killing It." Harvard Business Review 78(3): May–June 2000.

Christensen, Clayton M. The Innovator's Dilemma. Harvard Business School Press, 2000.
Originally published in 1997.

Clark, Kim B., and Takahiro Fujimoto. "The Power of Product Integrity." In Kim B.
Clark and Steven C. Wheelwright (eds.), The Product Development Challenge:
Competing Through Speed, Quality, and Creativity. Harvard Business School Press,
1994.

Clark, Kim B., and Takahiro Fujimoto. Product Development Performance: Strategy,
Organization, and Management in the World Auto Industry. Harvard Business School
Press, 1991.

Clark, Kim B., and Steven C. Wheelwright. Revolutionizing Product Development. Free
Press, 1992.

CMMI-SW. "Capability Maturity Model® Integration (CMMISM), Version 1.1, (CMMI-
SW, V1.1) Continuous Representation CMU/SEI-2002-TR-028 ESC-TR-2002-028."
CMMI Product Team, August 2002. Available:
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr029.pdf.

Cockburn, Alistair. Agile Software Development. Addison-Wesley, 2002.

Cockburn, Alistair. Writing Effective Use Cases. Addison-Wesley, 2000.

Collins, Jim. Good to Great: Why Some Companies Make the Leap…and Others Don't.
HarperBusiness, 2001.

Collins, James C., and Jerry I. Porras. Built to Last: Successful Habits of Visionary
Companies. HarperBusiness, 1994.

Constantine, Larry, and Lucy Lockwood. Software for Use: A Practical Guide to the
Models and Methods of Usage-Centered Design. Addison-Wesley, 1999.

Coy, Peter. "Exploring Uncertainty." Business Week, June 7, 1999.

Crocker, Ron. Large-Scale Agile Software Development. In press, 2003.

Curtis, Bill, Herb Kransner, and Neil Iscoe. "A Field Study of the Software Design
Process for Large Systems." Communications of the ACM 31(11): November 1988,
1268–1287.

http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr029.pdf

Cusumano, Michael A., and Kentaro Nobeoka. Thinking Beyond Lean: How Multi-
Project Management is Transforming Product Development at Toyota and Other
Companies. Free Press, 1998.

Cusumano, Michael A. "How Microsoft Makes Large Teams Work Like Small Teams."
Sloan Management Review 39(1): Fall 1997, 9–20.

Cusumano, Michael A., and Richard W. Selby. Microsoft Secrets: How the World's Most
Powerful Software Company Creates Technology, Shapes Markets, and Manages People.
Simon and Schuster, 1998. Originally published in 1995.

DeGrace, Peter, and Leslie Hulet Stahl. Wicked Problems, Righteous Solutions: A
Catalogue of Modern Software Engineering Paradigms. Yourdon Press, 1990.

Dell, Michael, with Catherine Fredman. Direct from Dell. HarperBusiness, 1999.

DeMarco, Tom. Slack: Getting Past Burnout, Busywork, and the Myth of Total
Efficiency. Broadway Books, 2001.

DeMarco, Tom, and Timothy Lister, Peopleware: Productive Projects and Teams. Dorset
House, 1987.

Demming, W. Edwards. Out of the Crisis. MIT Press, 2000. Originally published in
1986.

Dyer, Jeffrey H. Collaborative Advantage: Winning Through Extended Enterprise
Supplier Networks. Oxford University Press; 2000.

Eisenhardt, Kathleen M., and Donald N. Sull. "Strategy as Simple Rules." Harvard
Business Review 79(1): January, 2001, 106–116.

Evans, Eric. Domain Driven Design. In press, 2003.

Forrester, Jay W. "System Dynamics and the Lessons of 35 Years." In Kenyon B. De
Greene (ed.), A Systems-Based Approach to Policymaking. Kluwer Academic Publishers,
1993. Available: http://sysdyn.mit.edu/sdep/papers/D-4224-4.pdf.

Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.

Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

Freedman, David H. Corps Business. HarperBusiness, 2000.

Goldratt, Eliyahu M. Necessary But Not Sufficient. North River Press, 2000.

http://sysdyn.mit.edu/sdep/papers/D-4224-4.pdf

Goldratt, Eliyahu M. Critical Chain. North River Press, 1997.

Goldratt, Eliyahu M. What Is This Thing Called Theory of Constraints and How Should It
Be Implemented? North River Press, 1990.

Goldratt, Eliyahu M. The Goal: A Process of Ongoing Improvement, 2nd rev. ed. North
River Press, 1992. Originally published in 1984.

Goldstein, Jeffrey. The Unshackled Organization: Facing the Challenge of
Unpredictability Through Spontaneous Reorganization. Productivity Press, 1994.

Guindon, Raymonde. "Designing the Design Process: Exploiting Opportunistic
Thoughts." Human and Computer Interaction 5, 1990, 305–344.

Gupta, Anil K., and Vijay Govindarajan. "Knowledge Management's Social Dimension:
Lessons from Nucor Steel." Sloan Management Review 42(1): Fall 2000, 71–80.

Herzberg, Frederick. "One More Time: How Do You Motivate Employees?" Harvard
Business Review 46(1): January–February 1968.

Highsmith, James A. Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. Dorset House, 2000.

Highsmith, Jim. Agile Software Development Ecosystems. Addison-Wesley, 2002.

Hock, Dee. Birth of the Chaordic Age. Berrett-Koehler Publishers, 1999.

Hof, Robert D. "Q&A with eBay's Pierre Omidyar." Business Week Online, December 3,
2001.

Hohmann, Luke. Beyond Software Architecture: Creating and Sustaining Winning
Solutions. In press, 2003.

Hohmann, Luke. Journey of the Software Professional: A Sociology of Software
Development. Prentice Hall, 1997.

Howard, William Willard. "The Rush to Oklahoma." Harpers Weekly 33, May 18, 1889,
pp. 391–394. Available: http://www.library.cornell.edu/Reps/DOCS/landrush.htm.

Huck, Virginia. Brand of the Tartan: The 3M Story. Minnesota Mining and
Manufacturing Company, 1955.

Humphrey, Watts S. Winning with Software: An Executive Strategy. Addison-Wesley,
2002.

http://www.library.cornell.edu/Reps/DOCS/landrush.htm

Hunt, Andrew, and David Thomas. The Pragmatic Programmer: From Journeyman to
Master. Addison-Wesley, 2000.

Imai, Masaaki. Gemba Kaizen: A Commonsense, Low-Cost Approach to Management.
McGraw-Hill, 1997.

Jeffries, Ron, Ann Anderson, and Chet Hendrickson. Extreme Programming Installed.
Addison-Wesley, 2001.

Johnson, Jeff. GUI Bloopers: Don'ts and Do's for Software Developers and Web
Designers. Morgan Kaufmann Publishers, 2000.

Johnson, Jim. "ROI, It's Your Job." Published Keynote Third International Conference on
Extreme Programming, Alghero, Italy, May 26–29, 2002. Available at:
http://www.xp2003.org/talksinfo/johnson.pdf

Juran, Joseph M. Juran's Quality Handbook, 5th ed. McGraw-Hill Professional, 1998.
First edition published in 1951.

Kajko-Mattsson, Mira, Ulf Westblom, Stefan Forssander, Gunnar Andersson, Mats
Medin, Sari Ebarasi, Tord Fahlgren, Sven-Erik Johansson, Stefan T rnquist, and
Margareta Holmgren, "Taxonomy of Problem Management Activities." Proceedings of
the Fifth European Conference on Software Maintenance and Reengineering, March
2001, 1–10.

Klein, Gary. Sources of Power: How People Make Decisions. MIT Press, 1999.

Koskela, Lauri. An Exploration Towards a Production Theory and Its Application to
Construction. Technical Research Centre of Finland, 2000.

Koskela, Lauri, and Gregory Howell. "The Underlying Theory of Project Management Is
Obsolete." Proceedings of the PMI Research Conference, 2002, 293–302. Available:
www.leanconstruction.org/pdf/ObsoleteTheory.pdf.

Kotter, John P. "What Leaders Really Do."Harvard Business Review 79(11): December
2001. Reprint of article first published in 1990.

Larman, Craig. Applying UML and Patterns—An Introduction to Object-Oriented
Analysis and Design and The Unified Process, 2nd ed. Prentice Hall, 2002.

Larpé, Michael A., and Luk N. Van Wassenhove. "Learning Across Lines: The Secret to
More Efficient Factories." Harvard Business Review 80(10): October 2002.

Magretta, Joan. "The Power of Integration: An Interview with Dell Computer's Michael
Dell."Harvard Business Review 76(2): March–April 1998, 73–84.

http://www.xp2003.org/talksinfo/johnson.pdf

Marick, Brian. "When Should a Test Be Automated?" Presented at Quality Week '98,
1998. Available: http://www.testing.com/writings/automate.pdf.

Martin, Robert C. Agile Software Development: Principles, Patterns and Practices.
Prentice Hall, 2002.

Maslow, Abraham Harold, Robert Frager, and James Fadiman. Motivation and
Personality, 3rd ed. Addison-Wesley, 1987. First edition published in 1954.

McBreen, Pete. Software Craftsmanship: The New Imperative. Addison-Wesley, 2002.

Miller, George A. "The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information." The Psychological Review 63, 1956, 81–97.

Mitchell, Meg. "Share…and Share Alike." Darwin Magazine 2(2): February 2001.
Available: http://www.darwinmag.com/read/020101/share.html.

Norman, Donald A. The Design of Everyday Things, reissue. Currency/Doubleday, 1990.
Originally published in 1988.

O'Reilly, Charles A., III, and Jeffrey Pfeffer. Hidden Value: How Great Companies
Achieve Extraordinary Results with Ordinary People. Harvard Business School Press,
2000.

Ohno, Taiichi. The Toyota Production System: Beyond Large-Scale Production.
Productivity Press, 1988. Originally published in Japanese in 1978.

Palmer, Steven R., and John M. Felsing. A Practical Guide to Feature-Driven
Development. Prentice Hall, 2002.

Paulk, Mark C. "Extreme Programming from a CMM Perspective." IEEE Software 18(6):
November/December 2001.

Petroski, Henry. Design Paradigms: Case Histories of Error and Judgment in
Engineering. Cambridge University Press, 1994.

Pitette, Gilles. "Progressive Acquisition and the RUP: Comparing and Combining
Iterative Processes for Acquisition and Software Development." The Rational Edge,
November 2002. Available: http://www.therationaledge.com/admin/archives.jsp.

Poppendieck, Mary. "Lean Programming" (Parts 1 and 2). Software Development
Magazine 9(5, 6): May, June 2001.

Poppendieck, Mary. "Wicked Projects." Software Development Magazine 10(5): May
2002, 72–76.

http://www.testing.com/writings/automate.pdf
http://www.darwinmag.com/read/020101/share.html
http://www.therationaledge.com/admin/archives.jsp

Poppendieck, Mary, with Ron Morsicato. "Using XP for Safety-Critical Software."
Cutter IT Journal 15(9): September 2002.

Prahalad, C. K., and M. S. Krishnan. "The Dynamic Synchronization of Strategy and
Information Technology." MIT Sloan Management Review 43(4): Summer 2002, 24–33.

Prahalad, C. K., and M. S. Krishnan. "The New Meaning of Quality in the Information
Age." Harvard Business Review 77(5): September–October 1999, 109–118.

Raymond, Eric Steven. The Cathedral and the Bazaar. Posted to Internet: 2000/08/24;
accessed: November 12, 2001. Available: http://tuxedo.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar/x285.html.

Reinertsen, Donald G. Managing the Design Factory: A Product Developer's Toolkit.
The Free Press, 1997.

Ripin, Kathy M., and Leonard Sayles. Insider Strategies for Outsourcing Information
Systems: Building Productive Partnerships, Avoiding Seductive Traps. Oxford University
Press, 1999.

Rittel, H., and M. Webber. "Dilemmas in a General Theory of Planning." Policy Sciences
4, 1973, 155–169.

Royce, Winston W. "Managing the Development of Large Software Systems."
Proceedings, IEEE WESCON, August 1970, 1–9.

Schwaber, Ken, and Mike Beedle. Agile Software Development with Scrum. Prentice
Hall, 2001.

Senge, Peter M. The Fifth Discipline: The Art and Practice of the Learning Organization.
Doubleday Currency, 1990.

Shalloway, Alan and James R. Trott. Design Patterns Explained: A New Perspective on
Object Oriented Design. Addison-Wesley, 2002.

Shingo, Shigeo. Study of "Toyota" Production System from Industrial Engineering
Viewpoint. Japan Management Association, Tokyo, 1981.

Simons, Matt. "Big and Agile?" Cutter IT Journal 15(1): January 2002.

Simons, Matt. "Internationally Agile." Inform IT, March 2002. Available:
http://www.informit.com.

Smith, Preston G., and Donald G. Reinertsen. Developing Products in Half the Time:
New Rules, New Tools, 2nd ed. John Wiley and Sons, 1998. First edition published in
1991.

http://tuxedo.org/~esr/writings/cathedral-
http://www.informit.com

Sobek, Durward K., II, C. Allen Ward, and Jeffrey K. Liker. "Toyota's Principles of Set-
Based Concurrent Engineering." Sloan Management Review 40(2): Winter 1999, 67–83.

Sobek, Durward Kenneth, II. Principles That Shape Product Development Systems: A
Toyota-Chrysler Comparison. Ph.D. dissertation. University of Michigan, 1997.

Stapleton, Jennifer. DSDM: Business Focused Development, 2nd ed. Addison-Wesley,
2003.

Sutherland, Jeff. "Agile Can Scale: Inventing and Reinventing Scrum in Five
Companies." Cutter IT Journal 14(12): December 2001, 5–11.

Taylor, Winslow. Principles of Scientific Management. Harper and Brothers, 1911.

Thimbleby, Harold. "Delaying Commitment." IEEE Software 5(3): May 1988.

Thomas Group. National Institute of Standards and Technology Institute for Defense
Analyses. Business Week, April 30, 1990, 111.

Thomas, Kenneth W. Intrinsic Motivation at Work: Building Energy and Commitment.
Berrett-Koehler, 2000.

Thompson, Fred. "Public Economics and Public Administration." Jack Rabin, W. Bartley
Hildreth, and Gerald Miller (eds.), Handbook of Public Administration, 2nd ed. Marcel
Dekker, 1998. Available online at
http://www.willamette.edu/~fthompso/pubfin/ECON&PA.html.

Ulrich, Dave, Steve Kerr, and Ron Ashkenas. The GE Work-Out: How to Implement GE's
Revolutionary Method for Busting Bureaucracy and Attacking Organizational
Problems—Fast! McGraw-Hill, 2002.

Ward, Allen, Jeffrey K. Liker, John J. Cristaino, and Durward K. Sobek, II. "The Second
Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster." Sloan
Management Review 36(3): Spring 1995, 43–61.

Wideman, R. Max. "Progressive Acquisition and the RUP, Part I: Defining the Problem
and Common Terminology." The Rational Edge, December 2002. Available:
http://www.therationaledge.com/admin/archives.jsp.

Wideman, R. Max. "Progressive Acquisition and the RUP, Part II: Contracts That Work."
The Rational Edge, January 2003. Available:
http://www.therationaledge.com/admin/archives.jsp.

Womack, James P., and Daniel T. Jones. Lean Thinking, Banish Waste and Create
Wealth in your Corporation. Simon and Schuster, 1996.

http://www.willamette.edu/~fthompso/pubfin/ECON&PA.html
http://www.therationaledge.com/admin/archives.jsp
http://www.therationaledge.com/admin/archives.jsp

Womack, James P., Daniel T. Jones, and Daniel Roos. The Machine That Changed the
World: The Story of Lean Production. HarperPerennial, 1991. Originally published in
1990.

Yourdon, Edward Nash (ed.). Classics in Software Engineering. Yourdon Press, 1979.

Yourdon, Edward. Death March: The Complete Software Developer's Guide to Surviving
"Mission Impossible" Projects. Prentice Hall PTR, 1997.

Zaninotto, Enrico. Keynote "From X Programming to the X Organization." Third
International Conference on Extreme Programming, Alghero, Italy, May 26–29, 2002.

	Lean Software Development: An Agile Toolkit
	Copyright
	Dedication

	The Agile Software Development Series
	Foreword
	Foreword
	Preface
	Acknowledgments

	Introduction
	Lean Principles, Thinking Tools, Agile Practices
	Guided Tour

	Chapter 1. Eliminate Waste
	The Origins of Lean Thinking
	The True Story of a Death March Project, Part 1: Eliminating Waste

	Tool 1: Seeing Waste
	
	Table 1.1. The Seven Wastes

	Partially Done Work
	Extra Processes
	Extra Features
	Task Switching
	Waiting
	Motion
	Defects
	Management Activities

	Tool 2: Value Stream Mapping
	
	Figure 1.1. Value stream for cola cans.

	Map Your Value Stream
	Figure 1.2. Traditional value stream map.

	An Agile Value Stream Map
	Figure 1.3. Agile value stream map.

	Value Stream Maps
	
	
	Figure 1.4. Kent Beck's value stream map.

	The Bicycle Factory

	Try This

	Chapter 2. Amplify Learning
	The Nature of Software Development
	
	Table 2.1. Development versus Production

	Perspectives on Quality
	The Service View of Quality

	Quality at Disneyland
	
	
	Quality in Software Development
	Variability
	Design Cycles
	Figure 2.1. Design activity.[6]
	Do It Right the First Time?
	Learning Cycles

	The True Story of a Death March Project, Part 2: Weekly Iterations

	Tool 3: Feedback
	
	Figure 2.2. Timed traffic light.
	Figure 2.3. Traffic signal with sensors.
	Figure 2.4. Oven.

	Software Development Feedback Loops
	Figure 2.5. Original Royce "waterfall" recommendation.

	Imagine Deterministic Cruise Control
	The True Story of a Death March Project, Part 3: Amplifying Feedback

	Tool 4: Iterations
	Iteration Planning[17]
	Team Commitment
	Convergence
	Negotiable Scope
	Figure 2.6. Burn-down charts.
	Figure 2.7. Acceptance tests written and passed.

	Tool 5: Synchronization
	Synch and Stabilize[26]
	Spanning Application[27]
	Matrix
	Figure 2.8. Implement interfaces first.

	Tool 6: Set-Based Development
	Set-Based Versus Point-Based
	Figure 2.9. Point-based scheduling.[29]
	Figure 2.10. Set-based scheduling.[30]
	Figure 2.11. Checklist: Rear quarter panel cross-section deformity ratio.[32]
	Figure 2.12. Point-based development.[33]
	Figure 2.13. Set-based development.[34]

	Set-Based Software Development
	Develop Multiple Options

	Set-Based Embedded Software Development
	Set-Based Technology Selection
	Set-Based Web Site Design
	
	
	Communicate Constraints
	Let the Solution Emerge

	The True Story of a Death March Project, Part 4: A Solution Emerges

	Try This

	Chapter 3. Decide as Late as Possible
	Concurrent Development[1]
	Concurrent Software Development
	Cost Escalation
	Figure 3.1. Two cost escalation curves.

	Tool 7: Options Thinking
	Delaying Decisions
	Options
	Microsoft Strategy, circa 1988
	Options Thinking in Software Development

	Tool 8: The Last Responsible Moment
	Tool 9: Making Decisions
	Depth-First Versus Breadth-First Problem Solving
	Personality Types
	
	Intuitive Decision Making
	The Marines
	Simple Rules
	Simple Rules for Software Development

	Try This

	Chapter 4. Deliver as Fast as Possible
	Why Deliver Fast?
	Tool 10: Pull Systems
	Manufacturing Schedules
	Lean Construction
	
	Software Development Schedules
	Software Pull Systems
	Figure 4.1. A software kanban system.

	Information Radiators

	Tool 11: Queuing Theory
	Reducing Cycle Time
	Steady Rate of Arrival
	Steady Rate of Service
	Slack
	Figure 4.2. Effect of utilization and batch size on cycle time.[16]

	The Theory of Constraints
	
	How Queues Work

	Tool 12: Cost Of Delay
	An Accountant for Every Team
	
	Product Model
	Table 4.1. Baseline Software P&L
	Table 4.2. P&L: 6-Month Delay

	Application Model
	Table 4.3. Monthly Report for Call Cente
	Table 4.4. Monthly Economic Impact of Desirable System Features

	Tradeoff Decisions

	Try This
	
	Figure 4.3. Cycle time chart showing high variability.

	Chapter 5. Empower the Team
	Beyond Scientific Management
	Touring an Auto Factory, circa 1915
	
	CMM
	CMMI

	Tool 13: Self-Determination
	The NUMMI Mystery
	More Than Meets the Eye
	
	A Management Improvement Process

	Treat People Like Volunteers

	Tool 14: Motivation
	Magic at 3M
	Purpose
	In Search of Business Value
	
	
	Figure 5.1. The team polygon.

	The Building Blocks of Motivation
	Belonging
	Safety
	Competence
	Progress

	The Dirty Coffee Cup
	
	Long Days and Late Nights

	Tool 15: Leadership
	Leadership
	Table 5.1. Managers vs. Leaders

	Respected Leaders
	Master Developers
	The Fuzzy Front End
	Where Do Master Developers Come From?
	Project Management
	Lean Project Management Training

	Tool 16: Expertise
	Nucor[30]
	Xerox[32]
	Communities of Expertise
	Standards
	What State Do You Live In?

	Try This

	Chapter 6. Build Integrity In
	Integrity
	Perceived Integrity
	Perceived Integrity: Google
	
	Conceptual Integrity

	Conceptual Integrity: Two Airline Reservation Systems
	
	The Key to Integrity
	Figure 6.1. Information flow produces integrity.

	Tool 17: Perceived Integrity
	Model-Driven Design
	A Matrix Model
	
	Maintaining Perceived Integrity

	Tool 18: Conceptual Integrity
	Integra Integrity
	
	
	Figure 6.2. Requirements before design.
	Figure 6.3. Concurrent requirements and development.

	Software Architecture Basics
	Emerging Integrity

	Tool 19: Refactoring
	Keeping Architecture Healthy
	Entering Addresses
	A Reward for Developers
	
	Maintaining Conceptual Integrity
	Isn't Refactoring Rework?
	Figure 6.4. Continuously improving design sustains productivity.[23]

	Tool 20: Testing
	Communication
	Feedback
	Scaffolding
	As-Built
	The Importance of As-Built Drawings
	
	Maintenance

	Try This

	Chapter 7. See the Whole
	Systems Thinking
	Tool 21: Measurements
	Machine Utilization
	
	Local Optimization
	Why Do We Suboptimize?[10]
	Superstition
	Habit

	The Unimportance of Cost and Schedule
	
	Measuring Performance
	Information Measurements

	Tool 22: Contracts
	Can There Be Trust Between Firms?
	But Software Is Different
	The Purpose of Contracts
	Fixed-Price Contracts
	Fixed Price—Unhappy Customers
	
	Time-and-Materials Contracts
	Multistage Contracts

	Tailoring Multistage Contracts to the Domain
	
	Target-Cost Contracts

	Target-Cost Contract Example
	
	Target-Schedule Contracts
	Shared-Benefit Contracts

	Agile Contracts Make Business Sense
	
	The Key: Optional Scope[35]

	Try This

	Chapter 8. Instructions and Warranty
	Caution—Use Only as Directed
	Instructions
	Sphere of Influence
	Large Company
	Small Company
	Special Work Environments

	Troubleshooting Guide
	Warranty

	Bibliography

