
© IEEE – 2004 Version ®SWEBOK is an official service mark of the IEEE

Guide to the Software Engineering Body of
Knowledge

2004 Version

SWEBOK®

A project of the IEEE Computer Society
Professional Practices Committee

© IEEE – 2004 Version

© IEEE – 2004 Version ®SWEBOK is an official service mark of the IEEE

Guide to the Software Engineering Body of
Knowledge

2004 Version

SWEBOK®

Executive Editors
Alain Abran, École de technologie supérieure

James W. Moore, The MITRE Corp.

Editors
Pierre Bourque, École de technologie supérieure
Robert Dupuis, Université du Québec à Montréal

Project Champion

Leonard L. Tripp, Chair, Professional Practices Committee,
IEEE Computer Society (2001-2003)

http://computer.org

Los Alamitos, California
Washington • Brussels • Tokyo

© IEEE – 2004 Version

Library of Congress Cataloging-in-Publication Data

Guide to the software engineering body of knowledge : 2004 version
/ executive editors, Alain Abran, James W. Moore;

editors, Pierre Bourque, Robert Dupuis, Leonard L. Tripp.
p. cm.

1. Software engineering. 2. Computer software--Development. I.
Abran, Alain, 1949- . II. Moore, James W., 1948- .

To be completed

2001005442

Copyright © 2004 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permissions: This document may be copied, in whole or in part, in any form or by any means, as is, or
with alterations, provided that (1) alterations are clearly marked as alterations and (2) this copyright notice is included
unmodified in any copy. Any other use or distribution of this document is prohibited without the prior express permission of
IEEE.

You use this document on the condition that you indemnify and hold harmless IEEE from any and all liability or damages to
yourself or your hardware or software, or third parties, including attorneys' fees, court costs, and other related costs and expenses,
arising out of your use of this document irrespective of the cause of said liability.

IEEE MAKES THIS DOCUMENT AVAILABLE ON AN "AS IS" BASIS AND MAKES NO WARRANTY, EXPRESS OR IMPLIED, AS TO
THE ACCURACY, CAPABILITY, EFFICIENCY MERCHANTABILITY, OR FUNCTIONING OF THIS DOCUMENT. IN NO EVENT
WILL IEEE BE LIABLE FOR ANY GENERAL, CONSEQUENTIAL, INDIRECT, INCIDENTAL, EXEMPLARY, OR SPECIAL
DAMAGES, EVEN IF IEEE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

To be completed

Additional copies may be ordered from:

IEEE Computer Society IEEE Service Center IEEE Computer Society
Customer Service Center 445 Hoes Lane Asia/Pacific Office

10662 Los Vaqueros Circle P.O. Box 1331 Watanabe Bldg., 1-4-2
P.O. Box 3014 Piscataway, NJ 08855-1331 Minami-Aoyama

Los Alamitos, CA 90720-1314 Tel: + 1-732-981-0060 Minato-ku, Tokyo 107-0062
Tel: + 1-714-821-8380 Fax: + 1-732-981-9667 JAPAN
Fax: + 1-714-821-4641 http://shop.ieee.org/store/ Tel: + 81-3-3408-3118

E-mail: cs.books@computer.org customer-service@ieee.org Fax: + 81-3-3408-3553
 tokyo.ofc@computer.org

Publisher: Angela Burgess
Group Managing Editor, CS Press: Deborah Plummer

Advertising/Promotions: Tom Fink
Production Editor: Bob Werner

Printed in the United States of America

© IEEE – 2004 Version v

TABLE OF CONTENTS
FOREWORD ..vii
SWEBOK Committees .. ix
Preface to the SWEBOK Guide...xviii
CHAPTER 1 INTRODUCTION TO THE GUIDE ..1-1
CHAPTER 2 SOFTWARE REQUIREMENTS...2-1
CHAPTER 3 SOFTWARE DESIGN ...3-1
CHAPTER 4 SOFTWARE CONSTRUCTION ..4-1
CHAPTER 5 SOFTWARE TESTING..5-1
CHAPTER 6 SOFTWARE MAINTENANCE ...6-1
CHAPTER 7 SOFTWARE CONFIGURATION MANAGEMENT ..7-1
CHAPTER 8 SOFTWARE ENGINEERING MANAGEMENT...8-1
CHAPTER 9 SOFTWARE ENGINEERING PROCESS ..9-1
CHAPTER 10 SOFTWARE ENGINEERING TOOLS AND METHODS ...10-1
CHAPTER 11 SOFTWARE QUALITY...11-1
CHAPTER 12 KNOWLEDGE AREAS OF THE RELATED DISCIPLINES………………….….…..12-1
APPENDIX A KNOWLEDGE AREA DESCRIPTION SPECIFICATIONS FOR THE
 2004 VERSION OF THE GUIDE TO THE SOFTWARE ENGINEERING
 BODY OF KNOWLEDGE...A-1
Appendix B EVOLUTION OF THE GUIDE... B-1
APPENDIX C ALLOCATION OF IEEE AND ISO SOFTWARE ENGINEERING STANDARDS TO

SWEBOK KNOWLEDGE AREAS .. C-1
APPENDIX D CLASSIFICATION OF TOPICS ACCORDING TO BLOOM’S TAXONOMYD-1

© IEEE – 2004 Version vi

© IEEE – 2004 Version vii

FOREWORD

In this Guide, the IEEE Computer Society establishes for the first time a baseline for the body of knowledge for
the field of software engineering, and the work partially fulfills the Society’s responsibility to promote the
advancement of both theory and practice in this field. In so doing, the Society has been guided by the experience of
disciplines with longer histories, but was not bound either by their problems or their solutions.

It should be noted that the Guide does not purport to define the body of knowledge, but rather to serve as a
compendium and guide to the body of knowledge that has been developing and evolving over the past four decades.
Furthermore, this body of knowledge is not static. The Guide must, necessarily, develop and evolve as software
engineering matures. It nevertheless constitutes a valuable element of the software engineering infrastructure.

In 1958, John Tukey, the world-renowned statistician, coined the term software. The term software engineering
was used in the title of a NATO conference held in Germany in 1968. The IEEE Computer Society first published its
Transactions on Software Engineering in 1972. The committee established within the IEEE Computer Society for
developing software engineering standards was founded in 1976.

The first holistic view of software engineering to emerge from the IEEE Computer Society resulted from an
effort led by Fletcher Buckley to develop IEEE standard 730 for software quality assurance, which was completed in
1979. The purpose of IEEE Std 730 was to provide uniform, minimum acceptable requirements for preparation and
content of software quality assurance plans. This standard was influential in completing the developing standards in
the following topics: configuration management, software testing, software requirements, software design, and
software verification and validation.

During the period 1981-1985, the IEEE Computer Society held a series of workshops concerning the application
of software engineering standards. These workshops involved practitioners sharing their experiences with existing
standards. The workshops also held sessions on planning for future standards, including one involving measures and
metrics for software engineering products and processes. The planning also resulted in IEEE Std 1002, Taxonomy of
Software Engineering Standards (1986), which provided a new, holistic view of software engineering. The standard
describes the form and content of a software engineering standards taxonomy. It explains the various types of
software engineering standards, their functional and external relationships, and the role of various functions
participating in the software life cycle.

In 1990, planning for an international standard with an overall view was begun. The planning focused on
reconciling the software process views from IEEE Std 1074 and the revised U.S. DoD standard 2167A. The revision
was eventually published as DoD Std 498. The international standard was completed in 1995 with designation,
ISO/IEC12207, and given the title of Standard for Software Life Cycle Processes. Std ISO/IEC 12207 provided a
major point of departure for the body of knowledge captured in this book.

It was the IEEE Computer Society Board of Governors’ approval of the motion put forward in May 1993 by
Fletcher Buckley which resulted in the writing of this book. The Association for Computing Machinery (ACM)
Council approved a related motion in August 1993. The two motions led to a joint committee under the leadership of
Mario Barbacci and Stuart Zweben who served as co-chairs. The mission statement of the joint committee was “To
establish the appropriate sets(s) of criteria and norms for professional practice of software engineering upon which
industrial decisions, professional certification, and educational curricula can be based.” The steering committee
organized task forces in the following areas:

 1. Define Required Body of Knowledge and Recommended Practices;

 2. Define Ethics and Professional Standards;

 3. Define Educational Curricula for undergraduate, graduate, and continuing education.

This book supplies the first component: required body of knowledge and recommend practices.

The code of ethics and professional practice for software engineering was completed in 1998 and approved by
both the ACM Council and the IEEE Computer Society Board of Governors. It has been adopted by numerous
corporations and other organizations and is included in several recent textbooks.

The educational curriculum for undergraduates is being completed by a joint effort of the IEEE Computer
Society and the ACM, and is expected to be completed in 2004.

 viii © IEEE – 2004 Version

Every profession is based on a body of knowledge and recommended practices, although they are not always
defined in a precise manner. In many cases, these are formally documented, usually in a form that permits them to be
used for such purposes as accreditation of academic programs, development of education and training programs,
certification of specialists, or professional licensing. Generally, a professional society or related body maintains
custody of such a formal definition. In cases where no such formality exists, the body of knowledge and
recommended practices are “generally recognized” by practitioners and may be codified in a variety of ways for
different uses.

It is hoped that readers will find this book useful in guiding them towards the knowledge and resources they need
in their lifelong career development as software engineering professionals.

The book is dedicated to Fletcher Buckley in recognition of his commitment to promoting software engineering
as a professional discipline and his excellence as a software engineering practitioner in radar applications.

Leonard L. Tripp, IEEE Fellow 2003

Chair, Professional Practices Committee, IEEE Computer Society, (2001-2003)
Chair, Joint IEEE Computer Society and ACM Steering Committee

for the Establishment of Software Engineering as a Profession (1998-1999)
Chair, Software Engineering Standards Committee, IEEE Computer Society (1992-1998)

© IEEE – 2004 Version ix

ASSOCIATE EDITORS
The following persons served as Associate Editors for either the Trial version published in 2001

or for the 2004 version.

Software Requirements

PeterSawyer and Gerald Kotonya, Computing Department, Lancaster University, UK,
{p.sawyer} {g.kotonya}@lancaster.ac.uk

Software Design
 Guy Tremblay, Département d’informatique, UQAM, Canada, tremblay.guy@uqam.ca
Software Construction
 Steve McConnell, Construx Software, USA, Steve.McConnell@construx.com
 Terry Bollinger, the MITRE Corporation, USA, terry@mitre.org

Philippe Gabrini, Département d’informatique, UQAM, Canada,
gabrini.philippe@uqam.ca

 Louis Martin, Département d’informatique, UQAM, Canada,
martin.louis@uqam.ca

Software Testing
Antonia Bertolino and Eda Marchetti, ISTI-CNR, Italy,
{antonia.bertolino} {eda.marchetti}@isti.cnr.it

Software Maintenance
 Thomas M. Pigoski, Techsoft Inc., USA, tmpigoski@techsoft.com
 Alain April, École de technologie supérieure, Canada, aapril@ele.etsmtl.ca
Software Configuration Management
 John A. Scott, Lawrence Livermore National Laboratory, USA, scott7@llnl,gov
 David Nisse, USA, nissed@worldnet.att.net
Software Engineering Management
 Dennis Frailey, Raytheon Company, USA, DJFrailey@Raytheon.com

Stephen G. MacDonell, Auckland University of technology, New Zealand,
smacdone@aut.ac.nz
Andrew R. Gray, University of Otago, New Zealand

Software Engineering Process
 Khaled El Eman, served while at the Canadian National Research Council, Canada,

khaled.el-emam@nrc-cnrc.gc.ca
Software Engineerting Tools and Methods

David Carrington, School of Information Technology and electrical Engineering, The
University of Queensland, Australia,

 davec@itee.uq.edu.au
Software Quality
 Alain April, École de technologie supérieure, Canada, aapril@ele.etsmtl.ca

Dolores Wallace, retired from the National Institute of Standards and Technology, USA
 Dolores.Wallace@nist.gov
 Larry Reeker, NIST, USA, Larry.Reeker@nist.gov
References Editor
 Marc Bouisset, Département d’informatique, UQAM, Bouisset.Marc@uqam.ca

 x © IEEE – 2004 Version

© IEEE – 2004 Version xi

Industrial Advisory
BOARD

At the time of the publication, the following people formed the Industrial Advisory Board:

Mario R. Barbacci, Software Engineering Institute, representing the
IEEE Computer Society

Carl Chang, representing Computing Curricula 2001

François Coallier, École de technologie supérieure, speaking as ISO/IEC JTC 1 / SC7
Chairman

Charles Howell, The MITRE Corporation

Anatol Kark, National Research Council of Canada

Philippe Kruchten, University of British Columbia, served as representative of Rational
Software

Laure Le Bars, SAP Labs (Canada)

Steve McConnell, Construx Software

Dan Nash, Raytheon Company

Fred Otto, Canadian Council of Professional Engineers (CCPE)

Richard Metz, The Boeing Company

Larry Reeker, National Institute of Standards and Technology,
Department of Commerce, USA

The following persons served along with the IAB in the Executive Change Control Board for
the 2004 edition:

Donald Bagert, Rose-Hulman Institute of Technology, represening the IEEE Computer
Society Professional Practices Committee

Ann Sobel, Miami University, representing the Computing Curricula Software
Engineering Steering Committee

 xii © IEEE – 2004 Version

PANEL OF EXPERTS

The following persons served on the panel of expert for the preparation of the Trial version of the
Guide:

Steve McConnell, Construx Software

Roger Pressman, R.S. Pressman and Associates

Ian Sommerville, Lancaster University, UK

© IEEE – 2004 Version xiii

REVIEW TEAM

The following people participated in the review process of this Guide, for the Trial version and/or
for the 2004 version.

Abbas, Rasha, Australia
Abran , Alain, Canada
Accioly, Carlos, Brazil
Ackerman, Frank, USA
Akiyama, Yoshihiro, Japan
Al-Abdullah, Mohammad, USA
Alarcon, Miren Idoia, Spain
Alawy, Ahmed, USA
Alleman, Glen, USA
Allen, Bob, Canada
Allen, David, USA
Amorosa, Francesco, Italy
Amyot, Daniel, Canada
Andrade, Daniel, Brazil
April, Alain, Canada
Arroyo-Figueror, Javier, USA
Ashford, Sonny, USA
Atsushi, Sawada, Japan
Backitis Jr., Frank, USA
Bagert, Donald, USA
Baker, Jr., David, USA
Baker, Theodore, USA
Baldwin, Mark, USA
Bales, David, UK
Bamberger, Judy, USA
Banerjee, Bakul, USA
Barber, Scott, USA
Barker, Harry, UK
Barnes, Julie, USA
Barney, David, Australia
Barros, Rafael, Colombia
Bastarache, Louis, Canada
Bayer, Steven, USA
Beaulac, Adeline, Canada
Beck, William, USA
Beckman, Kathleen, USA
Below, Doreen, USA
Benediktsson, Oddur, Iceland
Ben-Menachem, Mordechai,
Israel
Bergeron, Alain, Canada
Berler, Alexander, Greece
Bernet, Martin, USA
Bernstein, Larry, USA
Bertram, Martin, Germany
Bialik , Tracy, USA
Bielikova, Maria, Slovakia

Bierwolf, Robert, The
Netherlands
Bisbal, Jesus, Ireland
Boivin, Michel, Canada
Bolton , Michael, Canada
Bomitali, Evelino, Italy
Bonderer, Reto, Switzerland
Bonk, Francis, USA
Booch, Grady, USA
Booker, Glenn, USA
Börstler, Jürgen, Sweden
Borzovs, Juris, Latvia
Botting, Richard, USA
Bourque, Pierre, Canada
Bowen, Thomas, USA
Boyd, Milt, USA
Boyer, Ken, USA
Brashear, Phil, USA
Briggs, Steve, USA
Bright, Daniela, USA
Brosseau, Jim, Canada
Brotbeck, George, USA
Brown, Normand, Canada
Bruhn, Anna, USA
Brune, Kevin, USA
Bryant, Jeanne, USA
Buglione, Luigi, Italy
Bullock, James, USA
Burns, Robert, USA
Burnstein, Ilene, USA
Byrne, Edward, USA
Calizaya, Percy, Peru
Carreon, Juan, USA
Carroll, Sue, USA
Carruthers, Kate, Australia
Caruso, Richard, USA
Carvalho, Paul, Canada
Case, Pam, USA
Cavanaugh, John, USA
Celia, John A., USA
Chalupa Sampaio, Alberto
Antonio, Portugal
Chan, F.T., Hong Kong
Chan, Keith, Hong Kong
Chandra, A.K., India
Chang, Wen-Kui, Taiwan
Chapin, Ned, USA

Charette, Robert, USA
Chevrier, Marielle, Canada
Chi, Donald, USA
Chiew, Vincent, Canada
Chilenski, John, USA
Chow, Keith, Italy
Ciciliani, Ricardo, Argentina
Clark, Glenda, USA
Cleavenger, Darrell, USA
Cloos, Romain, Luxembourg
Coallier, François, Canada
Coblentz, Brenda, USA
Cohen, Phil, Australia
Collard, Ross, New Zealand
Collignon, Stephane, Australia
Connors, Kathy Jo, USA
Cooper, Daniel, USA
Councill, Bill, USA
Cox, Margery, USA
Cunin, Pierre-Yves, France
DaLuz, Joseph, USA
Dampier, David, USA
Daneva , Maya, Canada
Daneva, Maya, Canada
Daughtry, Taz, USA
Davis, Ruth, USA
De Cesare, Sergio, UK
Dekleva, Sasa, USA
Del Castillo, Federico, Peru
Del Dago, Gustavo, Argentina
DeWeese, Perry, USA
Di Nunno, Donn, USA
Diaz-Herrera, Jorge, USA
Dieste, Oscar, Spain
Dion, Francis, Canada
Dixon, Wes, USA
Dolado, Javier, Spain
Donaldson, John, UK
Dorantes, Marco, Mexico
Dorofee, Audrey, USA
Douglass, Keith, Canada
Du, Weichang, Canada
Duben, Anthony, USA
Dudash, Edward, USA
Duncan, Scott, USA
Duong, Vinh, Canada
Durham, George, USA

 xiv © IEEE – 2004 Version

Dutil, Daniel, Canada
Dutton, Jeffrey, USA
Ebert, Christof, France
Edge, Gary, USA
Edwards, Helen Maria, UK
El-Kadi, Amr, Egypt
Endres, David, USA
Engelmann, Franz, Switzerland
Escue, Marilyn, USA
Espinoza, Marco, Peru
Fay, Istvan, Hungary
Fayad, Mohamed, USA
Fendrich, John, USA
Ferguson, Robert, USA
Fernandez, Eduardo, USA
Fernandez-Sanchez, Jose Luis,
Spain
Filgueiras, Lucia, Brazil
Finkelstein, Anthony, UK
Flinchbaugh, Scott, USA
Forrey, Arden, USA
Fortenberry, Kirby, USA
Foster, Henrietta, USA
Fowler, Martin, USA
Fowler, John Jr., USA
Fox, Christopher, USA
Frankl, Phyllis, USA
Freibergs, Imants, Latvia
Frezza, Stephen, USA
Fruehauf, Karol, Switzerland
Fuggetta, Alphonso, Italy
Fujii, Roger, USA
FUSCHI, David Luigi, Italy
Fuschi, David Luigi, Italy
Gabrini, Philippe, Canada
Gagnon, Eric, Canada
Ganor, Eitan, Israel
Garbajosa, Juan, Spain
Garceau, Benoît, Canada
Garcia-Palencia, Omar,
Colombia
Garner, Barry, USA
Gelperin, David, USA
Gersting, Judith, Hawaii
Giesler, Gregg, USA
Gil, Indalecio, Spain
Gilchrist, Thomas, USA
Giurescu, Nicolae, Canada
Glass, Robert, USA
Glynn, Garth, UK
Goers, Ron, USA
Gogates, Gregory, USA
Goldsmith, Robin, USA
Goodbrand, Alan, Canada
Gorski, Janusz, Poland
Graybill , Mark, USA

Gresse von Wangenheim,
Christiane, Brazil
Grigonis, George, USA
Gupta, Arun, USA
Gustafson, David, USA
Gutcher, Frank, USA
Haas, Bob, USA
Hagar, Jon, USA
Hagstrom, Erick, USA
Hailey, Victoria, Canada
Hall, Duncan, New Zealand
Haller, John, USA
Halstead-Nussloch, Richard,
USA
Hamm, Linda, USA
Hankewitz, Lutz, Germany
Harker, Rob, USA
Hart, Hal, USA
Hart, Ronald, USA
Hartner, Clinton, USA
Hayeck, Elie, USA
He, Zhonglin, UK
Hedger, Dick, USA
Hefner, Rick, USA
Heinrich, Mark, USA
Heinze, Sherry, Canada
Hensel, Alan, USA
Herrmann, Debra, USA
Hesse, Wolfgang, Germany
Hilburn, Thomas, USA
Hill, Michael, USA
Ho, Vinh, Canada
Hodgen, Bruce, Australia
Hodges, Brett, Canada
Hoffman, Douglas, Canada
Hoffman, Michael, USA
Hoganson, Tammy, USA
Hollocker, Chuck, USA
Horch, John, USA
Howard, Adrian, United
Kingdom
Huang, Hui Min, USA
Hung, Chih-Cheng, USA
Hung, Peter, USA
Hunt, Theresa, USA
Hunter, John, USA
Hvannberg, Ebba Thora, Iceland
Hybertson, Duane, USA
Ikiz, Seckin, Turkey
Iyengar, Dwaraka, USA
Jackelen, George, USA
Jaeger, Dawn, USA
Jahnke, Jens, Canada
James, Jean, USA
Jino, Mario, Brazil
Johnson, Vandy, USA

Jones, Griffin, USA
Jones, James E., USA
Jones, Alan, UK
Jones, James, USA
Jones, Larry, Canada
Jones, Paul, USA
Ju, Dehua, China
Juan-Martinez, Manuel-
Fernando, Spain
Juhasz, Zoltan, Hungary
Juristo, Natalia, Spain
Kaiser, Michael, Switzerland
Kambic, George, USA
Kamthan, Pankaj, Canada
Kaner, Cem, USA
Kark, Anatol, Canada
Kasser, Joe, USA
Kasser, Joseph, Australia
Katz, Alf, Australia
Kececi, Nihal, Canada
Kell, Penelope, USA
Kelly, Diane, Canada
Kelly, Frank, USA
Kenett, Ron, Israel
Kenney, Mary L., USA
Kerievsky, Joshua, USA
Kerr, John, USA
Kierzyk, Robert, USA
Kinsner, W., Canada
Kirkpatrick, Harry, USA
Kittiel, Linda, USA
Klappholz, David, USA
Klein, Joshua, Israel
Knight, Claire, UK
Knoke, Peter, USA
Ko, Roy, Hong Kong
Kolewe, Ralph, Canada
Komal, Surinder Singh, Canada
Kovalovsky, Stefan, Austria
Krauth, Péter, Hungary
Krishnan, Nirmala, USA
Kromholz, Alfred, Canada
Kruchten, Philippe, Canada
Kuehner, Nathanael, Canada
Kwok, Shui Hung, Canada
Lacroix, Dominique, Canada
LaMotte, Stephen W., USA
Land, Susan, USA
Lange, Douglas, USA
Laporte, Claude, Canada
Lawlis, Patricia, USA
Le, Thach, USA
Leavitt, Randal, Canada
LeBel, Réjean, Canada
Leciston, David, USA
Lee, Chanyoung, USA

© IEEE – 2004 Version xv

Lehman, Meir (Manny), UK
Leigh, William, USA
Lembo, Jim, USA
Lenss, John, USA
Leonard, Eugene, USA
Lethbridge, Timothy, Canada
Leung, Hareton, Hong Kong
Lever, Ronald, The Netherlands
Levesque, Ghislain, Canada
Ley, Earl, USA
Linders , Ben, Netherlands
Linscomb , Dennis, USA
Little, Joyce Currie, USA
Logan, Jim, USA
Long, Carol, United Kingdom
Lounis, Hakim, Canada
Low, Graham, Australia
Lutz, Michael, USA
Lynch, Gary, USA
Machado, Cristina, Brazil
MacKay, Stephen, Canada
MacKenzie, Garth, USA
MacNeil, Paul, USA
Magel, Kenneth, USA
Mains, Harold, USA
Malak, Renee, USA
Maldonado, José Carlos, Brazil
Marcos, Esperanza, Spain
Marinescu, Radu, Romania
Marm, Waldo, Peru
Marusca, Ioan, Canada
Matlen, Duane, USA
Matsumoto, Yoshihiro, Japan
McBride, Tom, Australia
McCarthy, Glenn, USA
McChesney, Ian, UK
McCormick, Thomas, Canada
McCown, Christian, USA
McDonald, Jim, USA
McGrath Carroll, Sue, USA
McHutchison, Diane, USA
McKinnell, Brian, Canada
McMichael, Robert, USA
McMillan, William, USA
McQuaid, Patricia, USA
Mead, Nancy, USA
Meeuse, Jaap, The Netherlands
Meier, Michael, USA
Meisenzahl, Christopher, USA
Melhart, Bonnie, USA
Mengel, Susan, USA
Meredith, Denis, USA
Meyerhoff, Dirk, Germany
Mili, Hafedh, Canada
Miller, Chris, Netherlands
Miller, Keith, USA

Miller, Mark, USA
Miranda, Eduardo, Canada
Mistrik, Ivan, Germany
Mitasiunas, Antanas, Lithuania
Modell, Howard, USA
Modell, Staiger,USA
Modesitt, Kenneth, USA
Moland, Kathryn, USA
Moldavsky, Symon, Ukraine
Montequín, Vicente R., Spain
Moreno, Ana Maria, Spain
Mosiuoa, Tseliso, Lesotho
Moudry, James, USA
Msheik, Hamdan, Canada
Mularz, Diane, USA
Mullens, David, USA
Müllerburg, Monika, Germany
Murali, Nagarajan, Australia
Murphy, Mike, USA
Napier, John, USA
Narasimhadevara, Sudha,
Canada
Narawane, Ranjana, India
Narayanan, Ramanathan, India
Navarro Ramirez, Daniel,
Mexico
Navas Plano, Francisco, Spain
Navrat, Pavol, Slovakia
Neumann, Dolly, USA
Nguyen-Kim, Hong, Canada
Nikandros, George, Australia
Nishiyama, Tetsuto, Japan
Nunn, David, USA
O'Donoghue, David, Ireland
Oliver, David John, Australia
Olson, Keith, USA
Oskarsson, Östen, Sweden
Ostrom, Donald, USA
Oudshoorn, Michael, Australia
Owen, Cherry, USA
Pai, Hsueh-Ieng, Canada
Parrish, Lee, USA
Parsons, Samuel, USA
Patel, Dilip, UK
Paulk, Mark, USA
Pavelka, Jan, Czech Republic
Pavlov, Vladimir, Ukraine
Pawlyszyn, Blanche, USA
Pecceu, Didier, France
Perisic, Branko, Yugoslavia
Perry, Dale, USA
Peters, Dennis, Canada
Petersen, Erik, Australia
Pfahl, Dietmar, Germany
Pfeiffer, Martin, Germany
Phillips, Dwayne, USA

Phipps, Robert, USA
Phister, Paul, USA
Phister, Jr., Paul, USA
Piattini, Mario, Spain
Piersall, Jeff, USA
Pillai, S.K., India
Pinder, Alan, UK
Pinheiro, Francisco A., Brazil
Plekhanova, Valentina, United
Kingdom
Poon, Peter, USA
Poppendieck, Mary, USA
Powell, Mace, USA
Predenkoski, Mary, USA
Prescott, Allen, USA
Pressman, Roger, USA
Price, Art, USA
Price, Margaretha, USA
Pullum, Laura, USA
Purser, Keith, USA
Purssey, John, Australia
Pustaver, John, USA
Quinn, Anne, USA
Radnell, David, Australia
Rae, Andrew, United Kingdom
Rafea, Ahmed, Egypt
Ramsden, Patrick, Australia
Rao, N.Vyaghrewara, India
Rawsthorne, Dan, USA
Reader, Katherine, USA
Reddy, Vijay,USA
Redwine, Samuel, USA
Reed, Karl, Australia
Reedy, Ann, USA
Reeker, Larry, USA
Rethard, Tom, USA
Reussner, Ralf, Germany
Rios, Joaquin, Spain
Risbec, Philippe, France
Roach, Steve, USA
Robillard, Pierre, Canada
Rocha, Zalkind, Brazil
Rodeiro Iglesias, Javier, Spain
Rodriguez-Dapena, Patricia,
Spain
Rogoway, Paul, Israel
Rontondi, Guido, Italy
Roose, Philippe, France
Rosca, Daniela, USA
Rosenberg, Linda, USA
Rourke, Michael, Australia
Rout, Terry, Australia
Rufer, Russ, USA
Ruiz, Francisco, Spain
Ruocco, Anthony, USA
Rutherfoord, Rebecca, USA

 xvi © IEEE – 2004 Version

Ryan, Michael, Ireland
Salustri, Filippo, Canada
Salustri, Filippo, Canada
Salwin, Arthur, USA
Sanden, Bo, USA
Sandmayr, Helmut, Switzerland
Santana Filho, Ozeas Vieira,
Brazil
Sato, Tomonobu, Japan
satyadas, antony, USA
Satyadas, Antony, USA
Schaaf, Robert, USA
Scheper, Charlotte, USA
Schiffel, Jeffrey, USA
Schlicht, Bill, USA
Schrott, William, USA
Schwarm, Stephen, USA
Schweppe, Edmund, USA
Sebern, Mark, USA
Seffah, Ahmed, Canada
Selby, Nancy, USA
Selph, William, USA
Sen, Dhruba, USA
Senechal, Raymond, USA
Sepulveda, Christian, USA
Setlur, Atul, USA
Sharp, David, USA
Shepard, Terry, Canada
Shepherd, Alan, Germany
Shillato, Rrobert W, USA
Shintani, Katsutoshi, Japan
Silva, Andres, Spain
Silva, Andres, Spain
Singer, Carl, USA
Sinnett, Paul, UK
Sintzoff, André, France
Sitte, Renate, Australia
Sky, Richard, USA
Smilie, Kevin, USA
Smith, David, USA
Sophatsathit, Peraphon, Thailand

Sorensen, Reed, USA
Soundarajan, Neelam, USA
Sousa Santos, Frederico,
Portugal
Spillers, Mark, USA
Spinellis, Diomidis, Greece
Splaine, Steve, USA
Springer, Donald, USA
Staiger, John, USA
Starai, Thomas, USA
Steurs, Stefan, Belgium
St-Pierre, Denis, Canada
Stroulia, Eleni, Canada
Subramanian, K.S., India
Sundaram, Sai, UK
Swanek, James, USA
Swearingen, Sandra, USA
Szymkowiak , Paul, Canada
Tamai, Tetsuo, Japan
Tasker, Dan, New Zealand
Taylor, Stanford, USA
Terekhov, Andrey A., Russian
Federation,
Terski, Matt, USA
Thayer, Richard, USA
Thomas, Michael, USA
Thompson, A. Allan, Australia
Thompson, John Barrie, UK
Titus, Jason, USA
Tockey, Steve, USA
Tovar, Edmundo, Spain
Towhidnejad, Massood, USA
Trellue, Patricia, USA
Trèves, Nicolas, France
Troy, Elliot, USA
Tsui, Frank, USA
Tsuneo, Furuyama, Japan
Tuohy, Kenney, USA
Tuohy, Marsha P., USA
Turczyn, Stephen, USA
Upchurch, Richard, USA

Urbanowicz, Theodore, USA
Van Duine, Dan, USA
Van Ekris, Jaap, Netherlands
Van Oosterhout, Bram, Australia
Vander Plaats, Jim, USA
Vegas, Sira, Spain
Verner, June, USA
Villas-Boas, André, Brazil
Vollman, Thomas, USA
Walker, Richard, Australia
Walsh, Bucky, USA
Wang, Yingxu, Sweden
Wear, Larry, USA
Weigel, richard, USA
Weinstock, Charles, USA
Wenyin, Liu, China
Werner, Linda, USA
Wheeler, David, USA
White, Nathan, USA
White, Stephanie, USA
Whitmire, Scott, USA
Wijbrans, Klaas, The
Netherlands
Wijbrans-Roodbergen, Margot,
The Netherlands
Wilkie, Frederick, UK
Wille, Cornelius, Germany
Wilson, Charles, USA
Wilson, Leon, USA
Wilson, Russell, USA
Woechan, Kenneth, USA
Woit , Denise, Canada
Yadin, Aharon, Israel
Yih, Swu, Taiwan
Young, Michal, USA
Yrivarren, Jorge, Peru
Znotka, Juergen, Germany
Zuser, Wolfgang, Austria
Zvegintzov, Nicholas, USA
Zweben, Stu, USA

© IEEE – 2004 Version xvii

The following motion was unanimously adopted by the Industrial Advisory Board

on February 6, 2004.

The Industrial Advisory Board finds that the Software Engineering Body of Knowledge project initiated
in 1998 has been successfully completed; and endorses the 2004 Version of the Guide to the SWEBOK
and commends it to the IEEE Computer Society Board of Governors for their approval.

The following motion adopted by the IEEE Computer Society Board of Governors
in February 2004.

MOVED, that the Board of Governors of the IEEE Computer Society approves the 2004 Edition of the
Guide to the Software Engineering Body of Knowledge and authorizes the Chair of the Professional
Practices Committee to proceed with printing.

 © IEEE – 2004 Version xviii

© IEEE – 2004 Version xix

PREFACE

Software engineering is an emerging discipline and
there are unmistakable trends indicating an increasing
level of maturity:
 Several universities throughout the world offer

undergraduate degrees in software engineering.
For example, such degrees are offered at the
University of New South Wales (Australia),
McMaster University (Canada), the Rochester
Institute of Technology (US), the University of
Sheffield (UK) and other universities.

 In the US, the Engineering Accreditation
Commission of the Accreditation Board for
Engineering and Technology (ABET) is
responsible for the accreditation of undergraduate
software engineering programs.

 The Canadian Information Processing Society has
published criteria to accredit software engineering
undergraduate university programs.

 The Software Engineering Institute’s Capability
Maturity Model for Software (SW CMM) and the
new Capability Maturity Model Integration
(CMMI) are used to assess organizational
capability for software engineering. The famous
ISO 9000 quality management standards have
been applied to software engineering by the new
ISO/IEC 90003.

 The Texas Board of Professional Engineers has
begun to license professional software engineers.

 The Association of Professional Engineers and
Geoscientists of British Columbia (APEGBC) has
begun registering software professional engineers
and the Professional Engineers of Ontario (PEO)
has also announced requirements for licensing.

 The Association for Computing Machinery
(ACM) and the Computer Society of the Institute
of Electrical and Electronics Engineers (IEEE)
have jointly developed and adopted a Code of
Ethics and Professional Practice for software
engineering professionals1.

 The IEEE Computer Society offers the Certified
Software Development Professional certification
for software engineering. The Institute for
Certification of Computing Professionals (ICCP)

1 The ACM/CS Software Engineering Code of Ethics and

Professional Practice can be found at:
http://www.computer.org/certification/ethics.htm

has long offered a certification for computing
professionals.

All of these efforts are based upon the presumption
that there is a Body of Knowledge that should be
mastered by practicing software engineers. The Body
of Knowledge exists in the literature that has
accumulated over the past thirty years. This book
provides a Guide to that Body of Knowledge.

PURPOSE

The purpose of the Guide to the Software Engineering
Body of Knowledge is to provide a consensually-
validated characterization of the bounds of the
software engineering discipline and to provide a
topical access to the Body of Knowledge supporting
that discipline. The Body of Knowledge is subdivided
into ten software engineering Knowledge Areas (KA)
plus an additional chapter providing an overview of the
Knowledge Areas of strongly related disciplines. The
descriptions of the KAs are designed to discriminate
among the various important concepts, permitting
readers to find their way quickly to subjects of interest.
Upon finding a subject, readers are referred to key
papers or book chapters selected because they
succinctly present the knowledge.
In browsing the Guide, readers will note that the
content is markedly different from Computer Science.
Just as electrical engineering is based upon the science
of physics, software engineering should be based,
among others, upon computer science. In both cases,
though, the emphasis is necessarily different. Scientists
extend our knowledge of the laws of nature while
engineers apply those laws of nature to build useful
artifacts, under a number of constraints. Therefore, the
emphasis of the Guide is placed upon the construction
of useful software artifacts.
Readers will also notice that many important aspects of
information technology, that may constitute important
software engineering knowledge, are not covered in
the Guide; they include: specific programming
languages, relational databases and networks. This is a
consequence of an engineering-based approach. In all
fields—not only computing—the designers of
engineering curricula have realized that specific
technologies are replaced much more rapidly than the
engineering work force. An engineer must be equipped
with the essential knowledge that supports the
selection of the appropriate technology at the
appropriate time in the appropriate circumstance. For

 xx © IEEE – 2004 Version

example, software might be built in Fortran using
functional decomposition or in C++ using object-
oriented techniques. The techniques for software
configuring instances of those systems would be quite
different. But, the principles and objectives of
configuration management remain the same. The
Guide therefore does not focus on the rapidly changing
technologies, although their general principles are
described in relevant Knowledge Areas.
These exclusions demonstrate that this Guide is
necessarily incomplete. The Guide covers software
engineering knowledge that is necessary, but not
sufficient for a software engineer. Practicing software
engineers will need to know many things about
computer science, project management and systems
engineering—to name a few—that fall outside the
Body of Knowledge characterized by this Guide.
However, stating that this information should be
known by software engineers is not the same as stating
that this knowledge falls within the bounds of the
software engineering discipline. Instead, it should be
stated that software engineers need to know some
things taken from other disciplines—and that is the
approach adopted by this Guide. So, this Guide
characterizes the Body of Knowledge falling within the
scope of software engineering and provides references
to relevant information from other disciplines. A
chapter of the Guide provides a taxonomical overview
of the related disciplines derived from authoritative
sources.
The emphasis on engineering practice leads the Guide
toward a strong relationship with the normative
literature. Most of the computer science, information
technology and software engineering literature
provides information useful to software engineers, but
a relatively small portion is normative. A normative
document prescribes what an engineer should do in a
specified situation rather than providing information
that might be helpful. The normative literature is
validated by consensus formed among practitioners
and is concentrated in standards and related
documents. From the beginning, the SWEBOK project
was conceived as having a strong relationship to the
normative literature of software engineering. The two
major standards bodies for software engineering (IEEE
Computer Society Software Engineering Standards
Committee and ISO/IEC JTC1/SC7) are represented in
the project. Ultimately, we hope that software
engineering practice standards will contain principles
directly traceable to the Guide.

INTENDED AUDIENCE

The Guide is oriented toward a variety of audiences,
all over the world. It aims to serve public and private
organizations in need of a consistent view of software

engineering for defining education and training
requirements, classifying jobs, developing
performance evaluation policies or specifying software
development tasks. It also addresses practicing, or
managing, software engineers and the officials
responsible for making public policy regarding
licensing and professional guidelines. In addition,
professional societies and educators defining the
certification rules, accreditation policies for university
curricula, and guidelines for professional practice will
benefit from SWEBOK, as well as the students
learning the software engineering profession and
educators and trainers engaged in defining curricula
and course content.

EVOLUTION OF THE GUIDE

From 1993 to 2000, the IEEE Computer Society and
the Association for Computing Machinery (ACM)
cooperated in promoting the professionalization of
software engineering through their joint Software
Engineering Coordinating Committee (SWECC). The
Code of Ethics was completed under stewardship of
the SWECC primarily through volunteer efforts. The
SWEBOK project was initiated by the SWECC in
1998.
The SWEBOK project’s scope, the variety of
communities involved, and the need for broad
participation suggested a need for full-time rather than
volunteer management. For this purpose, the IEEE-
Computer Society contracted the Software Engineering
Management Research Laboratory at the Université du
Québec à Montréal (UQAM) to manage the effort. In
recent years, UQAM has been joined by the École de
technologie supérieure, Montréal, Québec.
The project plan comprised three successive phases:
Strawman, Stoneman and Ironman. An early prototype,
Strawman, demonstrated how the project might be
organized. The publication of the widely circulated
Trial Version of the Guide in 2001 marked the end of
the Stoneman phase of the project and initiated a
period of trial usage. The current Guide marks the end
of the Ironman period by providing a Guide that has
achieved consensus through broad review and trial
application.
The project team developed two important principles
for guiding the project: transparency and consensus.
By transparency, we mean that the development
process is itself documented, published, and publicized
so that important decisions and status are visible to all
concerned parties. By consensus, we mean that the
only practical method for legitimizing a statement of
this kind is through broad participation and agreement
by all significant sectors of the relevant community.
Literally hundreds of contributors, reviewers, and trial

© IEEE – 2004 Version xxi

users have played a part in producing the current
document.
Like any software project, the SWEBOK project has
many stakeholders—some of which are formally
represented. An Industrial Advisory Board, composed
of representatives from industry (Boeing, Construx
Software, the MITRE Corporation, Rational Software,
Raytheon Systems, and SAP Labs-Canada), research
agencies (National Institute of Standards and
Technology, National Research Council of Canada),
the Canadian Council of Professional Engineers, and
the IEEE Computer Society, have provided financial
support for the project. The IAB’s generous support
permits us to make the products of the SWEBOK
project publicly available without any charge (visit
http://www.swebok.org). IAB membership is
supplemented with the chairs of ISO/IEC JTC1/SC7
and the related Computing Curricula 2001 initiative.
The IAB reviews and approves the project plans,
oversees consensus building and review processes,
promotes the project, and lends credibility to the effort.
In general, it ensures the relevance of the effort to real-
world needs.
The Trial Version of the Guide was the product of
extensive review and comment. In three public review
cycles, a total of roughly 500 reviewers from 42
countries provided roughly 9,000 comments, all of
which are available at www.swebok.org. To produce
the current version, we released the Trial Version for
extensive trial usage. Trial application in specialized
studies resulted in 17 papers describing good aspects
of the Guide, as well as aspects needing improvement.
A web-based survey captured additional experience:
573 individuals from 55 countries registered for the
survey; 124 reviewers from 21 countries actually
provided comments—1020 of them. Additional
suggestions for improvement resulted from liaison
with related organizations and efforts: IEEE-CS/ACM
Computing Curricula Software Engineering; the IEEE-
CS Certified Software Development Professional
project; ISO/IEC JTC1/SC7 (software and systems
engineering standards), the IEEE Software
Engineering Standards Committee; the American
Society for Quality, Software Division; and an
engineering professional society, the Canadian Council
of Professional Engineers.

CHANGES SINCE THE TRIAL VERSION

The overall goal of the current revision was to improve
the readability, consistency, and usability of the Guide.
This implied a general rewrite of the entire text to
make the style consistent throughout the document. In
several cases, the topical breakdown of the KA was
rearranged to make it more usable, but we were careful
to include the same information that was approved by

the earlier consensus process. We updated the
reference list so that it would be easier to obtain the
references.
Trial usage resulted in the recommendation that three
Knowledge Areas should be rewritten. Practitioners
remarked that the Construction KA was difficult to
apply in a practical context. The Management KA was
perceived as being too close to general management
and not sufficiently specific to software engineering
concerns. The Quality KA was viewed as an
uncomfortable mix of process quality and product
quality; it was revised to emphasize the latter.
Finally, some KAs were revised to remove material
duplicating that of other KAs.

LIMITATIONS

Even though the Guide has gone through an elaborate
development and review process, the following
limitations of this process must be recognized and
stated:

 Software engineering continues to be infused
with new technology and new practices.
Acceptance of new techniques grows and older
techniques are discarded. The topics listed as
“generally accepted” in this Guide are carefully
selected at this time. Inevitably, though, the
selection will need to evolve.

 The amount of literature that has been published
on software engineering is considerable and the
reference material included in this Guide should
not be seen as a definitive selection but rather as a
reasonable selection. Obviously, there are other
excellent authors and excellent references than
those included in the Guide. In the case of the
Guide, references were selected because they are
written in English, readily available, recent, easily
readable, and—taken as a group—provide
coverage of the topics within the KA

 Important and highly relevant reference material
written in other languages than English have been
omitted from the selected reference material.

Additionally, one must consider that
 Software engineering is an emerging discipline.

This is especially true if you compare it to certain
more established engineering disciplines. This
means notably that the boundaries between the
Knowledge Areas of software engineering and
between software engineering and its Related
Disciplines remain a matter for continued
evolution.

The contents of this Guide must therefore be viewed as
an “informed and reasonable” characterization of the
software engineering Body of Knowledge and as

 xxii © IEEE – 2004 Version

baseline for future evolution. Additionally, please note
that the Guide is not attempting nor does it claim to
replace or amend in any way laws, rules and
procedures that have been defined by official public

policy makers around the world regarding the practice
and definition of engineering and software engineering
in particular.

© IEEE – 2004 Version xxiii

Alain Abran
École de technologie supérieure

Executive Editors of the
Guide to the Software
Engineering Body of

Knowledge

James W. Moore
The MITRE Corporation

Pierre Bourque
École de Technologie Supérieure

Editors of the Guide to
the Software Engineering

Body of Knowledge

Robert Dupuis
Université du Québec à Montréal

Leonard Tripp
1999 President
IEEE Computer Society

Chair of the Professional
Practices Committee,

IEEE Computer Society
(2001-2003)

2004

The SWEBOK project web site is http://www.swebok.org/

ACKNOWLEDGMENTS

The SWEBOK editorial team gratefully
acknowledges the support provided by the
members of the Industrial Advisory Board.
Funding for this project has been provided by the
ACM, Boeing, the Canadian Council of
Professional Engineers, Construx Software, the
IEEE Computer Society, the MITRE
corporation, the National Institute of Standards
and Technology, the National Research Council
of Canada, Rational Software, Raytheon
Company, and SAP Labs (Canada). The team is
thankful for the counsel provided by the Panel of
Experts. The team also appreciates the important
work performed by the Associate Editors. We
would also like to express our gratitude for initial
work on the Knowledge Area Descriptions
completed by Imants Freibergs, Stephen Frezza,
Andrew Gray, Vinh T. Ho, Michael Lutz, Larry
Reeker, Guy Tremblay, Chris Verhoef, and
Sybille Wolff. The editorial team must also

acknowledge the indispensable contribution of
the hundreds of reviewers.
The editorial team also wishes to thank the
following people who contributed to the project
in various manners: Mark Ardis, Yussef
Belkebir, Michel Boivin, Julie Bonneau, Simon
Bouchard, François Cossette, Vinh Duong, Gilles
Gauthier, Michèle Hébert, Paula Hawthorn,
Richard W. Heiman, Julie Hudon, Idrissa
Konkobo, Rene Köppel, Lucette Lapointe,
Claude Laporte, Luis Molinié, Hamdan Msheik,
Iphigénie N’Diyae, Serge Oligny, Suzanne
Paquette, Keith Paton, Dave Rayford, Normand
Séguin, Paul Sinnett, Denis St-Pierre, Dale Strok,
Pascale Tardif, Louise Thibaudeau, Dolores
Wallace, Évariste Valery Bevo Wandji, and
Michal Young.
Finally, there are surely other people who have
contributed to this Guide, either directly or
indirectly, whose names we have inadvertently
omitted. To those people, we offer our tacit
appreciation and apologize for having omitted
explicit recognition here.

 xxiv © IEEE – 2004 Version

© IEEE – 2004 Version 1-1

CHAPTER 1

INTRODUCTION TO THE GUIDE

In spite of the millions of software professionals
worldwide and the ubiquitous presence of software in our
society, software engineering has only recently reached
the status of a legitimate engineering discipline and a
recognized profession.
Achieving consensus by the profession on a core body of
knowledge is a key milestone in all disciplines and had
been identified by the IEEE Computer Society as crucial
for the evolution of software engineering towards
professional status. This Guide, written under the auspices
of the Professional Practices Committee, is part of a
multi-year project designed to reach such a consensus.

WHAT IS SOFTWARE ENGINEERING?

The IEEE Computer Society defines software engineering
as:
“(1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and
maintenance of software; that is, the application of
engineering to software.
(2) The study of approaches as in (1).”1

WHAT IS A RECOGNIZED PROFESSION?

For software engineering to be fully known as a
legitimate engineering discipline and a recognized
profession, consensus on a core body of knowledge is
imperative. This fact is well illustrated by Starr when he
defines what can be considered a legitimate discipline and
a recognized profession. In his Pulitzer Prize-winning
book on the history of the medical profession in the USA,
he states that:
“The legitimization of professional authority involves
three distinctive claims: first, that the knowledge and
competence of the professional have been validated by a
community of his or her peers; second, that this
consensually validated knowledge rests on rational,
scientific grounds; and third, that the professional’s
judgment and advice are oriented toward a set of
substantive values, such as health. These aspects of
legitimacy correspond to the kinds of attributes–collegial,
cognitive, and moral–usually embodied in the term
“profession.”2

1 “IEEE Standard Glossary of Software Engineering Terminology,”

IEEE, Piscataway, NJ std 610.12-1990, 1990.
2 P. Starr, The Social Transformation of American Medicine: Basic

WHAT ARE THE CHARACTERISTICS OF A PROFESSION ?

Gary Ford and Norman Gibbs studied several recognized
professions, including medicine, law, engineering, and
accounting.3 They concluded that an engineering
profession is characterized by several components:
 An initial professional education in a curriculum

validated by society through accreditation
 Registration of fitness to practice via voluntary

certification or mandatory licensing
 Specialized skill development and continuing

professional education
 Communal support via a professional society
 A commitment to norms of conduct often prescribed

in a code of ethics
This Guide contributes to the first three of these
components. Articulating a Body of Knowledge is an
essential step toward developing a profession because it
represents a broad consensus regarding what a software
engineering professional should know. Without such a
consensus, no licensing examination can be validated, no
curriculum can prepare an individual for an examination,
and no criteria can be formulated for accrediting a
curriculum. The development of consensus is also a
prerequisite to the adoption of coherent skills
development and continuing professional education
programs in organizations.

WHAT ARE THE OBJECTIVES OF THE SWEBOK
PROJECT?

The Guide should not be confused with the Body of
Knowledge itself, which already exists in the published
literature. The purpose of the Guide is to describe what
portion of the Body of Knowledge is generally accepted,
to organize that portion, and to provide a topical access to
it. Additional information on the meaning given to
“generally accepted” can be found below and in Appendix
A.
The Guide to the Software Engineering Body of

Books, 1982. p. 15.

3 G. Ford and N. E. Gibbs, “A Mature Profession of Software
Engineering,” Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, Technical CMU/SEI-96-TR-
004, January 1996.

 1–2 © IEEE – 2004 Version

Knowledge (SWEBOK) was established with the
following five objectives:
1. To promote a consistent view of software

engineering worldwide
2. To clarify the place–and set the boundary–of

software engineering with respect to other
disciplines such as computer science, project
management, computer engineering, and
mathematics

3. To characterize the contents of the software
engineering discipline

4. To provide a topical access to the Software
Engineering Body of Knowledge

5. To provide a foundation for curriculum development
and for individual certification and licensing
material

The first of these objectives, a consistent worldwide view
of software engineering, was supported by a development
process which engaged approximately 500 reviewers from
42 countries in the Stoneman phase (1998-2001) leading
to the Trial version, and over 120 reviewers from 21
countries in the Ironman phase (2003) leading to the 2004
version. More information regarding the development
process can be found in the Preface and on the Web site
(www.swebok.org). Professional and learned societies
and public agencies involved in software engineering
were officially contacted, made aware of this project, and
invited to participate in the review process. Associate
editors were recruited from North America, the Pacific
Rim, and Europe. Presentations on the project were made
at various international venues and more are scheduled for
the upcoming year.
The second of the objectives, the desire to set a boundary
for software engineering, motivates the fundamental
organization of the Guide. The material that is recognized
as being within this discipline is organized into the first
ten Knowledge Areas (KAs) listed in Table 1. Each of
these KAs is treated as a chapter in this Guide.

Table 1 The SWEBOK Knowledge Areas (KAs).
 Software requirements
 Software design
 Software construction
 Software testing
 Software maintenance
 Software configuration management
 Software engineering management
 Software engineering process
 Software engineering tools and methods
 Software quality

In establishing a boundary, it is also important to identify
what disciplines share that boundary, and often a common
intersection, with software engineering. To this end, the
Guide also recognizes eight related disciplines, listed in
Table 2 (see chapter 12, Related Disciplines of Software
Engineering). Software engineers should, of course, have
knowledge of material from these fields (and the KA
descriptions may make reference to them). It is not,
however, an objective of the SWEBOK Guide to
characterize the knowledge of the related disciplines, but
rather what knowledge is viewed as specific to software
engineering.

Table 2 Related disciplines.

 Computer engineering Project management
 Computer science Quality management
 Management Software ergonomics
 Mathematics Systems engineering

HIERARCHICAL ORGANIZATION

The organization of the KA descriptions or chapters
supports the third of the project’s objectives–a
characterization of the contents of software engineering.
The detailed specifications provided by the project’s
editorial team to the associate editors regarding the
contents of the KA descriptions can be found in Appendix
A.
The Guide uses a hierarchical organization to decompose
each KA into a set of topics with recognizable labels. A
two- or three-level breakdown provides a reasonable way
to find topics of interest. The Guide treats the selected
topics in a manner compatible with major schools of
thought and with breakdowns generally found in industry
and in software engineering literature and standards. The
breakdowns of topics do not presume particular
application domains, business uses, management
philosophies, development methods, and so forth. The
extent of each topic’s description is only that needed to
understand the generally accepted nature of the topics and
for the reader to successfully find reference material.
After all, the Body of Knowledge is found in the
reference material themselves, and not in the Guide.

REFERENCE MATERIAL AND MATRIX

To provide a topical access to the knowledge–the fourth
of the project’s objectives–the Guide identifies reference
material for each KA, including book chapters, refereed
papers, or other recognized sources of authoritative
information. Each KA description also includes a matrix
relating the reference material to the listed topics. The
total volume of cited literature is intended to be suitable
for mastery through the completion of an undergraduate
education plus four years of experience.
In this edition of the Guide, all KAs were allocated

© IEEE – 2004 Version 1-3

around 500 pages of reference material, and this was the
specification the associate editors were invited to apply. It
may be argued that some KAs, such as software design
for instance, deserve more pages of reference material
than others. Such modulation may be applied in future
editions of the Guide.
It should be noted that the Guide does not attempt to be
comprehensive in its citations. Much material that is both
suitable and excellent is not referenced. Material was
selected in part because–taken as a collection–it provides
coverage of the topics described.

DEPTH OF TREATMENT

From the outset, the question arose as to the depth of
treatment the Guide should provide. The project team
adopted an approach which supports the fifth of the
project’s objectives–providing a foundation for
curriculum development, certification, and licensing. The
editorial team applied the criterion of generally accepted
knowledge, to be distinguished from advanced and
research knowledge (on the grounds of maturity) and
from specialized knowledge (on the grounds of generality
of application). The definition comes from the Project
Management Institute: “The generally accepted
knowledge applies to most projects most of the time, and
widespread consensus validates its value and
effectiveness”.4

Generally Accepted
Established traditional practices

recommended by many organizations

Sp
ec

ia
liz

ed

Pr
ac

tic
es

 u
se

d
on

ly
 fo

r c
er

ta
in

 ty
pe

s
of

 so
ftw

ar
e

Advanced and Research
Innovative practices tested and used

only by some organizations and
concepts still being developed and

tested in research organizations

Figure 1 Categories of knowledge
However, the term “generally accepted” does not imply
that the designated knowledge should be uniformly
applied to all software engineering endeavors–each
project’s needs determine that–but it does imply that
competent, capable software engineers should be
equipped with this knowledge for potential application.
More precisely, generally accepted knowledge should be

4 A Guide to the Project Management Body of Knowledge, 2000

Edition, Project Management Institute, Newport Square, PA.
www.pmi.org.

included in the study material for the software
engineering licensing examination that graduates would
take after gaining four years of work experience.
Although this criterion is specific to the U.S. style of
education and does not necessarily apply to other
countries, we deem it useful. However, the two
definitions of generally accepted knowledge should be
seen as complementary.

LIMITATIONS RELATED TO THE BOOK FORMAT

The book format for which this edition was conceived has
its limitations. The nature of the contents would be better
served using a hypertext structure, where a topic would be
linked to topics other than the ones immediately
preceding and following it in a list.
Some boundaries between KAs, sub-areas, and so on, are
also sometimes relatively arbitrary. These boundaries are
not to be given too much importance. As much as
possible, pointers and links have been given in the text
where relevant and useful.
Links between KAs are not of the input-output type. The
KAs are meant to be views on the knowledge one should
possess in software engineering with respect to the KA in
question. The decomposition of the discipline within KAs
and the order in which the KAs are presented are not to be
assimilated with any particular method or model. The
methods are described in the appropriate KA in the Guide,
and the Guide itself is not one of them.

THE KNOWLEDGE AREAS

Figure 1 maps out the eleven chapters and the important
topics incorporated within them. The first five KAs are
presented in traditional waterfall life cycle sequence.
However, this does not imply that the Guide adopts or
encourages the waterfall model, or any other model. The
subsequent KAs are presented in alphabetical order, and
those of the related disciplines are presented in the last
chapter. This is identical to the sequence in which they
are presented in this Guide.

STRUCTURE OF THE KA DESCRIPTIONS

The KA descriptions are structured as follows.
In the introduction, a brief definition of the KA, and an
overview of its scope and of its relationship with other
KAs are presented.
The breakdown of topics constitutes the core of each KA
description, describing the decomposition of the KA into
sub-areas, topics, and sub-topics. For each topic or sub-
topic, a short description is given, along with one or more
references.
The reference material was chosen because it is
considered to constitute the best presentation of the
knowledge relative to the topic, taking into account the

 1–4 © IEEE – 2004 Version

limitations imposed on the choice of references (see
above). A matrix links the topics to the reference material.
The last part of the KA description is the list of
recommended references. Appendix A of each KA
includes suggestions for further reading for those users
who wish to learn more about the KA topics. Appendix B
presents the list of standards most relevant to the KA.
Note that citations enclosed in square brackets “[]” in the
text identify recommended references, while those
enclosed in parentheses “()” identify the usual references
used to write or justify the text. The former are to be
found in the corresponding section of the KA and the
latter in Appendix A of the KA.
Brief summaries of the KA descriptions and Appendices
are given next.

Software Requirements KA (see Figure 2, column a)

A requirement is defined as a property that must be
exhibited in order to solve some real-world problem.
The first knowledge sub-area is software requirements
fundamentals. It includes definitions of software
requirements themselves, but also of the major types of
requirements: product vs. process, functional vs. non-
functional, emergent properties. The sub-area also
describes the importance of quantifiable requirements and
distinguishes between systems and software requirements.
The second knowledge sub-area is the requirements
process, which introduces the process itself, orienting the
remaining five sub-areas and showing how requirements
engineering dovetails with the other software engineering
processes. It describes process models, process actors,
process support and management, and process quality and
improvement.
The third sub-area is requirements elicitation, which is
concerned with where software requirements come from
and how the software engineer can collect them. It
includes requirement sources and elicitation techniques.
The fourth sub-area, requirements analysis, is concerned
with the process of analyzing requirements to:
 detect and resolve conflicts between requirements
 discover the bounds of the software and how it must

interact with its environment
 elaborate system requirements to software

requirements
Requirements analysis includes requirements
classification, conceptual modeling, architectural design
and requirements allocation, and requirements
negotiation.
The fifth sub-area is requirements specification.
Requirements specification typically refers to the
production of a document, or its electronic equivalent,
that can be systematically reviewed, evaluated, and
approved. For complex systems, particularly those

involving substantial non-software components, as many
as three different types of documents are produced:
system definition, system requirements specification, and
software requirements specification. The sub-area
describes all three documents and the underlying
activities.
The sixth sub-area is requirements validation, the aim of
which is to pick up any problems before resources are
committed to addressing the requirements. Requirements
validation is concerned with the process of examining the
requirements documents to ensure that they are defining
the right system (that is, the system that the user expects).
It is subdivided into descriptions of the conduct of
requirements reviews, prototyping, and model validation
and acceptance tests.
The seventh and last sub-area is practical considerations.
It describes topics which need to be understood in
practice. The first topic is the iterative nature of the
requirements process. The next three topics are
fundamentally about change management and the
maintenance of the requirements in a state which
accurately mirrors the software to be built, or that has
already been built. It includes change management,
requirements attributes, and requirements tracing. The
final topic is requirements measurement.

Software Design KA (see Figure 2, column b)

According to the IEEE definition [IEEE610.12-90],
design is both “the process of defining the architecture,
components, interfaces, and other characteristics of a
system or component” and “the result of [that] process.”
The KA is divided into six sub-areas.
The first sub-area presents the software design
fundamentals, which form an underlying basis to the
understanding of the role and scope of software design.
These are general software concepts, the context of
software design, the software design process, and the
enabling techniques for software design.
The second sub-area groups together the key issues in
software design. They include concurrency, control and
handling of events, distribution of components, error and
exception handling and fault tolerance, interaction and
presentation, and data persistence.
The third sub-area is software structure and architecture,
the topics of which are architectural structures and
viewpoints, architectural styles, design patterns, and,
finally, families of programs and frameworks.
The fourth sub-area describes software design quality
analysis and evaluation. While there is a entire KA
devoted to software quality, this sub-area presents the
topics specifically related to software design. These
aspects are quality attributes, quality analysis, and
evaluation techniques and measures.
The fifth sub-area is software design notations, which are

© IEEE – 2004 Version 1-5

divided into structural and behavioral descriptions.
The last sub-area describes software design strategies and
methods. First, general strategies are described, followed
by function-oriented design methods, object-oriented
design methods, data-structure centered design,
component-based design, and others.

Software Construction KA (see Figure 2, column c)

Software construction refers to the detailed creation of
working, meaningful software through a combination of
coding, verification, unit testing, integration testing, and
debugging. The KA includes three sub-areas.
The first sub-area is software construction fundamentals.
The first three topics are basic principles of construction:
minimizing complexity, anticipating change, and
constructing for verification. The last topic discusses
standards for construction.
The second sub-area describes managing construction.
The topics are construction models, construction
planning, and construction measurement.
The third sub-area covers practical considerations. The
topics are construction design, construction languages,
coding, construction testing, reuse, construction quality,
and integration.

Software Testing (see Figure 2, column d)

Software Testing consists of the dynamic verification of
the behavior of a program on a finite set of test cases,
suitably selected from the usually infinite executions
domain, against the expected behavior. It includes five
sub-areas.
It begins with a description of software testing
fundamentals. First, the testing-related terminology is
presented, then key issues of testing are described, and
finally the relationship of testing to other activities is
covered.
The second sub-area is test levels. These are divided
between the targets of the tests and the objectives of the
tests.
The third sub-area is test techniques. The first category
includes the tests based on the tester’s intuition and
experience. A second group comprises specification-
based techniques, followed by code-based techniques,
fault-based techniques, usage-based techniques, and
techniques relative to the nature of the application. A
discussion of how to select and combine the appropriate
techniques is also presented.
The fourth sub-area covers test related measures. The
measures are grouped into those related to the evaluation
of the program under test and the evaluation of the tests
performed.
The last sub-area describes the test process, and includes

practical considerations and the test activities.

Software Maintenance (see Figure 2, column e)

Once in operation, anomalies are uncovered, operating
environments change, and new user requirements surface.
The maintenance phase of the lifecycle commences upon
delivery but maintenance activities occur much earlier.
The Software Maintenance KA is divided into four sub-
areas.
The first one presents software maintenance
fundamentals: definitions and terminology, the nature of
maintenance, the need for maintenance, the majority of
maintenance costs, the evolution of software, and the
categories of maintenance.
The second sub-area groups together the key issues in
software maintenance. These are the technical issues, the
management issues, maintenance cost estimation, and
software maintenance measurement.
The third sub-area describes the maintenance process.
The topics here are the maintenance processes and
maintenance activities.
Techniques for maintenance constitute the fourth sub-
area. These include program comprehension, re-
engineering, and reverse engineering.

Software Configuration Management (see Figure 3,
column f)

Software Configuration Management (SCM) is the
discipline of identifying the configuration of software at
distinct points in time for the purpose of systematically
controlling changes to the configuration and of
maintaining the integrity and traceability of the
configuration throughout the system life cycle. This KA
includes six sub-areas.
The first sub-area is management of the SCM process. It
covers the topics of the organizational context for SCM,
constraints and guidance for SCM, planning for SCM, the
SCM plan itself, and surveillance of SCM.
The second sub-area is software configuration
identification, which identifies items to be controlled,
establishes identification schemes for the items and their
versions, and establishes the tools and techniques to be
used in acquiring and managing controlled items. The
first topics in this sub-area are identification of the items
to be controlled and the software library.
The third sub-area is software configuration control,
which is the management of changes during the software
life cycle. The topics are: first, requesting, evaluating, and
approving software changes; second, implementing
software changes; and third, deviations, and waivers.
The fourth sub-area is software configuration status
accounting. Its topics are software configuration status
information and software configuration status reporting.

 1–6 © IEEE – 2004 Version

The fifth sub-area is software configuration auditing. It
consists of software functional configuration auditing,
software physical configuration auditing, and in-process
audits of a software baseline.
The last sub-area is software release management and
delivery, covering software building and software release
management.

Software Engineering Management (see Figure 3,
column g)

The Software Engineering Management KA addresses the
management and measurement of software engineering.
While measurement is an important aspect of all KAs, it
is here that the topic of measurement programs is
presented. There are six sub-areas for software
engineering management. The first five cover software
project management and the sixth describes the software
measurement programs.
The first sub-area is initiation and scope definition, which
comprises determination and negotiation of requirements,
feasibility analysis, and process for the review and
revision of requirements.
The second sub-area is software project planning, and
includes process planning, determining deliverables,
effort, schedule and cost estimation, resource allocation,
risk management, quality management, and plan
management.
The third sub-area is software project enactment. The
topics here are implementation of plans, supplier contract
management, implementation of measurement process,
monitor process, control process,? and reporting.
The fourth sub-area is review and evaluation, which
includes the topics of determining satisfaction of
requirements and reviewing and evaluating performance.
The fifth sub-area describes closure: determining closure
and closure activities.
Finally, the sixth sub-area describes software engineering
measurement, more specifically, measurement programs.
Product and process measures are described in the
Software Engineering Process KA. Many of the other
KAs also describe measures specific to their KA. The
topics of this sub-area are: establish and sustain
measurement commitment, plan the measurement
process, perform the measurement process, and evaluate
measurement.

Software Engineering Process (see Figure 3, column h)

The Software Engineering Process KA is concerned with
the definition, implementation, assessment, measurement,
management, change, and improvement of the software
engineering process itself. It is divided into four sub-
areas.
The first sub-area presents process implementation and

change. The topics here are process infrastructure, the
software process management cycle, models for process
implementation and change, and practical considerations.
The second sub-area deals with process definition. It
includes the topics of software life cycle models, software
life-cycle processes, notations for process definitions,
process adaptation, and automation
The third sub-area is process assessment. The topics here
include process assessment models and process
assessment methods.
The fourth sub-area describes process and product
measurements. The software engineering process covers
general product measurement, as well as process
measurement in general. Measurements specific to KAs
are described in the relevant KA. The topics are process
measurement, software product measurement, quality of
measurement results, software information models, and
process measurement techniques.

Software Engineering Tools and Methods (see Figure
3, column i)

The Software Engineering Tools and Methods KA
includes both software engineering tools and software
engineering methods.
The software engineering tools sub-area uses the same
structure as the Guide itself, with one topic for each of the
other nine software engineering KAs. An additional topic
is provided: miscellaneous tools issues, such as tool
integration techniques, which are potentially applicable to
all classes of tools.
The software engineering methods sub-area is divided
into four subsections: heuristic methods dealing with
informal approaches, formal methods dealing with
mathematically based approaches, and prototyping
methods dealing with software development approaches
based on various forms of prototyping.

Software Quality (see Figure 3, column j)

The Software Quality KA deals with software quality
considerations which transcend the software life cycle
processes. Since software quality is a ubiquitous concern
in software engineering, it is also considered in many of
the other Kas, and the reader will notice pointers to those
KAs throughout this KA. The description of this KA
covers three sub-areas.
The first sub-area describes the software quality
fundamentals such as software engineering culture and
ethics, the value and costs of quality, models and quality
characteristics, and quality improvement.
The second sub-area covers software quality management
processes. The topics here are software quality assurance,
verification and validation, and reviews and audits.
The third and final sub-area describes practical

© IEEE – 2004 Version 1-7

considerations related to software quality. The topics are
software quality requirements, defect characterization,
software quality management techniques, and software
quality measurement.

Related Disciplines OF Software Engineering (see
Figure 3, column k)

The last chapter is entitled Related Disciplines of
Software Engineering. In order to circumscribe software
engineering, it is necessary to identify the disciplines with
which software engineering shares a common boundary.
This chapter identifies, in alphabetical order, these related
disciplines. For each related discipline, and using a
consensus-based recognized source as found, are
identified:
 an informative definition (when feasible);
 a list of KAs.

The related disciplines are:

 Computer engineering Project management
 Computer science Quality management
 Management Software ergonomics
 Mathematics Systems engineering

APPENDICES

Appendix A. KA Description Specifications

The appendix describes the specifications provided by the
editorial team to the associate editors for the content,
recommended references, format, and style of the KA
descriptions.

APPENDIX B. EVOLUTION OF THE GUIDE

The second appendix describes the project’s proposal for
the evolution of the Guide. The 2004 Guide is simply the
current edition of a guide which will continue evolving to
meet the needs of the software engineering community.
Planning for evolution is not yet complete, but a tentative
outline of the process is provided in this appendix. As of
this writing, this process has been endorsed by the
project’s Industrial Advisory Board and briefed to the
Board of Governors of the IEEE Computer Society, but is
not yet either funded or implemented.

APPENDIX C. ALLOCATION OF STANDARDS TO KAS

The third appendix is an annotated table of the most
relevant standards, mostly from the IEEE and the ISO,
allocated to the KAs of the SWEBOK Guide.

APPENDIX D. BLOOM RATINGS

As an aid, notably to curriculum developers (and other

users), in support of the project’s fifth objective, the
fourth appendix rates each topic with one of a set of
pedagogical categories commonly attributed to Benjamin
Bloom. The concept is that educational objectives can be
classified into six categories representing increasing
depth: knowledge, comprehension, application, analysis,
synthesis, and evaluation. Results of this exercise for all
KAs can be found in Appendix D. This Appendix must
not, however, be viewed as a definitive classification, but
much more as a starting point.

 1–8 © IEEE – 2004 Version

Guide to the Software Engineering Body of Knowledge
2004 Version

Software
Construction

Software
MaintenanceSoftware Testing

Software
Construction
Fundamentals

Managing
Construction

Software
Maintenance
Fundamentals

Key Issues in
Software

Maintenance

Techniques for
Maintenance

Sofware
Testing

Fundamentals

Test Levels

Test Techniques

Test Related
Measures

Test
Process

Software Design

Software Design
Fundamentals

Key Issues in
Software Design

Software Structure
and Architecture

Software Design
Quality Analysis
and Evaluation

Software Design
Notations

Software
Requirements

Software
Requirements
Fundamentals

Requirements
Process

Requirements
Elicitation

Requirements
Specification

Requirements
Validation

Requirements
Analysis

Software Design
Strategies and

Methods

Practical
Considerations

Practical
Considerations

Maintenance Process

(a) (b) (c) (d) (e)

Figure 2 – First five KAs

© IEEE – 2004 Version 1-9

Figure 3 – Last six KAs

(f) (g) (h) (i) (j) (k)

Knowledge Areas of
the Related
Disciplines

Computer
Science

Management

Mathematics

Project
Management

Quality
Management

Software
Ergonomics

Systems
Engineering

Closure

Process
Assessment

Software Design Tools

Guide to the Software Engineering Body of Knowledge

(2004 Version)

Software
Configuration
Management

Software
Engineering Tools

and Methods

Software
Engineering

Process
Software Quality

Management of the
SCM Process

Software
Configuration
Identification

Software
Configuration

Control

Software
Configuration

Status Accounting

Software
Configuration

Auditing

Software Release
Management and

Delivery

Software
Engineering

Methods

Software Tools
Process

Implementation and
Change

Process and
Product

Measurement

Software Quality
Fundamentals

Software Quality
Management

Processes

Heuristic Methods

Formal Methods

Prototyping Methods

Software Requirements
Tools

Software Testing Tools

Software Maintenance
Tools

Software Engineering
Process Tools

Process
Definition

Practical
Considerations

Software Construction
Tools

Software Quality Tools

Software Configuration
Management Tools

Software Engineering
Management Tools

Miscellaneous Tool
Issues

Software
Engineering
Management

Initiation and
Scope Definition

Software Project
Planning

Software Project
Enactment

Review and
Evaluation

Software
Engineering
Measurement

Computer
Engineering

 1–10 © IEEE – 2004 Version

© IEEE – 2004 Version 2-1

CHAPTER 2
SOFTWARE REQUIREMENTS

ACRONYMS
DAG Directed Acyclic Graph
FSM Functional Size Measurement
INCOSE International Council on Systems Engi-

neering
SADT Structured Analysis and Design Tech-

nique
UML Unified Modeling Language

INTRODUCTION
The Software Requirements Knowledge Area (KA) is
concerned with the elicitation, analysis, specification, and
validation of software requirements. It is widely acknowl-
edged within the software industry that software engineer-
ing projects are critically vulnerable when these activities
are performed poorly.

Software requirements express the needs and constraints
placed on a software product that contribute to the solu-
tion of some real-world problem. [Kot00]

The term ‘requirements engineering’ is widely used in the
field to denote the systematic handling of requirements.
For reasons of consistency, though, this term will not be
used in the Guide, as it has been decided that the use of
the term ‘engineering’ for activities other than software
engineering ones is to be avoided in this edition of the
Guide.

For the same reason, ‘requirements engineer’, a term
which appears in some of the literature, will not be used
either. Instead, the term ‘software engineer’, or, in some
specific cases, ‘requirements specialist’ will be used, the
latter where the role in question is usually performed by
an individual other than a software engineer. This does
not imply, however, that a software engineer could not
perform the function.

The KA breakdown is broadly compatible with the sec-
tions of IEEE 12207 that refer to requirements activities.
(IEEE12207.1-96)

A risk inherent in the proposed breakdown is that a water-
fall-like process may be inferred. To guard against this,
sub-area 2, Requirements Process, is designed to provide
a high-level overview of the requirements process by set-
ting out the resources and constraints under which the
process operates and which act to configure it.

An alternate decomposition could use a product-based
structure (system requirements, software requirements,
prototypes, use cases, and so on). The process-based

breakdown reflects the fact that the requirements process,
if it is to be successful, must be considered as a process
involving complex, tightly coupled activities (both se-
quential and concurrent), rather than as a discrete, one-off
activity performed at the outset of a software development
project.

The Software Requirements KA is related closely to the
Software Design, Software Testing, Software Mainte-
nance, Software Configuration Management, Software
Engineering Management, Software Engineering Process,
and Software Quality KAs.

BREAKDOWN OF TOPICS FOR SOFTWARE
REQUIREMENTS
1. Software Requirements Fundamentals
1.1. Definition of a Software Requirement
At its most basic, a software requirement is a property
which must be exhibited in order to solve some problem
in the real world. The Guide refers to requirements on
‘software’ because it is concerned with problems to be
addressed by software. Hence, a software requirement is a
property which must be exhibited by software developed
or adapted to solve a particular problem. The problem
may be to automate part of a task of someone who will
use the software, to support the business processes of the
organization that has commissioned the software, to cor-
rect shortcomings of existing software, to control a de-
vice, and many more. The functioning of users, business
processes, and devices is typically complex. By extension,
therefore, the requirements on particular software are
typically a complex combination of requirements from
different people at different levels of an organization and
from the environment in which the software will operate.

An essential property of all software requirements is that
they be verifiable. It may be difficult or costly to verify
certain software requirements. For example, verification
of the throughput requirement on the call center may ne-
cessitate the development of simulation software. Both the
software requirements and software quality personnel
must ensure that the requirements can be verified within
the available resource constraints.

Requirements have other attributes in addition to the be-
havioral properties that they express. Common examples
include a priority rating to enable trade-offs in the face of
finite resources and a status value to enable project pro-
gress to be monitored. Typically, software requirements
are uniquely identified so that they can be subjected to

 2-2 © IEEE – 2004 Version

software configuration control and managed over the en-
tire software life cycle. [Kot00; Pfl01; Som05; Tha97]

1.2. Product and Process Requirements
A distinction can be drawn between product parameters
and process parameters. Product parameters are require-
ments on software to be developed (for example, ‘The
software shall verify that a student meets all prerequisites
before he or she registers for a course.’).

A process parameter is essentially a constraint on the de-
velopment of the software (for example, ‘The software

shall be written in Ada.’). These are sometimes known as
process requirements.

Some software requirements generate implicit process
requirements. The choice of verification technique is one
example. Another might be the use of particularly rigor-
ous analysis techniques (such as formal specification
methods) to reduce faults which can lead to inadequate
reliability. Process requirements may also be imposed
directly by the development organization, their customer,
or a third party such as a safety regulator [Kot00; Som97].

Figure 1 Breakdown of topics for the Software Requirements KA

1.3. Functional and Non-functional Requirements
Functional requirements describe the functions that the
software is to execute; for example, formatting some text
or modulating a signal. They are sometimes known as
capabilities.

Non-functional requirements are the ones that act to con-
strain the solution. Non-functional requirements are some-
times known as constraints or quality requirements. They
can be further classified according to whether they are

performance requirements, maintainability requirements,
safety requirements, reliability requirements, or one of
many other types of software requirements. These topics
are also discussed in the Software Quality KA. [Kot00;
Som97]

1.4. Emergent Properties
Some requirements represent emergent properties of
software; that is, requirements which cannot be addressed
by a single component, but which depend for their satis-

Software
Requirements

Requirements
Elicitation

Software
Requirements
Fundamentals

Definition of a
Software
Requirement

Product and
Process
Requirements

Functional and
Non-functional
Requirements

Emergent
Properties

Quantifiable
Requirements

System
Requirements
and Software
Requirements

Requirements
Process

Process Models

Process Actors

Process Support
and Management

Process Quality
and Improvement

Requirements
Sources

Elicitation
Techniques

Requirements
Classification

Conceptual
Modeling

Architectural
Design and
Requirements
Allocation

Requirements
Negotiation

Requirements
Specification

System
Definition
Document

Systems
Requirements
Specification

Practical
Considerations

Requirements
Validation

Requirements
Reviews

Prototyping

Model
Validation

Acceptance
Tests

Change
Management

Requirements
Attributes

Requirements
Tracing

Software
Requirements
Specification

Iterative Nature
of Requirements
Process

Measuring
Requirements

Requirements
Analysis

© IEEE – 2004 Version 2-3

faction on how all the software components interoperate.
The throughput requirement for a call center would, for
example, depend on how the telephone system, informa-
tion system, and the operators all interacted under actual
operating conditions. Emergent properties are crucially
dependent on the system architecture. [Som05]

1.5. Quantifiable Requirements
Software requirements should be stated as clearly and as
unambiguously as possible, and, where appropriate, quan-
titatively. It is important to avoid vague and unverifiable
requirements which depend for their interpretation on
subjective judgment (‘The software shall be reliable’;
‘The software shall be user-friendly’). This is particularly
important for non-functional requirements. Two examples
of quantified requirements are the following: a call cen-
ter's software must increase the center’s throughput by
20%; and a system shall have a probability of generating a
fatal error during any hour of operation of less than 1 *
10-8. The throughput requirement is at a very high level
and will need to be used to derive a number of detailed
requirements. The reliability requirement will tightly con-
strain the system architecture. [Dav93; Som05]

1.6. System Requirements and Software Requirements
In this topic, system means ‘an interacting combination of
elements to accomplish a defined objective. These include
hardware, software, firmware, people, information, tech-
niques, facilities, services, and other support elements,’ as
defined by the International Council on Systems Engi-
neering (INCOSE00).

System requirements are the requirements for the system
as a whole. In a system containing software components,
software requirements are derived from system require-
ments.

The literature on requirements sometimes calls system
requirements ‘user requirements’. The Guide defines ‘user
requirements’ in a restricted way as the requirements of
the system’s customers or end-users. System require-
ments, by contrast, encompass user requirements, re-
quirements of other stakeholders (such as regulatory au-
thorities), and requirements without an identifiable human
source.

2. Requirements Process
This section introduces the software requirements process,
orienting the remaining five sub-areas and showing how
the requirements process dovetails with the overall soft-
ware engineering process. [Dav93; Som05]

2.1. Process Models
The objective of this topic is to provide an understanding
that the requirements process:

 is not a discrete front-end activity of the software
life cycle, but rather a process initiated at the begin-

ning of a project and continuing to be refined
throughout the life cycle

 identifies software requirements as configuration
items, and manages them using the same software
configuration management practices as other prod-
ucts of the software life cycle processes

 needs to be adapted to the organization and project
context

In particular, the topic is concerned with how the activi-
ties of elicitation, analysis, specification, and validation
are configured for different types of projects and con-
straints. The topic also includes activities which provide
input into the requirements process, such as marketing
and feasibility studies. [Kot00; Rob99; Som97; Som05]

2.2. Process Actors
This topic introduces the roles of the people who partici-
pate in the requirements process. This process is funda-
mentally interdisciplinary, and the requirements specialist
needs to mediate between the domain of the stakeholder
and that of software engineering. There are often many
people involved besides the requirements specialist, each
of whom has a stake in the software. The stakeholders
will vary across projects, but always include us-
ers/operators and customers (who need not be the same).
[Gog93]

Typical examples of software stakeholders include (but
are not restricted to):

 Users–This group comprises those who will operate
the software. It is often a heterogeneous group com-
prising people with different roles and requirements.

 Customers–This group comprises those who have
commissioned the software or who represent the
software’s target market.

 Market analysts–A mass-market product will not
have a commissioning customer, so marketing peo-
ple are often needed to establish what the market
needs and to act as proxy customers.

 Regulators–Many application domains such as
banking and public transport are regulated. Software
in these domains must comply with the requirements
of the regulatory authorities.

 Software engineers–These individuals have a le-
gitimate interest in profiting from developing the
software by, for example, reusing components in
other products. If, in this scenario, a customer of a
particular product has specific requirements which
compromise the potential for component reuse, the
software engineers must carefully weigh their own
stake against those of the customer.

It will not be possible to perfectly satisfy the requirements
of every stakeholder, and it is the software engineer’s job
to negotiate trade-offs which are both acceptable to the
principal stakeholders and within budgetary, technical,
regulatory, and other constraints. A prerequisite for this is
that all the stakeholders be identified, the nature of their

 2-4 © IEEE – 2004 Version

‘stake’ analyzed, and their requirements elicited. [Dav93;
Kot00; Rob99; Som97; You01]

2.3. Process Support and Management
This topic introduces the project management resources
required and consumed by the requirements process. It
establishes the context for the first sub-area (Initiation
and Scope Definition) of the Software Engineering Man-
agement KA. Its principal purpose is to make the link
between the process activities identified in 2.1 and the
issues of cost, human resources, training, and tools.
[Rob99; Som97; You01]

2.4. Process Quality and Improvement
This topic is concerned with the assessment of the quality
and improvement of the requirements process. Its purpose
is to emphasize the key role the requirements process
plays in terms of the cost and timeliness of a software
product, and of the customer’s satisfaction with it
[Som97]. It will help to orient the requirements process
with quality standards and process improvement models
for software and systems. Process quality and improve-
ment is closely related to both the Software Quality KA
and the Software Engineering Process KA. Of particular
interest are issues of software quality attributes and meas-
urement, and software process definition. This topic cov-
ers:

 requirements process coverage by process im-
provement standards and models

 requirements process measures and benchmarking
 improvement planning and implementation [Kot00;

Som97; You01]

3. Requirements Elicitation
[Dav93; Gog93; Lou95; Pfl01]

Requirements elicitation is concerned with where soft-
ware requirements come from and how the software engi-
neer can collect them. It is the first stage in building an
understanding of the problem the software is required to
solve. It is fundamentally a human activity, and is where
the stakeholders are identified and relationships estab-
lished between the development team and the customer. It
is variously termed ‘requirements capture’, ‘requirements
discovery’, and ‘requirements acquisition.’

One of the fundamental tenets of good software engineer-
ing is that there be good communication between software
users and software engineers. Before development begins,
requirements specialists may form the conduit for this
communication. They must mediate between the domain
of the software users (and other stakeholders) and the
technical world of the software engineer.

3.1. Requirements Sources
[Dav93; Gog93; Pfl01]

Requirements have many sources in typical software, and
it is essential that all potential sources be identified and
evaluated for their impact on it. This topic is designed to
promote awareness of the various sources of software
requirements and of the frameworks for managing them.
The main points covered are:

 Goals. The term goal (sometimes called ‘business
concern’ or ‘critical success factor’) refers to the
overall, high-level objectives of the software. Goals
provide the motivation for the software, but are of-
ten vaguely formulated. Software engineers need to
pay particular attention to assessing the value (rela-
tive to priority) and cost of goals. A feasibility study
is a relatively low-cost way of doing this. [Lou95].

 Domain knowledge. The software engineer needs to
acquire, or have available, knowledge about the ap-
plication domain. This enables them to infer tacit
knowledge that the stakeholders do not articulate,
assess the trade-offs that will be necessary between
conflicting requirements, and, sometimes, to act as a
‘user’ champion.

 Stakeholders (see topic 2.2 Process Actors). Much
software has proved unsatisfactory because it has
stressed the requirements of one group of stake-
holders at the expense of those of others. Hence,
software is delivered which is difficult to use or
which subverts the cultural or political structures of
the customer organization. The software engineer
needs to identify, represent, and manage the ‘view-
points’ of many different types of stakeholders.
[Kot00].

 The operational environment. Requirements will be
derived from the environment in which the software
will be executed. These may be, for example, timing
constraints in real-time software or interoperability
constraints in an office environment. These must be
actively sought out, because they can greatly affect
software feasibility and cost, and restrict design
choices. [Tha97]

 The organizational environment. Software is often
required to support a business process, the selection
of which may be conditioned by the structure, cul-
ture, and internal politics of the organization. The
software engineer needs to be sensitive to these,
since, in general, new software should not force un-
planned change on the business process.

3.2. Elicitation Techniques
[Dav93; Kot00; Lou95; Pfl01]

Once the requirements sources have been identified, the
software engineer can start eliciting requirements from
them. This topic concentrates on techniques for getting
human stakeholders to articulate their requirements. It is a
very difficult area and the software engineer needs to be

© IEEE – 2004 Version 2-5

sensitized to the fact that (for example) users may have
difficulty describing their tasks, may leave important in-
formation unstated, or may be unwilling or unable to co-
operate. It is particularly important to understand that
elicitation is not a passive activity, and that, even if coop-
erative and articulate stakeholders are available, the soft-
ware engineer has to work hard to elicit the right informa-
tion. A number of techniques exist for doing this, the
principal ones being: [Gog93]

 Interviews, a ‘traditional’ means of eliciting re-
quirements. It is important to understand the advan-
tages and limitations of interviews, and how they
should be conducted.

 Scenarios, a valuable means for providing context to
the elicitation of user requirements. They allow the
software engineer to provide a framework for ques-
tions about user tasks by permitting ‘what if’ and
‘how is this done’ questions to be asked. The most
common type of scenario is the use case. There is a
link here to topic 4.2. (Conceptual Modeling), be-
cause scenario notations such as use cases and dia-
grams are common in modeling software.

 Prototypes, a valuable tool for clarifying unclear
requirements. They can act in a similar way to sce-
narios by providing users with a context within
which they can better understand what information
they need to provide. There is a wide range of proto-
typing techniques, from paper mock-ups of screen
designs to beta-test versions of software products,
and a strong overlap of their use for requirements
elicitation and the use of prototypes for require-
ments validation (see topic 6.2 Prototyping).

 Facilitated meetings. The purpose of these is to try
to achieve a summative effect whereby a group of
people can bring more insight into their software re-
quirements than by working individually. They can
brainstorm and refine ideas which may be difficult
to bring to the surface using interviews. Another ad-
vantage is that conflicting requirements surface
early on in a way that lets the stakeholders recognize
where there is conflict. When it works well, this
technique may result in a richer and more consistent
set of requirements than might otherwise be achiev-
able. However, meetings need to be handled care-
fully (hence the need for a facilitator) to prevent a
situation from occurring where the critical abilities
of the team are eroded by group loyalty, or the re-
quirements reflecting the concerns of a few outspo-
ken (and perhaps senior) people are favored to the
detriment of others.

 Observation. The importance of software context
within the organizational environment has led to the
adaptation of observational techniques for require-
ments elicitation. Software engineers learn about
user tasks by immersing themselves in the environ-
ment and observing how users interact with their
software and with each other. These techniques are

relatively expensive, but they are instructive because
they illustrate that many user tasks and business
processes are too subtle and complex for their actors
to describe easily.

4. Requirements Analysis
[Som05]

This topic is concerned with the process of analyzing re-
quirements to:

 detect and resolve conflicts between requirements
 discover the bounds of the software and how it must

interact with its environment
 elaborate system requirements to derive software

requirements
The traditional view of requirements analysis has been
that it be reduced to conceptual modeling using one of a
number of analysis methods such as the Structured Analy-
sis and Design Technique (SADT). While conceptual
modeling is important, we include the classification of
requirements to help inform trade-offs between require-
ments (requirements classification) and the process of
establishing these trade-offs (requirements negotiation).
[Dav93]

Care must be taken to describe requirements precisely
enough to enable the requirements to be validated, their
implementation to be verified, and their costs to be esti-
mated.

4.1. Requirements Classification
[Dav93; Kot00; Som05]

Requirements can be classified on a number of dimen-
sions. Examples include:

 Whether the requirement is functional or non-
functional (see topic 1.3 Functional and Non-
functional Requirements).

 Whether the requirement is derived from one or
more high-level requirements or an emergent prop-
erty (see topic 1.4 Emergent Properties), or is being
imposed directly on the software by a stakeholder or
some other source.

 Whether the requirement is on the product or the
process. Requirements on the process can constrain
the choice of contractor, the software engineering
process to be adopted, or the standards to be adhered
to.

 The requirement priority. In general, the higher the
priority, the more essential the requirement is for
meeting the overall goals of the software. Often
classified on a fixed-point scale such as mandatory,
highly desirable, desirable, or optional, the priority
often has to be balanced against the cost of devel-
opment and implementation.

 The scope of the requirement. Scope refers to the
extent to which a requirement affects the software
and software components. Some requirements, par-

 2-6 © IEEE – 2004 Version

ticularly certain non-functional ones, have a global
scope in that their satisfaction cannot be allocated to
a discrete component. Hence, a requirement with
global scope may strongly affect the software archi-
tecture and the design of many components,
whereas one with a narrow scope may offer a num-
ber of design choices and have little impact on the
satisfaction of other requirements.

 Volatility/stability. Some requirements will change
during the life cycle of the software, and even dur-
ing the development process itself. It is useful if
some estimate of the likelihood that a requirement
change can be made. For example, in a banking ap-
plication, requirements for functions to calculate and
credit interest to customers’ accounts are likely to be
more stable than a requirement to support a particu-
lar kind of tax-free account. The former reflect a
fundamental feature of the banking domain (that ac-
counts can earn interest), while the latter may be
rendered obsolete by a change to government legis-
lation. Flagging potentially volatile requirements
can help the software engineer establish a design
which is more tolerant of change.

Other classifications may be appropriate, depending upon
the organization’s normal practice and the application
itself.

There is a strong overlap between requirements classifica-
tion and requirements attributes (see topic 7.3 Require-
ments Attributes).

4.2. Conceptual Modeling
[Dav93; Kot00; Som05]

The development of models of a real-world problem is
key to software requirements analysis. Their purpose is to
aid in understanding the problem, rather than to initiate
design of the solution. Hence, conceptual models com-
prise models of entities from the problem domain config-
ured to reflect their real-world relationships and depend-
encies.

Several kinds of models can be developed. These include
data and control flows, state models, event traces, user
interactions, object models, data models, and many others.
The factors that influence the choice of model include:

 The nature of the problem. Some types of software
demand that certain aspects be analyzed particularly
rigorously. For example, control flow and state
models are likely to be more important for real-time
software than for management information software,
while it would usually be the opposite for data mod-
els.

 The expertise of the software engineer. It is often
more productive to adopt a modeling notation or
method with which the software engineer has ex-
perience.

 The process requirements of the customer. Custom-
ers may impose their favored notation or method, or
prohibit any with which they are unfamiliar. This
factor can conflict with the previous factor.

 The availability of methods and tools. Notations or
methods which are poorly supported by training and
tools may not achieve widespread acceptance even if
they are suited to particular types of problems.

Note that, in almost all cases, it is useful to start by build-
ing a model of the software context. The software context
provides a connection between the intended software and
its external environment. This is crucial to understanding
the software’s context in its operational environment and
to identifying its interfaces with the environment.

The issue of modeling is tightly coupled with that of
methods. For practical purposes, a method is a notation
(or set of notations) supported by a process which guides
the application of the notations. There is little empirical
evidence to support claims for the superiority of one nota-
tion over another. However, the widespread acceptance of
a particular method or notation can lead to beneficial in-
dustry-wide pooling of skills and knowledge. This is cur-
rently the situation with the UML (Unified Modeling
Language). (UML04)

Formal modeling using notations based on discrete
mathematics, and which are traceable to logical reasoning,
have made an impact in some specialized domains. These
may be imposed by customers or standards, or may offer
compelling advantages to the analysis of certain critical
functions or components.

This topic does not seek to ‘teach’ a particular modeling
style or notation, but rather provides guidance on the pur-
pose and intent of modeling.

Two standards provide notations which may be useful in
performing conceptual modeling–IEEE Std 1320.1,
IDEF0 for functional modeling; and IEEE Std 1320.2,
IDEF1X97 (IDEFObject) for information modeling.

4.3. Architectural Design and Requirements Allocation
[Dav93; Som05]

At some point, the architecture of the solution must be
derived. Architectural design is the point at which the
requirements process overlaps with software or systems
design, and illustrates how impossible it is to cleanly de-
couple the two tasks. [Som01] This topic is closely re-
lated to the Software Structure and Architecture sub-area
in the Software Design KA. In many cases, the software
engineer acts as software architect because the process of
analyzing and elaborating the requirements demands that
the components that will be responsible for satisfying the
requirements be identified. This is requirements alloca-
tion–the assignment, to components, of the responsibility
for satisfying requirements.

© IEEE – 2004 Version 2-7

Allocation is important to permit detailed analysis of re-
quirements. Hence, for example, once a set of require-
ments has been allocated to a component, the individual
requirements can be further analyzed to discover further
requirements on how the component needs to interact
with other components in order to satisfy the allocated
requirements. In large projects, allocation stimulates a
new round of analysis for each subsystem. As an example,
requirements for a particular braking performance for a
car (braking distance, safety in poor driving conditions,
smoothness of application, pedal pressure required, and so
on) may be allocated to the braking hardware (mechanical
and hydraulic assemblies) and an anti-lock braking system
(ABS). Only when a requirement for an anti-lock braking
system has been identified, and the requirements allocated
to it, can the capabilities of the ABS, the braking hard-
ware, and emergent properties (such as the car weight) be
used to identify the detailed ABS software requirements.

Architectural design is closely identified with conceptual
modeling. The mapping from real-world domain entities
to software components is not always obvious, so archi-
tectural design is identified as a separate topic. The re-
quirements of notations and methods are broadly the same
for both conceptual modeling and architectural design.

IEEE Std 1471-2000, Recommended Practice for Archi-
tectural Description of Software Intensive Systems, sug-
gests a multiple-viewpoint approach to describing the
architecture of systems and their software items.
(IEEE1471-00)

4.4. Requirements Negotiation
Another term commonly used for this sub-topic is ‘con-
flict resolution’. This concerns resolving problems with
requirements where conflicts occur between two stake-
holders requiring mutually incompatible features, between
requirements and resources, or between functional and
non-functional requirements, for example. [Kot00,
Som97] In most cases, it is unwise for the software engi-
neer to make a unilateral decision, and so it becomes nec-
essary to consult with the stakeholder(s) to reach a con-
sensus on an appropriate trade-off. It is often important
for contractual reasons that such decisions be traceable
back to the customer. We have classified this as a soft-
ware requirements analysis topic because problems
emerge as the result of analysis. However, a strong case
can also be made for considering it a requirements valida-
tion topic.

5. Requirements Specification
For most engineering professions, the term ‘specification’
refers to the assignment of numerical values or limits to a
product’s design goals. (Vin90) Typical physical systems
have a relatively small number of such values. Typical
software has a large number of requirements, and the em-
phasis is shared between performing the numerical quanti-
fication and managing the complexity of interaction

among the large number of requirements. So, in software
engineering jargon, ‘software requirements specification’
typically refers to the production of a document, or its
electronic equivalent, which can be systematically re-
viewed, evaluated, and approved. For complex systems,
particularly those involving substantial non-software
components, as many as three different types of docu-
ments are produced: system definition, system require-
ments, and software requirements. For simple software
products, only the third of these is required. All three
documents are described here, with the understanding that
they may be combined as appropriate. A description of
systems engineering can be found in Chapter 12, Related
Disciplines of Software Engineering.

5.1. The System Definition Document
This document (sometimes known as the user require-
ments document or concept of operations) records the
system requirements. It defines the high-level system re-
quirements from the domain perspective. Its readership
includes representatives of the system users/customers
(marketing may play these roles for market-driven soft-
ware), so its content must be couched in terms of the do-
main. The document lists the system requirements along
with background information about the overall objectives
for the system, its target environment and a statement of
the constraints, assumptions, and non-functional require-
ments. It may include conceptual models designed to il-
lustrate the system context, usage scenarios and the prin-
cipal domain entities, as well as data, information, and
workflows. IEEE Std 1362, Concept of Operations
Document, provides advice on the preparation and content
of such a document. (IEEE1362-98)

5.2. System Requirements Specification
[Dav93; Kot00; Rob99; Tha97]

Developers of systems with substantial software and non-
software components, a modern airliner, for example,
often separate the description of system requirements
from the description of software requirements. In this
view, system requirements are specified, the software
requirements are derived from the system requirements,
and then the requirements for the software components
are specified. Strictly speaking, system requirements
specification is a systems engineering activity and falls
outside the scope of this Guide. IEEE Std 1233 is a guide
for developing system requirements. (IEEE1233-98)

5.3. Software Requirements Specification
[Kot00; Rob99]

Software requirements specification establishes the basis
for agreement between customers and contractors or sup-
pliers (in market-driven projects, these roles may be
played by the marketing and development divisions) on
what the software product is to do, as well as what it is
not expected to do. For non-technical readers, the soft-
ware requirements specification document is often ac-

 2-8 © IEEE – 2004 Version

companied by a software requirements definition docu-
ment.

Software requirements specification permits a rigorous
assessment of requirements before design can begin and
reduces later redesign. It should also provide a realistic
basis for estimating product costs, risks, and schedules.

Organizations can also use a software requirements speci-
fication document to develop their own validation and
verification plans more productively.

Software requirements specification provides an informed
basis for transferring a software product to new users or
new machines. Finally, it can provide a basis for software
enhancement.

Software requirements are often written in natural lan-
guage, but, in software requirements specification, this
may be supplemented by formal or semi-formal descrip-
tions. Selection of appropriate notations permits particular
requirements and aspects of the software architecture to
be described more precisely and concisely than natural
language. The general rule is that notations should be
used which allow the requirements to be described as pre-
cisely as possible. This is particularly crucial for safety-
critical and certain other types of dependable software.
However, the choice of notation is often constrained by
the training, skills and preferences of the document’s au-
thors and readers.

A number of quality indicators have been developed
which can be used to relate the quality of software re-
quirements specification to other project variables such as
cost, acceptance, performance, schedule, reproducibility,
etc. Quality indicators for individual software require-
ments specification statements include imperatives, direc-
tives, weak phrases, options, and continuances. Indicators
for the entire software requirements specification docu-
ment include size, readability, specification, depth, and
text structure. [Dav93; Tha97] (Ros98)

IEEE has a standard, IEEE Std 830 [IEEE830-98], for the
production and content of the software requirements
specification. Also, IEEE 1465 (similar to ISO/IEC
12119), is a standard treating quality requirements in
software packages. (IEEE1465-98)

6. Requirements validation
[Dav93]

The requirements documents may be subject to validation
and verification procedures. The requirements may be
validated to ensure that the software engineer has under-
stood the requirements, and it is also important to verify
that a requirements document conforms to company stan-
dards, and that it is understandable, consistent, and com-
plete. Formal notations offer the important advantage of
permitting the last two properties to be proven (in a re-
stricted sense, at least). Different stakeholders, including
representatives of the customer and developer, should

review the document(s). Requirements documents are
subject to the same software configuration management
practices as the other deliverables of the software life cy-
cle processes. (Bry94, Ros98)

It is normal to explicitly schedule one or more points in
the requirements process where the requirements are vali-
dated. The aim is to pick up any problems before re-
sources are committed to addressing the requirements.
Requirements validation is concerned with the process of
examining the requirements document to ensure that it
defines the right software (that is, the software that the
users expect). [Kot00]

6.1. Requirements Reviews
[Kot00; Som05; Tha97]

Perhaps the most common means of validation is by in-
spection or reviews of the requirements document(s). A
group of reviewers is assigned a brief to look for errors,
mistaken assumptions, lack of clarity, and deviation from
standard practice. The composition of the group that con-
ducts the review is important (at least one representative
of the customer should be included for a customer-driven
project, for example), and it may help to provide guidance
on what to look for in the form of checklists.

Reviews may be constituted on completion of the system
definition document, the system specification document,
the software requirements specification document, the
baseline specification for a new release, or at any other
step in the process. IEEE Std 1028 provides guidance on
conducting such reviews. (IEEE1028-97) Reviews are
also covered in the Software Quality KA, topic 2.3 Re-
views and Audits.

6.2. Prototyping
[Dav93; Kot00; Som05; Tha97]

Prototyping is commonly a means for validating the soft-
ware engineer's interpretation of the software require-
ments, as well as for eliciting new requirements. As with
elicitation, there is a range of prototyping techniques and
a number of points in the process where prototype valida-
tion may be appropriate. The advantage of prototypes is
that they can make it easier to interpret the software engi-
neer's assumptions and, where needed, give useful feed-
back on why they are wrong. For example, the dynamic
behavior of a user interface can be better understood
through an animated prototype than through textual de-
scription or graphical models. There are also disadvan-
tages, however. These include the danger of users’ atten-
tion being distracted from the core underlying functional-
ity by cosmetic issues or quality problems with the proto-
type. For this reason, several people recommend proto-
types which avoid software, such as flip-chart-based
mockups. Prototypes may be costly to develop. However,
if they avoid the wastage of resources caused by trying to
satisfy erroneous requirements, their cost can be more
easily justified.

© IEEE – 2004 Version 2-9

6.3. Model Validation
[Dav93; Kot00; Tha97]

It is typically necessary to validate the quality of the mod-
els developed during analysis. For example, in object
models, it is useful to perform a static analysis to verify
that communication paths exist between objects which, in
the stakeholders’ domain, exchange data. If formal speci-
fication notations are used, it is possible to use formal
reasoning to prove specification properties.

6.4. Acceptance Tests
[Dav93]

An essential property of a software requirement is that it
should be possible to validate that the finished product
satisfies it. Requirements which cannot be validated are
really just ‘wishes’. An important task is therefore plan-
ning how to verify each requirement. In most cases, de-
signing acceptance tests does this.

Identifying and designing acceptance tests may be diffi-
cult for non-functional requirements (see topic 1.3 Func-
tional and Non-functional Requirements). To be vali-
dated, they must first be analyzed to the point where they
can be expressed quantitatively.

Additional information can be found in the Software Test-
ing KA, sub-topic 2.2.4 Conformance Testing.

7. Practical Considerations
The first level of decomposition of sub-areas presented in
this KA may seem to describe a linear sequence of activi-
ties. This is a simplified view of the process. [Dav93]

The requirements process spans the whole software life
cycle. Change management and the maintenance of the
requirements in a state which accurately mirrors the soft-
ware to be built, or that has been built, are key to the suc-
cess of the software engineering process. [Kot00; Lou95]

Not every organization has a culture of documenting and
managing requirements. It is frequent in dynamic start-up
companies, driven by a strong ‘product vision’ and lim-
ited resources, to view requirements documentation as an
unnecessary overhead. Most often, however, as these
companies expand, as their customer base grows, and as
their product starts to evolve, they discover that they need
to recover the requirements that motivated product fea-
tures in order to assess the impact of proposed changes.
Hence, requirements documentation and change manage-
ment are key to the success of any requirements process.

7.1. Iterative nature of the Requirements Process
[Kot00; You01]

There is general pressure in the software industry for ever
shorter development cycles, and this is particularly pro-
nounced in highly competitive market-driven sectors.
Moreover, most projects are constrained in some way by
their environment, and many are upgrades to, or revisions

of, existing software where the architecture is a given. In
practice, therefore, it is almost always impractical to im-
plement the requirements process as a linear, determinis-
tic process in which software requirements are elicited
from the stakeholders, baselined, allocated, and handed
over to the software development team. It is certainly a
myth that the requirements for large software projects are
ever perfectly understood or perfectly specified. [Som97]

Instead, requirements typically iterate towards a level of
quality and detail which is sufficient to permit design and
procurement decisions to be made. In some projects, this
may result in the requirements being baselined before all
their properties are fully understood. This risks expensive
rework if problems emerge late in the software engineer-
ing process. However, software engineers are necessarily
constrained by project management plans and must there-
fore take steps to ensure that the ‘quality’ of the require-
ments is as high as possible given the available resources.
They should, for example, make explicit any assumptions
which underpin the requirements, as well as any known
problems.

In almost all cases, requirements understanding continues
to evolve as design and development proceeds. This often
leads to the revision of requirements late in the life cycle.
Perhaps the most crucial point in understanding require-
ments engineering is that a significant proportion of the
requirements will change. This is sometimes due to errors
in the analysis, but it is frequently an inevitable conse-
quence of change in the ‘environment’: for example, the
customer's operating or business environment, or the mar-
ket into which software must sell. Whatever the cause, it
is important to recognize the inevitability of change and
take steps to mitigate its effects. Change has to be man-
aged by ensuring that proposed changes go through a de-
fined review and approval process, and, by applying care-
ful requirements tracing, impact analysis, and software
configuration management (see the Software Configura-
tion Management KA). Hence, the requirements process
is not merely a front-end task in software development,
but spans the whole software life cycle. In a typical pro-
ject, the software requirements activities evolve over time
from elicitation to change management.

7.2. Change Management
[Kot00]

Change management is central to the management of re-
quirements. This topic describes the role of change man-
agement, the procedures that need to be in place, and the
analysis that should be applied to proposed changes. It has
strong links to the Software Configuration Management
KA.

7.3. Requirements Attributes
[Kot00]

Requirements should consist not only of a specification of
what is required, but also of ancillary information which

 2-10 © IEEE – 2004 Version

helps manage and interpret the requirements. This should
include the various classification dimensions of the re-
quirement (see topic 4.1 Requirements Classification) and
the verification method or acceptance test plan. It may
also include additional information such as a summary
rationale for each requirement, the source of each re-
quirement, and a change history. The most important re-
quirements attribute, however, is an identifier which al-
lows the requirements to be uniquely and unambiguously
identified.

7.4. Requirements Tracing
[Kot00]

Requirements tracing is concerned with recovering the
source of requirements and predicting the effects of re-
quirements. Tracing is fundamental to performing impact
analysis when requirements change. A requirement should
be traceable backwards to the requirements and stake-
holders which motivated it (from a software requirement
back to the system requirement(s) that it helps satisfy, for
example). Conversely, a requirement should be traceable
forwards into the requirements and design entities that

satisfy it (for example, from a system requirement into the
software requirements that have been elaborated from it,
and on into the code modules that implement it).

The requirements tracing for a typical project will form a
complex directed acyclic graph (DAG) of requirements.

7.5. Measuring Requirements
As a practical matter, it is typically useful to have some
concept of the ‘volume’ of the requirements for a particu-
lar software product. This number is useful in evaluating
the ‘size’ of a change in requirements, in estimating the
cost of a development or maintenance task, or simply for
use as the denominator in other measurements. Functional
Size Measurement (FSM) is a technique for evaluating the
size of a body of functional requirements. IEEE Std
14143.1 defines the concept of FSM. [IEEE14143.1-00]
Standards from ISO/IEC and other sources describe par-
ticular FSM methods

Additional information on size measurement and stan-
dards will be found in the Software Engineering Process
KA.

© IEEE – 2004 Version 2-11

MATRIX OF TOPICS VS. REFERENCE MATERIAL

[D
av

93
]

[G
og

93
]

[I
E

E
E

83
0

-9
8]

[I
E

E
E

14
1

43
.1

-0
0]

[K
ot

00
]

[L
ou

95
]

[P
fl0

1]

[R
ob

99
]

[S
om

97
]

[S
om

05
]

[T
ha

97
]

[Y
ou

01
]

1. Software Requirements Fundamentals
1.1 Definition of a Software Requirement * * c5 c1
1.2 Product and Process Requirements * c1
1.3 Functional and Non-functional
 Requirements * c1

1.4 Emergent Properties c2

1.5 Quantifiable Requirements c3s
4 c6

1.6 System Requirements and Software
 Requirements

2. Requirements Process * c5
2.1 Process Models c2s1 * c2 c3
2.2 Process Actors c2 * c2s2 c3 c2 c3
2.3 Process Support and Management c3 c2 c2,c7
2.4 Process Quality and Improvement c2s4 c2 c5
3. Requirements Elicitation * * * *
3.1 Requirements Sources c2 * c3s1 * * c1
3.2 Elicitation Techniques c2 * c3s2 * *
4. Requirements Analysis * c6
4.1 Requirements Classification * c8s1 c6
4.2 Conceptual Modeling * * c7
4.3 Architectural Design and Requirements
 Allocation * c10

4.4 Requirements Negotiation c3s4 *
5. Requirements Specification
5.1 The System Definition Document
5.2 The System Requirements Specification * * c9 c3
5.3 The Software Requirements Specification * * * c9 c3
6. Requirements Validation * *
6.1 Requirements Reviews c4s1 c6 c5
6.2 Prototyping c6 c4s2 c8 c6
6.3 Model Validation * c4s3 c5
6.4 Acceptance Tests *
7. Practical Considerations * * *
7.1 Iterative Nature of the Requirements
 Process c5s1 c2 c6

7.2 Change Management c5s3
7.3 Requirement Attributes c5s2
7.4 Requirements Tracing c5s4
7.5 Measuring Requirements *

 2-12 © IEEE – 2004 Version

RECOMMENDED REFERENCES FOR SOFTWARE
REQUIREMENTS
[Dav93] A. M. Davis, Software Requirements: Objects,
Functions and States: Prentice-Hall, 1993.
[Gog93] J. Goguen and C. Linde, "Techniques for Re-
quirements Elicitation," presented at International Sympo-
sium on Requirements Engineering, San Diego, Califor-
nia, 1993
[IEEE830-98] IEEE Std 830-1998, IEEE Recommended
Practice for Software Requirements Specifications: IEEE,
1998.
(IEEE14143.1-00) IEEE Std 14143.1-
2000//ISO/IEC14143-1:1998, Information Technology-
Software Measurement-Functional Size Measurement-
Part 1: Definitions of Concepts: IEEE, 2000.
[Kot00] G. Kotonya and I. Sommerville, Requirements
Engineering: Processes and Techniques: John Wiley and

Sons, 2000.
[Lou95] P. Loucopulos and V. Karakostas, Systems Re-
quirements Engineering: McGraw-Hill, 1995.
[Pfl01] S. L. Pfleeger, "Software Engineering: Theory and
Practice," Second ed: Prentice-Hall, 2001, Chap. 4.
[Rob99] S. Robertson and J. Robertson, Mastering the
Requirements Process: Addison-Wesley, 1999.
[Som97] I. Sommerville and P. Sawyer, "Requirements
engineering: A Good Practice Guide," John Wiley and
Sons, 1997, Chap. 1-2.
[Som05] I. Sommerville, "Software Engineering," Sev-
enth ed: Addison-Wesley, 2005.
[Tha97] R. H. Thayer and M. Dorfman, Eds., "Software
Requirements Engineering." IEEE Computer Society
Press, 1997, 176-205, 389-404.
[You01] R. R. You, Effective Requirements Practices:
Addison-Wesley, 2001.

© IEEE – 2004 Version 2-13

APPENDIX A. LIST OF FURTHER READINGS
(Ale02) I. Alexander and R. Stevens, Writing Better Re-
quirements: Addison-Wesley, 2002.
(Ard97) M. Ardis, "Formal Methods for Telecommunica-
tion System Requirements: A survey of Standardized
Languages," Annals of Software Engineering, vol. 3, 1997
(Ber97) V. Berzins and al, "A Requirements Evolution
Model for Computer Aided Prototyping," presented at
Ninth IEEE International Conference on Software Engi-
neering and Knowledge Engineering, Skokie, Illinois:
Knowledge Systems Institute, 1997
(Bey95) H. Beyer and K. Holtzblatt, "Apprenticing with
the Customer," Communications of the ACM, vol. 38, iss.
5, 45-52, May, 1995
(Bru95) G. Bruno and R. Agarwal, "Validating Software
Requirements Using Operational Models," presented at
Second Symposium on Software Quality Techniques and
Acquisition Criteria, Florence, Italy, 1995
(Bry94) E. Bryne, "IEEE Standard 830: Recommended
Practice for Software Requirements Specification," pre-
sented at IEEE International Conference on Requirements
Engineering, 1994
(Buc94) G. Bucci and al, "An Object-Oriented Dual Lan-
guage for Specifying Reactive Systems," presented at
IEEE International Conference on Requirements Engi-
neering, 1994
(Bus95) D. Bustard and P. Lundy, "Enhancing Soft Sys-
tems Analysis with Formal Modeling," presented at Sec-
ond International Symposium on Requirements Engineer-
ing, 1995
(Che94) M. Chechik and J. Gannon, "Automated Verifi-
cation of Requirements Implementation," presented at
Proceedings of the International Symposium on Software
Testing and Analysis, Special Issue, 1994
(Chu95) L. Chung and B. Nixon, "Dealing with Non-
Functional Requirements: Three Experimental Studies of
a Process-Oriented Approach," presented at Seventeenth
IEEE International Conference on Software Engineering,
1995
(Cia97) P. Ciancarini and al, "Engineering Formal Re-
quirements: An Analysis and Testing Method for Z Docu-
ments," Annals of Software Engineering, vol. 3, 1997
(Cre94) R. Crespo, "We Need to Identify the Require-
ments of the Statements of Non-Functional Require-
ments," presented at International Workshop on Require-
ments Engineering: Foundations of Software Quality,
1994
(Cur94) P. Curran and al, "BORIS-R Specification of the
Requirements of a Large-Scale Software Intensive Sys-
tem," presented at Requirements Elicitation for Software-
Based Systems, 1994
(Dar97) R. Darimont and J. Souquieres, "Reusing Opera-
tional Requirements: A Process-Oriented Approach," pre-
sented at IEEE International Symposium on Requirements
Engineering, 1997
(Dav94) A. Davis and P. Hsia, "Giving Voice to Re-
quirements Engineering: Guest Editors' Introduction,"

rements Engineering: Guest Editors' Introduction," IEEE
Software, vol. 11, iss. 2, 12-16, March, 1994
(Def94) J. DeFoe, "Requirements Engineering Technol-
ogy in Industrial Education," presented at IEEE Interna-
tional Conference on Requirements Engineering, 1994
(Dem97) E. Demirors, "A Blackboard Framework for
Supporting Teams in Software Development," presented
at Ninth IEEE International Conference on Software En-
gineering and Knowledge Engineering, Skokie, Illinois:
Knowledge Systems Institute, 1997
(Die95) M. Diepstraten, "Command and Control System
Requirements Analysis and System Requirements Speci-
fication for a Tactical System," presented at First IEEE
International Conference on Engineering of Complex
Computer Systems, 1995
(Dob94) J. Dobson and R. Strens, "Organizational Re-
quirements Definition for Information Technology," pre-
sented at IEEE International Conference on Requirements
Engineering, 1994
(Duf95) D. Duffy and al, "A Framework for Require-
ments Analysis Using Automated Reasoning," presented
at Seventh International Conference on Advanced Infor-
mation Systems Engineering, 1995
(Eas95) S. Easterbrook and B. Nuseibeh, "Managing In-
consistencies in an Evolving Specification," presented at
Second International Symposium on Requirements Engi-
neering, 1995
(Edw95) M. Edwards and al, "RECAP: A Requirements
Elicitation, Capture, and Analysis Process Prototype Tool
for Large Complex Systems," presented at First IEEE
International Conference on Engineering of Complex
Computer Systems, 1995
(ElE95) K. El-Emam and N. Madhavji, "Requirements
Engineering Practices in Information Systems Develop-
ment: A Multiple Case Study," presented at Second Inter-
national Symposium on Requirements Engineering, 1995
(Fai97) R. Fairley and R. Thayer, "The Concept of Opera-
tions: The Bridge From Operational Requirements to
Technical Specifications," Annals of Software Engineer-
ing, vol. 3, 1997
(Fic95) S. Fickas and M. Feather, "Requirements Moni-
toring in Dynamic Environments," presented at Second
International Symposium on Requirements Engineering,
1995
(Fie95) R. Fields and al, "A Task-Centered Approach to
Analyzing Human Error Tolerance Requirements," pre-
sented at Second International Symposium on Require-
ments Engineering, 1995
(Gha94) J. Ghajar-Dowlatshahi and A. Varnekar, "Rapid
Prototyping in Requirements Specification Phase of Soft-
ware Systems," presented at Fourth International Sympo-
sium on Systems Engineering, Sunnyvale, California:
National Council on Systems Engineering, 1994
(Gib95) M. Gibson, "Domain Knowledge Reuse During
Requirements Engineering," presented at Seventh Interna-
tional Conference on Advanced Information Systems En-
gineering (CAiSE '95), 1995

 2-14 © IEEE – 2004 Version

(Gol94) L. Goldin and D. Berry, "AbstFinder: A Proto-
type Abstraction Finder for Natural Language Text for
Use in Requirements Elicitation: Design, Methodology
and Evaluation," presented at IEEE International Confer-
ence on Requirements Engineering, 1994
(Got97) O. Gotel and A. Finkelstein, "Extending Re-
quirements Traceability: Lessons Learned from an
Industrial Case Study," presented at IEEE International
Symposium on Requirements Engineering, 1997
(Hei96) M. Heimdahl, "Errors Introduced during the
TACS II Requirements Specification Effort: A Retrospec-
tive Case Study," presented at Eighteenth IEEE Interna-
tional Conference on Software Engineering, 1996
(Hei96a) C. Heitmeyer and al, "Automated Consistency
Checking Requirements Specifications," ACM Transac-
tions on Software Engineering and Methodology, vol. 5,
iss. 3, 231-261, July, 1996
(Hol95) K. Holtzblatt and H. Beyer, "Requirements Gath-
ering: The Human Factor," Communications of the ACM,
vol. 38, iss. 5, 31-32, May, 1995
(Hud96) E. Hudlicka, "Requirements Elicitation with In-
direct Knowledge Elicitation Techniques: Comparison of
Three Methods," presented at Second IEEE International
Conference on Requirements Engineering, 1996
(Hug94) K. Hughes and al, "A Taxonomy for Require-
ments Analysis Techniques," presented at IEEE Interna-
tional Conference on Requirements Engineering, 1994
(Hug95) J. Hughes and al, "Presenting Ethnography in the
Requirements Process," presented at Second IEEE Inter-
national Symposium on Requirements Engineering, 1995
(Hut94) A. T. F. Hutt, Ed., "Object Analysis and Design -
Comparison of Methods. Object Analysis and Design -
Description of Methods." John Wiley & Sons, 1994.
(INCOSE00) INCOSE, How To: Guide for all Engineers,
Version 2: International Council on Systems Engineering,
2000.
(Jac95) M. Jackson, Software Requirements and Specifi-
cations. Reading, Massachusetts: Addison Wesley, 1995.
(Jac97) M. Jackson, "The Meaning of Requirements,"
Annals of Software Engineering, vol. 3, 1997
(Jon96) S. Jones and C. Britton, "Early Elicitation and
Definition of Requirements for an Interactive Multimedia
Information System," presented at Second IEEE Interna-
tional Conference on Requirements Engineering, 1996
(Kir96) T. Kirner and A. Davis, "Nonfunctional Require-
ments for Real-Time Systems," Advances in Computers,
1996
(Kle97) M. Klein, "Handling Exceptions in Collaborative
Requirements Acquisition," presented at IEEE Interna-
tional Symposium on Requirements Engineering, 1997
(Kos97) R. Kosman, "A Two-Step Methodology to Re-
duce Requirements Defects," Annals of Software Engi-
neering, vol. 3, 1997
(Kro95) J. Krogstie and al, "Towards a Deeper Under-
standing of Quality in Requirements Engineering," pre-
sented at Seventh International Conference on Advanced
Information Systems Engineering (CAiSE '95), 1995

(Lal95) V. Lalioti and B. Theodoulidis, "Visual Scenarios
for Validation of Requirements Specification," presented
at Seventh International Conference on Software Engi-
neering and Knowledge Engineering, Skokie, Illinois:
Knowledge Systems Institute, 1995
(Lam95) A. v. Lamsweerde and al, "Goal-Directed Elabo-
ration of Requirements for a Meeting Scheduler: Prob-
lems and Lessons Learnt," presented at Second Interna-
tional Symposium on Requirements Engineering, 1995
(Lei97) J. Leite and al, "Enhancing a Requirements Base-
line with Scenarios," presented at IEEE International
Symposium on Requirements Engineering, 1997
(Ler97) F. Lerch and al., "Using Simulation-Based Ex-
periments for Software Requirements Engineering,"
Annals of Software Engineering, vol. 3, 1997
(Lev94) N. Leveson and al, "Requirements Specification
for Process-Control Systems," IEEE Transactions on
Software Engineering, vol. 20, iss. 9, 684-707, Septem-
ber, 1994
(Lut96a) R. Lutz and R. Woodhouse, "Contributions of
SFMEA to Requirements Analysis," presented at Second
IEEE International Conference on Requirements Engi-
neering, 1996
(Lut97) R. Lutz and R. Woodhouse, "Requirements Ana-
lysis Using Forward and Backward Search," Annals of
Software Engineering, vol. 3, 1997
(Mac96) L. Macaulay, Requirements Engineering. Lon-
don UK: Springer, 1996.
(Mai95) N. Maiden and al, "Computational Mechanisms
for Distributed Requirements Engineering," presented at
Seventh International Conference on Software Engineer-
ing and Knowledge Engineering, Skokie, Illinois: Knowl-
edge Systems Institute, 1995
(Mar94) B. Mar, "Requirements for Development of
Software Requirements," presented at Fourth International
Symposium on Systems Engineering, Sunnyvale, Califor-
nia, 1994
(Mas97) P. Massonet and A. v. Lamsweerde, "Analogical
Reuse of Requirements Frameworks," presented at IEEE
International Symposium on Requirements Engineering,
1997
(McF95) I. McFarland and I. Reilly, "Requirements Tra-
ceability in an Integrated Development Environment,"
presented at Second International Symposium on Re-
quirements Engineering, 1995
(Mea94) N. Mead, "The Role of Software Architecture in
Requirements Engineering," presented at IEEE Interna-
tional Conference on Requirements Engineering, 1994
(Mos95) D. Mostert and S. v. Solms, "A Technique to
Include Computer Security, Safety, and Resilience Re-
quirements as Part of the Requirements Specification,"
Journal of Systems and Software, vol. 31, iss. 1, 45-53,
October, 1995
(Myl95) J. Mylopoulos and al, "Multiple Viewpoints Ana-
lysis of Software Specification Process," IEEE Transac-
tions on Software Engineering, 1995
(Nis92) K. Nishimura and S. Honiden, "Representing and

© IEEE – 2004 Version 2-15

Using Non-Functional Requirements: A Process-Oriented
Approach," IEEE Transactions on Software Engineering,
December, 1992
(Nis97) H. Nissen and al, "View-Directed Requirements
Engineering: A Framework and Metamodel," presented at
Ninth IEEE International Conference on Software Engi-
neering and Knowledge Engineering, Skokie, Illinois:
Knowledge Systems Institute, 1997
(OBr96) L. O'Brien, "From Use Case to Database: Im-
plementing a Requirements Tracking System," Software
Development, vol. 4, iss. 2, 43-47, February, 1996
(UML04) Object Management Group, "Unified Modeling
Language," 2004, available at http://www.uml.org
(Opd94) A. Opdahl, "Requirements Engineering for
Software Performance," presented at International Work-
shop on Requirements Engineering: Foundations of Soft-
ware Quality, 1994
(Pin96) F. Pinheiro and J. Goguen, "An Object-Oriented
Tool for Tracing Requirements," IEEE Software, vol. 13,
iss. 2, 52-64, March, 1996
(Pla96) G. Playle and C. Schroeder, "Software Require-
ments Elicitation: Problems, Tools, and Techniques,"
Crosstalk: The Journal of Defense Software Engineering,
vol. 9, iss. 12, 19-24, December, 1996
(Poh94) K. Pohl and al, "Applying AI Techniques to Re-
quirements Engineering: The NATURE Prototype," pre-
sented at IEEE Workshop on Research Issues in the Inter-
section Between Software Engineering and Artificial In-
telligence, 1994
(Por95) A. Porter and al, "Comparing Detection Methods
for Software Requirements Inspections: A Replicated
Experiment," IEEE Transactions on Software Engineer-
ing, vol. 21, iss. 6, 563-575, June, 1995
(Pot95) C. Potts and al, "An Evaluation of Inquiry-Based
Requirements Analysis for an Internet Server," presented
at Second International Symposium on Requirements En-
gineering, 1995
(Pot97) C. Potts and I. Hsi, "Abstraction and Context in
Requirements Engineering: Toward a Synthesis," Annals
of Software Engineering, vol. 3, 1997
(Pot97a) C. Potts and W. Newstetter, "Naturalistic Inquiry
and Requirements Engineering: Reconciling Their Theo-
retical Foundations," presented at IEEE International
Symposium on Requirements Engineering, 1997
(Ram95) B. Ramesh and al, "Implementing Requirements
Traceability: A Case Study," presented at Second Interna-
tional Symposium on Requirements Engineering, 1995
(Reg95) B. Regnell and al, "Improving the Use Case Dri-
ven Approach to Requirements Engineering," presented at
Second IEEE International Symposium on Requirements
Engineering, 1995
(Reu94) H. Reubenstein, "The Role of Software Architec-
ture in Software Requirements Engineering," presented at
IEEE International Conference on Requirements Engi-
neering, 1994
(Rob94) J. Robertson and S. Robertson, "Complete Sys-

tems Analysis," vol. 1 and 2. Englewood Cliffs, New Jer-
sey: Prentice Hall, 1994.
(Rob94a) W. Robinson and S. Fickas, "Supporting Multi-
Perspective Requirements Engineering," presented at
IEEE International Conference on Requirements Engi-
neering, 1994
(Ros98) L. Rosenberg, T. F. Hammer and L. L. Huffman,
"Requirements, testing and metrics," presented at 15th
Annual Pacific Northwest Software Quality Conference,
Utah, 1998
(Sch94) W. Schoening, "The Next Big Step in Systems
Engineering Tools: Integrating Automated Requirements
Tools with Computer Simulated Synthesis and Test," pre-
sented at Fourth International Symposium on Systems
Engineering, Sunnyvale, California, 1994
(She94) M. Shekaran, "The Role of Software Architecture
in Requirements Engineering," presented at IEEE Interna-
tional Conference on Requirements Engineering, 1994
(Sid97) J. Siddiqi and al, "Towards Quality Requirements
Via Animated Formal Specifications," Annals of Software
Engineering, vol. 3, 1997
(Span97) G. Spanoudakis and A. Finkelstein, "Reconcil-
ing Requirements: A Method for Managing Interference,
Inconsistency, and Conflict," Annals of Software Engi-
neering, vol. 3, 1997
(Ste94) R. Stevens, "Structured Requirements," presented
at Fourth International Symposium on Systems Engineer-
ing, Sunnyvale, California, 1994
(Vin90) W. G. Vincenti, What Engineers Know and How
They Know It - Analytical Studies form Aeronautical His-
tory. Baltimore and London: John Hopkins University
Press, 1990.
(Wei03) K. Weigers, Software Requirements, 2nd ed:
Microsoft Press, 2003.
(Whi95) S. White and M. Edwards, "A Requirements
Taxonomy for Specifying Complex Systems," presented
at First IEEE International Conference on Engineering of
Complex Computer Systems, 1995
(Wil99) B. Wiley, Essential System Requirements: A
Practical Guide to Event-Driven Methods: Addison-
Wesley, 1999.
(Wyd96) T. Wyder, "Capturing Requirements With Use
Cases," Software Development, vol. 4, iss. 2, 36-40, Feb-
ruary, 1996
(Yen97) J. Yen and W. Tiao, "A Systematic Tradeoff
Analysis for Conflicting Imprecise Requirements," pre-
sented at IEEE International Symposium on Requirements
Engineering, 1997
(Yu97) E. Yu, "Towards Modeling and Reasoning Sup-
port for Early-Phase Requirements Engineering," pre-
sented at IEEE International Symposium on Requirements
Engineering, 1997
(Zav96) P. Zave and M. Jackson, "Where Do Operations
Come From? A Multiparadigm Specification Technique,"
IEEE Transactions on Software Engineering,, vol. 22, iss.
7, 508-528, July, 1996

 2-16 © IEEE – 2004 Version

APPENDIX B. LIST OF STANDARDS
(IEEE830-98) IEEE Std 830-1998, IEEE Recommended
Practice for Software Requirements Specifications: IEEE,
1998.
(IEEE1028-97) IEEE Std 1028-1997 (R2002), IEEE
Standard for Software Reviews: IEEE, 1997.
(IEEE1233-98) IEEE Std 1233-1998, "IEEE Guide for
Developing System Requirements Specifications," 1998
(IEEE1320.1-98) IEEE Std 1320.1-1998, IEEE Standard
for Functional Modeling Language-Syntax and Semantics
for IDEF0: IEEE, 1998.
(IEEE1320.2-98) IEEE Std 1320.2-1998, "IEEE Standard
for Conceptual Modeling Language-Syntax and Seman-
tics for IDEFIX97 (IDEFObjetct)," IEEE, 1998.
(IEEE1362-98) IEEE Std 1362-1998, IEEE Guide for
Information Technology-System Definition-Concept of
Operations (ConOps) Document: IEEE, 1998.

(IEEE1465-98) IEEE Std 1465-
1998//ISO/IEC12119:1994, IEEE Standard Adoption of
International Standard ISO/IEC12119:1994(E), Informa-
tion Technology-Software packages-Quality requirements
and testing: IEEE, 1998.
(IEEEP1471-00) IEEE Std 1471-2000, IEEE Recom-
mended Practice for Architectural Descriptionos Software
Intensive Systems: Architecture Working Group of the
Software Engineering Standards Committee, 2000.
(IEEE12207.0-96) IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of
Int. Std. ISO/IEC 12207:95, Standard for Information
Technology-Software Life Cycle Processes, IEEE, 1996.
(IEEE14143.1-00) IEEE Std 14143.1-
2000//ISO/IEC14143-1:1998, Information Technology-
Software Measurement-Functional Size Measurement-
Part 1: Definitions of Concepts: IEEE, 2000.

© IEEE – 2004 Version 3–1

CHAPTER 3
SOFTWARE DESIGN

ACRONYMS
ADL Architecture Description Languages
CRC Collaboration Responsibilities Card
ERD Entity-Relationship Diagrams
IDL Interface Description Languages
DFD Data Flow Diagram
PDL Pseudo-Code and Program Design Languages
CBD Component-based design

INTRODUCTION
Design is defined in [IEEE610.12-90] as both “the process
of defining the architecture, components, interfaces, and
other characteristics of a system or component” and “the
result of [that] process.” Viewed as a process, software
design is the software engineering life cycle activity in
which software requirements are analyzed in order to pro-
duce a description of the software’s internal structure that
will serve as the basis for its construction. More precisely, a
software design (the result) must describe the software
architecture—that is, how software is decomposed and
organized into components—and the interfaces between
those components. It must also describe the components at
a level of detail that enable their construction.
Software design plays an important role in developing
software: it allows software engineers to produce various
models that form a kind of blueprint of the solution to be
implemented. We can analyze and evaluate these models to
determine whether or not they will allow us to fulfill the
various requirements. We can also examine and evaluate
various alternative solutions and trade-offs. Finally, we can
use the resulting models to plan the subsequent develop-
ment activities, in addition to using them as input and the
starting point of construction and testing.
In a standard listing of software life cycle processes such as
IEEE/EIA 12207 Software Life Cycle Processes
[IEEE12207.0-96], software design consists of two activi-
ties that fit between software requirements analysis and
software construction:
 Software architectural design (sometimes called top-

level design): describing software’s top-level structure
and organization and identifying the various compo-
nents

 Software detailed design: describing each component
sufficiently to allow for its construction.

Concerning the scope of the Software Design knowledge
area (KA), the current KA description does not discuss
every topic the name of which contains the word “design.”
In Tom DeMarco’s terminology (DeM99), the KA dis-
cussed in this chapter deals mainly with D-design (decom-
position design, mapping software into component pieces).
However, because of its importance in the growing field of
software architecture, we will also address FP-design (fam-
ily pattern design, whose goal is to establish exploitable
commonalities in a family of software). By contrast, the
Software Design KA does not address I-design (invention
design, usually performed during the software requirements
process with the objective of conceptualizing and spe-
cifying software to satisfy discovered needs and require-
ments), since this topic should be considered part of requi-
rements analysis and specification.
The Software Design KA description is related specifically
to Software Requirements, Software Construction, Soft-
ware Engineering Management, Software Quality and Re-
lated Disciplines of Software Engineering.

BREAKDOWN OF TOPICS FOR SOFTWARE
DESIGN
1. Software Design Fundamentals
The concepts, notions, and terminology introduced here
form an underlying basis for understanding the role and
scope of software design.
1.1. General Design Concepts
Software is not the only field where design is involved. In
the general sense, we can view design as a form of problem-
solving. [Bud03:c1] For example, the concept of a wicked
problem–a problem with no definitive solution–is interesting
in terms of understanding the limits of design. [Bud04:c1] A
number of other notions and concepts are also of interest in
understanding design in its general sense: goals, constraints,
alternatives, representations, and solutions. [Smi93]
1.2. Context of Software Design
To understand the role of software design, it is important to
understand the context in which it fits, the software engi-
neering life cycle. Thus, it is important to understand the
major characteristics of software requirements analysis vs.
software design vs. software construction vs. software
testing. [IEEE12207.0-96]; Lis01:c11; Mar02; Pfl01:c2;
Pre04:c2]

 3–2 © IEEE – 2004 Version

1.3. Software Design Process
Software design is generally considered a two-step process:
[Bas03; Dor02:v1c4s2; Fre83:I; IEEE12207.0-96];
Lis01:c13; Mar02:D]
1.3.1. Architectural Design

Architectural design describes how software is de-
composed and organized into components (the soft-
ware architecture) [IEEEP1471-00]

1.3.2. Detailed Design
Detailed design describes the specific behavior of
these components.

The output of this process is a set of models and artifacts
that record the major decisions that have been taken.
[Bud04:c2; IEE1016-98; Lis01:c13; Pre04:c9
1.4. Enabling Techniques
According to the Oxford English Dictionary, a principle is
“a basic truth or a general law … that is used as a basis of
reasoning or a guide to action.” Software design principles,
also called enabling techniques [Bus96], are key notions
considered fundamental to many different software design
approaches and concepts. The enabling techniques are the
following: [Bas98:c6; Bus96:c6; IEEE1016-98; Jal97:c5,c6;
Lis01:c1,c3; Pfl01:c5; Pre04:c9]
1.4.1. Abstraction

Abstraction is “the process of forgetting information
so that things that are different can be treated as if
they were the same”. [Lis01] In the context of soft-
ware design, two key abstraction mechanisms are
parameterization and specification. Abstraction by
specification leads to three major kinds of abstrac-
tion: procedural abstraction, data abstraction and
control (iteration) abstraction. [Bas98:c6;
Jal97:c5,c6; Lis01:c1,c2,c5,c6; Pre04:c1]

1.4.2. Coupling and cohesion
Coupling is defined as the strength of the relation-
ships between modules, whereas cohesion is defined
by how the elements making up a module are re-
lated. [Bas98:c6; Jal97:c5; Pfl01:c5; Pre04:c9]

1.4.3. Decomposition and modularization
Decomposing and modularizing large software into a
number of smaller independent ones, usually with
the goal of placing different functionalities or re-
sponsibilities in different components. [Bas98:c6;
Bus96:c6; Jal97 :c5; Pfl01:c5; Pre04:c9]

1.4.4. Encapsulation/information hiding
Encapsulation/information hiding means grouping
and packaging the elements and internal details of an
abstraction and making those details inaccessible.
[Bas98:c6; Bus96:c6; Jal97:c5; Pfl01:c5; Pre04:c9]

1.4.5. Separation of interface and implementation
Separating interface and implementation involves
defining a component by specifying a public inter-
face, known to the clients, separate from the details
of how the component is realized. [Bas98:c6;
Bos00:c10; Lis01:c1,c9]

1.4.6. Sufficiency, completeness and primitiveness
Achieving sufficiency, completeness, and primitive-
ness means ensuring that a software component cap-
tures all the important characteristics of an abstrac-
tion, and nothing more. [Bus96:c6; Lis01:c5]

Software Design

Software Design
Fundamentals

Key Issues in
Software Design

Software Structure
and Architecture

Software
Design Notations

Software Design
Strategies and

Methods

General design
concepts Concurrency

The context of
software design

Enabling techniques

The software
design process

Control and handling
of events

Architectural
structures and

viewpoints

Structural
descriptions
(static view)

General Strategies

Distribution of
components

Interaction and
presentation

Error and exception
handline and fault

tolerance

Data persistence

Design patterns
(microarchitectural

patterns)

Architectural styles
(macroarchitectural

patterns)

Families of programs
and frameworks

Behavior descriptions
(dynamic view)

Object-oriented
design

Function-oriented
(structured) design

Data-structrure
centered design

Software Design
Quality Analysis
and Evaluation

Quality attributes

Measures

Quality analysis and
evaluation techniques

Other methods

Figure 1 Breakdown of topics for the Software Design KA

Component-based
design

© IEEE – 2004 Version 3–3

2. Key Issues in Software Design
A number of key issues must be dealt with when designing
software. Some are quality concerns that all software must
address—for example, performance. Another important
issue is how to decompose, organize, and package software
components. This is so fundamental that all design approa-
ches must address it in one way or another (see topic 1.4
Enabling Techniques and sub-area 6 Software Design
Strategies and Mehtods). In contrast, other issues “deal with
some aspect of software’s behavior that is not in the applica-
tion domain, but which addresses some of the supporting
domains”. [Bos00] Such issues, which often cross-cut the
system’s functionality, have been referred to as aspects:
“[aspects] tend not to be units of software’s functional de-
composition, but rather to be properties that affect the per-
formance or semantics of the components in systemic
ways” (Kic97). A number of these key, cross-cutting issues
are the following (presented in alphabetical order):
2.1. Concurrency
How to decompose the software into processes, tasks and
threads and deal with related efficiency, atomicity, synchro-
nization, and scheduling issues. [Bos00:c5; Mar02:CSD;
Mey97:c30; Pre04:c9]
2.2. Control and Handling of Events
How to organize data and control flow, how to handle reac-
tive and temporal events through various mechanisms such
as implicit invocation and call-backs. [Bas98:c5;
Mey97:c32; Pfl01:c5]
2.3. Distribution of Components
How to distribute the software across the hardware, how
the components communicate, how middleware can be
used to deal with heterogeneous software. [Bas03:c16;
Bos00:c5; Bus96:c2 Mar94:DD; Mey97:c30; Pre04:c30]
2.4. Error and Exception Handling and Fault Tolerance
How to prevent and tolerate faults and deal with excep-
tional conditions. [Lis01:c4; Mey97:c12; Pfl01:c5]
2.5. Interaction and Presentation
How to structure and organize the interactions with users
and the presentation of information (for example, separa-
tion of presentation and business logic using the Model-
View-Controller approach). [Bas98:c6; Bos00:c5;
Bus96:c2; Lis01:c13; Mey97:c32] It is to be noted that this
topic is not about specifying user interface details, which is
the task of user interface design (a part of Software Ergo-
nomics); see Related Disciplines of Software Engineering.
2.6. Data Persistence
How long-lived data are to be handled. [Bos00:c5;
Mey97:c31]

3. Software Structure and Architecture
In its strict sense, a software architecture is “a description
of the subsystems and components of a software system
and the relationships between them”. (Bus96:c6) Architec-
ture thus attempts to define the internal structure—
according to the Oxford English Dictionary, “the way in
which something is constructed or organized”—of the
resulting software. During the mid-1990s, however, soft-
ware architecture started to emerge as a broader discipline
involving the study of software structures and architectures
in a more generic way [Sha96]. This gave rise to a number
of interesting ideas about software design at different levels
of abstraction. Some of these concepts can be useful during
the architectural design (for example, architectural style) of
specific software, as well as during its detailed design (for
example, lower-level design patterns). But they can also be
useful for designing generic systems, leading to the design
of families of programs (also known as product lines).
Interestingly, most of these concepts can be seen as at-
tempts to describe, and thus reuse, generic design knowl-
edge.
3.1. Architectural Structures and Viewpoints
Different high-level facets of a software design can and
should be described and documented. These facets are often
called views: “A view represents a partial aspect of a soft-
ware architecture that shows specific properties of a soft-
ware system” [Bus96:c6]. These distinct views pertain to
distinct issues associated with software design—for exam-
ple, the logical view (satisfying the functional require-
ments) vs. the process view (concurrency issues) vs. the
physical view (distribution issues) vs. the development
view (how the design is broken down into implementation
units). Other authors use different terminologies, like be-
havioral vs. functional vs. structural vs. data modeling
views. In summary, a software design is a multi-faceted
artifact produced by the design process and generally com-
posed of relatively independent and orthogonal views.
[Bas03:c2; Boo99:c31; Bud04:c5; Bus96:c6; IEEE1016-98;
IEEE1471-00]Architectural Styles (macroarchitectural pat-
terns)
An architectural style is “a set of constraints on an architec-
ture [that] defines a set or family of architectures that satis-
fies them” [Bas03:c2]. An architectural style can thus be
seen as a meta-model which can provide software’s high-
level organization (its macroarchitecture). Various authors
have identified a number of major architectural styles.
[Bas03:c5; Boo99:c28; Bos00:c6; Bus96:c1,c6; Pfl01:c5]
 General structure (for example, layers, pipes and fil-

ters, blackboard)
 Distributed systems (for example, client-server, three-

tiers, broker)
 Interactive systems (for example, Model-View-

Controller, Presentation-Abstraction-Control)

 3–4 © IEEE – 2004 Version

 Adaptable systems (for example, micro-kernel, reflec-
tion)

 Others (for example, batch, interpreters, process con-
trol, rule-based).

3.2. Design Patterns (microarchitectural patterns)
Succinctly described, a pattern is “a common solution to a
common problem in a given context”. (Jac99) While archi-
tectural styles can be viewed as patterns describing the
high-level organization of software (their macroarchitec-
ture), other design patterns can be used to describe details
at a lower, more local level (their microarchitecture).
[Bas98:c13; Boo99:c28; Bus96:c1; Mar02:DP]
 Creational patterns (for example, builder, factory,

prototype, and singleton)
 Structural patterns (for example, adapter, bridge, com-

posite, decorator, façade, flyweight, and proxy)
 Behavioral patterns (for example, command, inter-

preter, iterator, mediator, memento, observer, state,
strategy, template, visitor)

3.3. Families of Programs and Frameworks
One possible approach to allow the reuse of software de-
signs and components is to design families of software, also
known as software product lines. This can be done by iden-
tifying the commonalities among members of such families
and by using reusable and customizable components to
account for the variability among family members.
[Bos00:c7,c10; Bas98:c15; Pre04:c30]
In OO programming, a key related notion is that of the
framework: a partially complete software subsystem that
can be extended by appropriately instantiating specific
plug-ins (also known as hot spots). [Bos00:c11; Boo99:c28;
Bus96:c6]

4. Software Design Quality Analysis and
Evaluation

This section includes a number of quality and evaluation
topics that are specifically related to software design. Most
are covered in a general manner in the Software Quality KA.
4.1. Quality Attributes
Various attributes are generally considered important for
obtaining a software design of good quality—various “ili-
ties” (maintainability, portability, testability, traceability),
various “nesses” (correctness, robustness), including “fit-
ness of purpose”. [Bos00:c5; Bud04:c4; Bus96:c6;
ISO9126.1-01; ISO15026-98; Mar94:D; Mey97:c3;
Pfl01:c5] An interesting distinction is the one between
quality attributes discernable at run-time (performance,
security, availability, functionality, usability), those not
discernable at run-time (modifiability, portability, reusabil-
ity, integrability and testability), and those related to the
architecture’s intrinsic qualities (conceptual integrity, cor-
rectness and completeness, buildability). [Bas03:c4]

4.2. Quality Analysis and Evaluation Techniques
Various tools and techniques can help ensure a software
design’s quality.
 Software design reviews: informal or semiformal, often

group-based, techniques to verify and ensure the qual-
ity of design artifacts (for example, architecture re-
views [Bas03:c11], design reviews and inspections
[Bud04:c4; Fre83:VIII; IEEE1028-97; Jal97:c5,c7;
Lis01:c14; Pfl01:c5], scenario-based techniques
[Bas98:c9; Bos00:c5], requirements tracing
[Dor02:v1c4s2; Pfl01:c11])

 Static analysis: formal or semiformal static (non-
executable) analysis that can be used to evaluate a de-
sign (for example, fault-tree analysis or automated
cross-checking) [Jal97:c5; Pfl01:c5]

 Simulation and prototyping: dynamic techniques to
evaluate a design (for example, performance simula-
tion or feasibility prototype [Bas98:c10; Bos00:c5;
Bud04:c4; Pfl01:c5])

4.3. Measures
Measures can be used to assess or to quantitatively estimate
various aspects of a software design’s size, structure, or
quality. Most measures that have been proposed generally
depend on the approach used for producing the design.
These measures are classified in two broad categories:
 Function-oriented (structured) design measures: the

design’s structure, obtained mostly through functional
decomposition; generally represented as a structure
chart (sometimes called a hierarchical diagram) on
which various measures can be computed [Jal97:c5,c7,
Pre04:c15]

 Object-oriented design measures: the design’s overall
structure is often represented as a class diagram, on
which various measures can be computed. Measures on
the properties of each class’s internal content can also
be computed [Jal97:c6,c7; Pre04:c15]

5. Software Design Notations
Many notations and languages exist to represent software
design artifacts. Some are used mainly to describe a de-
sign’s structural organization, others to represent software
behavior. Certain notations are used mostly during architec-
tural design and others mainly during detailed design, al-
though some notations can be used in both steps. In addi-
tion, some notations are used mostly in the context of spe-
cific methods (see the Software Design Strategies and
Methods sub-area). Here, they are categorized into nota-
tions for describing the structural (static) view vs. the be-
havioral (dynamic) view.
5.1. Structural Descriptions (static view)
The following notations, mostly (but not always) graphical,
describe and represent the structural aspects of a software
design—that is, they describe the major components and
how they are interconnected (static view):

© IEEE – 2004 Version 3–5

 Architecture description languages (ADLs): textual,
often formal, languages used to describe a software ar-
chitecture in terms of components and connectors
[Bas03:c12]

 Class and object diagrams: used to represent a set of
classes (and objects) and their interrelationships
[Boo99:c8,c14; Jal97:c5,c6]

 Component diagrams: used to represent a set of com-
ponents (“physical and replaceable part[s] of a system
that [conform] to and [provide] the realization of a set
of interfaces” [Boo99]) and their interrelationships
[Boo99:c12,c31]

 Collaboration responsibilities cards (CRCs): used to
denote the names of components (class), their respon-
sibilities, and their collaborating components’ names
[Boo99:c4; Bus96]

 Deployment diagrams: used to represent a set of
(physical) nodes and their interrelationships, and, thus,
to model the physical aspects of a system [Boo99:c30]

 Entity-relationship diagrams (ERDs): used to represent
conceptual models of data stored in information sys-
tems [Bud04:c6; Dor02:v1c5; Mar02:DR]

 Interface description languages (IDLs): programming-
like languages used to define the interfaces (names and
types of exported operations) of software components
[Bas98:c8; Boo99:c11]

 Jackson structure diagrams: used to describe the data
structures in terms of sequence, selection, and iteration
[Bud04:c6; Mar02:DR]

 Structure charts: used to describe the calling structure
of programs (which module calls, and is called by,
which other module) [Bud04:c6; Jal97:c5; Mar02:DR;
Pre04:c10]

5.2. Behavioral Descriptions (dynamic view)
The following notations and languages, some graphical and
some textual, are used to describe the dynamic behavior of
software and components. Many of these notations are
useful mostly, but not exclusively, during detailed design.
 Activity diagrams: used to show the control flow from

activity (“ongoing non-atomic execution within a state
machine”) to activity [Boo99:c19]

 Collaboration diagrams: used to show the interactions
that occur among a group of objects, where the empha-
sis is on the objects, their links, and the messages they
exchange on these links [Boo99:c18]

 Data flow diagrams (DFDs): used to show data flow
among a set of processes [Bud04:c6; Mar02:DR;
Pre04:c8]

 Decision tables and diagrams: used to represent com-
plex combinations of conditions and actions
[Pre04:c11]

 Flowcharts and structured flowcharts: used to repre-
sent the flow of control and the associated actions to be
performed [Fre83:VII; Mar02:DR; Pre04:c11]

 Sequence diagrams: used to show the interactions
among a group of objects, with emphasis on the time-
ordering of messages [Boo99:c18]

 State transition and statechart diagrams: used to show
the control flow from state to state in a state machine
[Boo99:c24; Bud04:c6; Mar02:DR; Jal97:c7]

 Formal specification languages: textual languages that
use basic notions from mathematics (for example,
logic, set, sequence) to rigorously and abstractly define
software component interfaces and behavior, often in
terms of pre- and post-conditions [Bud04:c18;
Dor02:v1c6s5; Mey97:c11]

 Pseudo-code and program design languages (PDLs):
structured, programming-like languages used to de-
scribe, generally at the detailed design stage, the beha-
vior of a procedure or method [Bud04:c6; Fre83:VII;
Jal97:c7; Pre04:c8, c11]

6. Software Design Strategies and Methods
There exist various general strategies to help guide the
design process. [Bud04:c9, Mar02:D] In contrast with gen-
eral strategies, methods are more specific in that they gen-
erally suggest and provide a set of notations to be used with
the method, a description of the process to be used when
following the method and a set of guidelines in using the
method. [Bud04:c8] Such methods are useful as a means of
transferring knowledge and as a common framework for
teams of software engineers. [Bud03:c8] See also the Soft-
ware Engineering Tools and Methods KA.
6.1. General Strategies
Some often-cited examples of general strategies useful in
the design process are divide-and-conquer and stepwise
refinement [Bud04:c12; Fre83:V], top-down vs. bottom-up
strategies [Jal97:c5; Lis01:c13], data abstraction and infor-
mation hiding [Fre83:V], use of heuristics [Bud04:c8], use
of patterns and pattern languages [Bud04:c10; Bus96:c5],
use of an iterative and incremental approach. [Pfl01:c2]
6.2. Function-oriented (structured) Design
 [Bud04:c14; Dor02:v1c6s4; Fre83:V; Jal97:c5;
 Pre04:c9, c10]
This is one of the classical methods of software design,
where decomposition centers on identifying the major
software functions and then elaborating and refining them
in a top-down manner. Structured design is generally used
after structured analysis, thus producing, among other
things, data flow diagrams and associated process descrip-
tions. Researchers have proposed various strategies (for
example, transformation analysis, transaction analysis) and
heuristics (for example, fan-in/fan-out, scope of effect vs.
scope of control) to transform a DFD into a software archi-
tecture generally represented as a structure chart.

 3–6 © IEEE – 2004 Version

6.3. Object-oriented Design
 [Bud0:c16; Dor02:v1:c6s2,s3; Fre83:VI; Jal97:c6;
 Mar02:D; Pre04:c9]
Numerous software design methods based on objects have
been proposed. The field has evolved from the early object-
based design of the mid-1980s (noun = object; verb =
method; adjective = attribute) through OO design, where
inheritance and polymorphism play a key role, to the field
of component-based design, where meta-information can be
defined and accessed (through reflection, for example).
Although OO design’s roots stem from the concept of data
abstraction, responsibility-driven design has also been
proposed as an alternative approach to OO design.
6.4. Data-structure Centered Design
 [Bud04:c15; Fre83:III,VII; Mar02:D]
Data-structure-centered design (for example, Jackson,
Warnier-Orr) starts from the data structures a program
manipulates rather than from the function it performs. The

software engineer first describes the input and output data
structures (using Jackson’s structure diagrams?, for in-
stance) and then develops the program’s control structure
based on these data structure diagrams. Various heuristics
have been proposed to deal with special cases—for exam-
ple, when there is a mismatch between the input and output
structures.
6.5. Component-based Design (CBD)
A software component is an independent unit, having well-
defined interfaces and dependencies that can be composed
and deployed independently. Component-based design
addresses issues related to providing, developing, and inte-
grating such components in order to improve reuse.
[Bud04:c11]
6.6. Other Methods
Other interesting but less mainstream approaches also exist:
formal and rigorous methods [Bud04:c18; Dor02:c5; Fre83;
Mey97:c11; Pre04:c29] and transformational methods.
[Pfl98:c2]

© IEEE – 2004 Version 3–7

MATRIX OF TOPICS VS. REFERENCE MATERIAL

[B
as

03
]

{B
as

98
}

[B
oo

99
]

[B
os

00
]

[B
ud

03
]

[B
us

96
]

[D
or

02
]

[F
re

83
]

[I
E

E
E

10
16

-9
8]

[I
E

E
E

10
28

-9
7]

[I
E

E
E

14
71

-0
0]

[I
E

E
E

12
20

7.
0-

96
]

[I
SO

91
26

-0
1]

[I
SO

15
02

6-
98

]

[J
al

97
]

[L
is

01
]

[M
ar

02
]*

{M

ar
94

}

[M
ey

97
]

[P
fl0

1]

[P
re

04
]

[S
m

i9
3]

1. Software Design
Fundamentals

1.1 General Design
Concepts c1 *

1.2 The Context of
Software Design * c11s1 D c2s2 c2

1.3 The Software
Design Process

c2s1,
c2s4 c2 v1c4s2 2-22 *

* * c13s1,
c13s2 D c9

1.4 Enabling Tech-
niques {c6s1} c10s3 c6s3 *

c5s1,
c5s2,
c6s2

c1s1,c1s2,
c3s1-c3s3,

77-85,
c5s8,

125-128,
c9s1-c9s3

 c5s2,
c5s5 c9

2. Key Issues in
Software Design

2.1 Concurrency c5s4.1 CSD c30 c9
2.2 Control and Han-
dling of Events {c5s2} c32s4,

c32s5 c5s3

2.3 Distribution of
Components

c16s3,
c16s4

 c5s4.1 c2s3 {DD} c30 c30

2.4 Error and Excep-
tion Handling and
Fault Tolerance

 c4s3-c4s5 c12 c5s5

2.5 Interaction and
Presentation {c6s2} c5s4.1 c2s4 c13s3 c32s2

2.6 Data Persistence c5s4.1 c31

 * see the
next

section

 3–8 © IEEE – 2004 Version

[B
as

03
]

{B
as

98
}

[B
oo

99
]

[B
os

00
]

[B
ud

03
]

[B
us

96
]

[D
or

02
]

[F
re

83
]

[I
E

E
E

10
16

-9
8]

[I
E

E
E

10
28

-9
7]

[I
E

E
E

14
71

-0
0]

[I
E

E
E

12
20

7.
0-

96
]

[I
SO

91
26

-0
1]

[I
SO

15
02

6-
98

]

[J
al

97
]

[L
is

01
]

[M
ar

02
]*

{M

ar
94

}

[M
ey

97
]

[P
fl0

1]

[P
re

04
]

[S
m

i9
3]

3. Software Struc-
ture and Architec-
ture

3.1 Architectural
Structures and View-
points

c2s5 c31 c5 c6s1 *
*

3.2 Architectural
Styles c5s9 c28 c6s3.1

c1s1-
c1s3,
c6s2

 c5s3

3.3 Design patterns {c13s3
} c28 c1s1-

c1s3 DP

3.4 Families of Pro-
grams and Frame-
works

{c15s1,
c15s3} c28

c7s1,
c7s2,

c10s2-
c10s4,
c11s2,
c11s4

 c6s2 C30

4. Software Design
Quality Analysis and
Evaluation

4.1 Quality Attributes c4s2 c5s2.3 c4 c6s4
*

* {D} c3 c5s5

4.2 Quality Analysis
and Evaluation Tech-
niques

c11s3,
{c9s1,
c9s2,
c10s2,
c10s3}

c5s2.1,
c5s2.2,
c5s3,
c5s4

c4 v1c4s2 542-
576

*

 c5s5,
c7s3 c14s1

c5s6,
c5s7,
c11s5

4.3 Measures
c5s6,
c6s5,
c7s4

 c15

© IEEE – 2004 Version 3–9

[B
as

03
]

{B
as

98
}

[B
oo

99
]

[B
os

00
]

[B
ud

03
]

[B
us

96
]

[D
or

02
]

[F
re

83
]

[I
E

E
E

10
16

-9
8]

[I
E

E
E

10
28

-9
7]

[I
E

E
E

14
71

-0
0]

[I
E

E
E

12
20

7.
0-

96
]

[I
SO

91
26

-0
1]

[I
SO

15
02

6-
98

]

[J
al

97
]

[L
is

01
]

[M
ar

02
]*

{M

ar
94

}

[M
ey

97
]

[P
fl0

1]

[P
re

04
]

[S
m

i9
3]

5. Software Design
Notations

5.1 Structural De-
scriptions
(Static View)

{c8s4}
c12s1,
c12s2

c4, c8,
c11,
c12,
c14,
c30,
c31

 c6 429 c5s3,c
6s3 DR c10

5.2 Behavioral
Descriptions
(Dynamic View)

c18,
c19,
c24

 c6, c18 v1c5

485-
490,
506-
513

 c7s2 DR c11 c8, c11

6. Software Design
Strategies and
Methods

6.1 General Strategies
c8,

c10,
c12

c5s1-
c5s4

304-
320,
533-
539

 c5s1.4 c13s13 c2s2

6.2 Function-oriented
(structured) Design c14 v1c6s4 328-

352 c5s4 c9, c10

6.3 Object-oriented
Design c16

v1c6s2
,

v1c6s3

420-
436 c6s4 D c9

6.4 Data-structure
Centered Design C15

201-
210,
514-
532

 D

6.5 Component-based
Design (CBD) c11

6.6 Other Methods c18 181-
192

395-
407 c11 c2s2 C29

 3–10 © IEEE – 2004 Version

RECOMMENDED REFERENCES FOR SOFTWARE
DESIGN
[Bas98] L. Bass, P. Clements and R. Kazman, Software
Architecture in Practice: Addison-Wesley, 1998.
[Bas03] L. Bass, P. Clements and R. Kazman, Software
Architecture in Practice, Second ed: Addison-Wesley,
2003.
[Boo99] G. Booch, J. Rumbaugh and I. Jacobson, The
Unified Modeling Language User Guide, First ed: Addison-
Wesley, 1999.
[Bos00] J. Bosch, Design & Use of Software Architectures:
Adopting and Evolving a Product-line Approach, First ed:
ACM Press, 2000.
[Bud04] D. Budgen, Software Design, Second ed: Addison-
Wesley, 2004.
[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Som-
merlad and M. Stal, Pattern-oriented Software Architec-
ture: A System of Patterns, First ed: John Wiley & Sons,
1996.
[Dor02] M. Dorfman and R. H. Thayer, Eds., "Software
Engineering." (Vol. 1 & vol. 2), IEEE Computer Society
Press, 2002.
[Fre83] P. Freeman and A. I. Wasserman, Tutorial on Soft-
ware Design Techniques, Fourth ed: IEEE Computer Soci-
ety Press, 1983.
[IEEE610.12-90] IEEE Std 610.12-1990 (R2002), IEEE
Standard Glossary of Software Engineering Terminology:
IEEE, 1990.
[IEEE1016-98] IEEE Std 1016-1998, IEEE Recommended
Practice for Software Design Descriptions: IEEE, 1998.
[IEEE1028-97] IEEE Std 1028-1997 (R2002), IEEE Stan-
dard for Software Reviews: IEEE, 1997.
[IEEE1471-00] IEEE Std 1471-2000, IEEE Recommended
Practice for Architectural Descriptionos Software Intensive
Systems: Architecture Working Group of the Software
Engineering Standards Committee, 2000.

[IEEE12207.0-96] IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of Int.
Std. ISO/IEC 12207:95, Standard for Information Technol-
ogy-Software Life Cycle Processes, vol. IEEE, 1996.
[ISO9126-01] ISO/IEC 9126-1:2001, Software Engineer-
ing-Product Quality-Part 1: Quality Model: ISO and IEC,
2001.
[ISO15026-98] ISO/IEC 15026-1998, Information technol-
ogy -- System and software integrity levels: ISO and IEC,
1998.
[Jal97] P. Jalote, An Integrated Approach to Software En-
gineering, Second ed. New York: Springer-Verlag, 1997.
[Lis01] B. Liskov and J. Guttag, Program Development in
Java: Abstraction, Specification, and Object-Oriented
Design, First ed: Addison-Wesley, 2001.
[Mar94] J. J. Marciniak, Encyclopedia of Software Engi-
neering: J. Wiley & Sons, 1994.
 The references to the Encyclopedia are as dol-
lows :
 CBD = Componenent-based Design

D = Design
 DD = Design of the Distributed System
 DR = Design Representation
[Mar02] J. J. Marciniak, Encyclopedia of Software Engi-
neering, Second ed: J. Wiley & Sons, 2002.
[Mey97] B. Meyer, Object-Oriented Software Construc-
tion, Second ed: Prentice-Hall, 1997.
[Pfl01] S. L. Pfleeger, Software Engineering: Theory and
Practice, Second ed: Prentice-Hall, 2001.
[Pre04] R. S. Pressman, Software Engineering: A Practi-
tioner's Approach, Sixth ed: McGraw-Hill, 2004.
[Smi93] G. Smith and G. Browne, "Conceptual foundations
of design problem-solving," IEEE Transactions on Systems,
Man and Cybernetics, vol. 23, iss. 5, 1209-1219, Sep-Oct,
1993.

© IEEE – 2004 Version 3–11

APPENDIX A. LIST OF FURTHER READINGS
(Boo94a) G. Booch, Object Oriented Analysis and Design
with Applications, Second ed: The Benjamin/Cummings
Publishing Company, Inc., 1994.
(Coa91) P. Coad and E. Yourdon, Object-Oriented Design:
Yourdon Press, 1991.
(Cro84) N. Cross, Developments in Design Methodology:
John Wiley & Sons, 1984.
(DSo99) D. F. D'Souza and A. C. Wills, Objects, Compo-
nents, and Frameworks with UML - The Catalysis Ap-
proach: Addison-Wesley, 1999.
(Dem99) T. DeMarco, "The Paradox of Software Architec-
ture and Design," Stevens Prize Lecture, August, 1999
(Fen98) N. E. Fenton and S. L. Pfleeger, Software Metrics:
A Rigorous & Practical Approach, Second ed: International
Thomson Computer Press, 1998.
(Fow99) M. Fowler, Refactoring: Improving the Design of
Existing Code: Addison-Wesley, 1999.
(Fow03) M. Fowler, Patterns of Enterprise Application
Architecture, First ed. Boston, MA: Addison-Wesley, 2003.
(Gam95) E. Gamma, R. Helm, R. Johnson and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software: Addison-Wesley, 1995.
(Hut94) A. T. F. Hutt, Object Analysis and Design - Com-
parison of Methods. Object Analysis and Design - Descrip-
tion of Methods: John Wiley & Sons, 1994.
(Jac99) I. Jacobson, G. Booch and J. Rumbaugh, The Uni-
fied Software Development Process: Addison-Wesley,
1999.
(Kic97) G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier and J. Irwin, "Aspect-oriented
programming," presented at ECOOP '97 - Object-Oriented

Programming, 1997
(Kru95) P. B. Kruchten, "The 4+1 view model of architec-
ture," IEEE Software, vol. 12, iss. 6, 42-50, 1995
(Lar98) C. Larman, Applying UML and Patterns: An intro-
duction to Object-Oriented Analysis and Design: Prentice-
Hall, 1998.
(McC93) S. McConnell, Code Complete: A Practical
Handbook of Software Construction: Microsoft Press,
1993.
(Pag00) M. Page-Jones, Fundamentals of Object-Oriented
Design in UML: Addison-Wesley, 2000.
(Pet92) H. Petroski, To Engineer is Human: The role of
failure in successful design: Vintage Books, 1992.
(Pre95) W. Pree, Design Patterns for Object-Oriented
Software Development: Addison-Wesley and ACM Press,
1995.
(Rie96) A. J. Riel, Object-Oriented Design Heuristics:
Addison-Wesley, 1996.
(Rum91) J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy
and W. Lorensen, Object-Oriented Modeling and Design:
Prentice-Hall, 1991.
(Sha96) M. Shaw and D. Garlan, Software architecture:
Perspectives on an emerging discipline: Prentice-Hall,
1996.
(Som05) I. Sommerville, Software Engineering, Sixth ed:
Addison-Wesley, 2001.
(Wie98) R. Wieringa, "A Survey of Structured and Object:
Oriented Software Specification Methods and Techniques,"
ACM Computing Surveys, vol. 30, iss. 4, 459-527, 1998
(Wir90) R. Wirfs-Brock, B. Wilkerson and L. Wiener,
Designing Object-Oriented Software: Prentice-Hall, 1990.

 3–12 © IEEE – 2004 Version

APPENDIX B. LIST OF STANDARDS
(IEEE610.12-90) IEEE Std 610.12-1990 (R2002), IEEE
Standard Glossary of Software Engineering Terminology:
IEEE, 1990.
(IEEE1016-98) IEEE Std 1016-1998, IEEE Recommended
Practice for Software Design Descriptions: IEEE, 1998.
(IEEE1028-97) IEEE Std 1028-1997 (R2002), IEEE Stan-
dard for Software Reviews: IEEE, 1997.
(IEEE1471-00) IEEE Std 1471-2000, IEEE Recommended

Practice for Architectural Descriptionos Software Intensive
Systems: Architecture Working Group of the Software
Engineering Standards Committee, 2000.
(IEEE12207.0-96) IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of Int.
Std. ISO/IEC 12207:95, Standard for Information Technol-
ogy-Software Life Cycle Processes, vol. IEEE, 1996.
(ISO9126-01) ISO/IEC 9126-1:2001, Software Engineer-
ing-Product Quality-Part 1: Quality Model: ISO and IEC,
2001.
(ISO15026-98) ISO/IEC 15026-1998, Information technol-
ogy -- System and software integrity levels: ISO and IEC,
1998.

© IEEE – 2004 Version 4–1

CHAPTER 4
SOFTWARE CONSTRUCTION

ACRONYMS

OMG Object Management Group
UML Unified Modeling Language

INTRODUCTION

The term software construction refers to the detailed crea-
tion of working, meaningful software through a combina-
tion of coding, verification, unit testing, integration testing,
and debugging.
The Software Construction Knowledge Area is linked to all
the other KAs, most strongly to Software Design and Soft-
ware Testing. This is because the software construction
process itself involves significant software design and test
activity. It also uses the output of design and provides one
of the inputs to testing, both design and testing being the
activities, not the KAs in this case. Detailed boundaries
between design, construction, and testing (if any) will vary
depending upon the software life cycle processes that are
used in a project.
Although some detailed design may be performed prior to
construction, much design work is performed within the
construction activity itself. Thus the Software Construction
KA is closely linked to the Software Design KA.
Throughout construction, software engineers both unit test
and integration test their work. Thus, the Software Con-
struction KA is closely linked to the Software Testing KA
as well.
Software construction typically produces the highest vol-
ume of configuration items that need to be managed in a
software project (source files, content, test cases, and so
on). Thus, the Software Construction KA is also closely
linked to the Software Configuration Management KA.
Since software construction relies heavily on tools and
methods, and is probably the most tool-intensive of the
KAs, it is linked to the Software Engineering Tools and
Methods KA.
While software quality is important in all the KAs, code is
the ultimate deliverable of a software project, and thus
Software Quality is also closely linked to Software Con-
struction.
Among the Related Disciplines of Software Engineering,
the Software Construction KA is most akin to computer
science in its use of knowledge of algorithms and of de-
tailed coding practices, both of which are often considered
to belong to the computer science domain. It is also related

to project management, insofar as the management of con-
struction can present considerable challenges.

BREAKDOWN OF TOPICS FOR SOFTWARE CONSTRUCTION

The breakdown of the Software Construction KA is pre-
sented below, together with brief descriptions of the major
topics associated with it. Appropriate references are also
given for each of the topics. Figure 1 gives a graphical
representation of the top-level decomposition of the break-
down for this KA.

1. Software Construction Fundamentals

The fundamentals of software construction include
 Minimizing complexity
 Anticipating change
 Constructing for verification
 Standards in construction

The first three concepts apply to design as well as to con-
struction. The following sections define these concepts and
describe how they apply to construction.
1.1. Minimizing Complexity [Bec99; Ben00; Hun00;

Ker99; Mag93; McC04]
A major factor in how people convey intent to computers is
the severely limited ability of people to hold complex struc-
tures and information in their working memories, especially
over long periods of time. This leads to one of the strongest
drivers in software construction: minimizing complexity.
The need to reduce complexity applies to essentially every
aspect of software construction, and is particularly critical
to the process of verification and testing of software con-
structions.
In software construction, reduced complexity is achieved
through emphasizing the creation of code that is simple and
readable rather than clever.
Minimizing complexity is accomplished through making
use of standards, which is discussed in topic 1.4 Standards
in Construction, and through numerous specific techniques
which are summarized in topic 3.3 Coding. It is also sup-
ported by the construction-focused quality techniques
summarized in topic 3.5 Construction Quality.
1.2. Anticipating Change

 [Ben00; Ker99; McC04]
Most software will change over time, and the anticipation
of change drives many aspects of software construction.
Software is unavoidably part of changing external envi-

 4–2 © IEEE – 2004 Version

ronments, and changes in those outside environments affect
software in diverse ways.
Anticipating change is supported by many specific tech-
niques summarized in topic 3.3 Coding.
1.3. Constructing for Verification

 [Ben00; Hun00; Ker99; Mag93; McC04]
Constructing for verification means building software in
such a way that faults can be ferreted out readily by the
software engineers writing the software, as well as during
independent testing and operational activities. Specific
techniques which support constructing for verification
include following coding standards to support code re-
views, unit testing, organizing code to support automated
testing, and restricted use of complex or hard-to-understand
language structures, among others.
1.4. Standards in Construction

 [IEEE12207-95; McC04]
Standards which directly affect construction issues include
 programming languages (for example, language stan-

dards for languages like Java and C++)
 communication methods (for example, standards for

document formats and contents)
 platforms (for example, programmer interface standards

for operating system calls)
 tools (for example, diagrammatic standards for nota-

tions like UML (Unified Modeling Language))
Use of external standards. Construction depends on the use
of external standards for construction languages, construc-
tion tools, technical interfaces, and interactions between
Software Construction and other KAs. Standards come
from numerous sources, including hardware and software
interface specifications such as the Object Management
Group (OMG) and international organizations such as the
IEEE or ISO.
Use of internal standards. Standards may also be created
on an organizational basis at the corporate level or for use
on specific projects. These standards support coordination
of group activities, minimizing complexity, anticipating
change, and constructing for verification.

2. Managing Construction

2.1. Construction Models [Bec99; McC04]
Numerous models have been created to develop software,
some of which emphasize construction more than others.
Some models are more linear from the construction point of
view, such as the waterfall and staged delivery life cycle
models. These models treat construction as an activity
which occurs only after significant prerequisite work has
been completed—including detailed requirements work,
(the above lines need to be brought down below the figure)

extensive design work, and detailed planning. The more
linear approaches tend to emphasize the activities that pre-
cede construction (requirements and design), and tend to
create more distinct separations between the activities. In
these models, the main emphasis of construction may be
coding.
Other models are more iterative, such as evolutionary pro-
totyping, extreme programming, and scrum. These ap-
proaches tend to treat construction as an activity which
occurs concurrently with other software development ac-
tivities, including requirements, design, and planning, or

Minimizing Complexity

Software Construction

Software
Construction

Fundamentals

Managing
Construction

Constructing for
Verification

Anticipating Change

Standards in
Construction

Coding

Practical
Considerations

Construction Quality

Construction Testing

Integration

Construction Models

Construction
Measurement

Construction Planning

Construction design

Reuse

Construction Languages

Figure 1. Breakdown of topics for the Software Construction KA.

© IEEE – 2004 Version 4–3

overlaps them. These approaches tend to mix design, cod-
ing, and testing activities, and they often treat the combina-
tion of activities as construction.
Consequently, what is considered to be “construction”
depends to some degree on the life cycle model used.
2.2. Construction Planning
 [Bec99; McC04]
The choice of construction method is a key aspect of the
construction planning activity. The choice of construction
method affects the extent to which construction prerequi-
sites are performed, the order in which they are performed,
and the degree to which they are expected to be completed
before construction work begins.
The approach to construction affects the project’s ability to
reduce complexity, anticipate change, and construct for
verification. Each of these objectives may also be addressed
at the process, requirements, and design levels—but they
will also be influenced by the choice of construction
method.
Construction planning also defines the order in which com-
ponents are created and integrated, the software quality
management processes, the allocation of task assignments
to specific software engineers, and the other tasks, accord-
ing to the chosen method.
2.3. Construction Measurement
 [McC04]
Numerous construction activities and artifacts can be meas-
ured, including code developed, code modified, code re-
used, code destroyed, code complexity, code inspection
statistics, fault-fix and fault-find rates, effort, and schedul-
ing. These measurements can be useful for purposes of
managing construction, ensuring quality during construc-
tion, improving the construction process, as well as for
other reasons. See the Software Engineering Process KA
for more on measurements.

3. Practical considerations

Construction is an activity in which the software has to
come to terms with arbitrary and chaotic real-world con-
straints, and to do so exactly. Due to its proximity to real-
world constraints, construction is more driven by practical
considerations than some other KAs, and software engi-
neering is perhaps most craft-like in the construction area.
3.1. Construction Design
 [Bec99; Ben00; Hun00; IEEE12207-95; Mag93;
 McC04]
Some projects allocate more design activity to construction;
others to a phase explicitly focused on design. Regardless
of the exact allocation, some detailed design work will
occur at the construction level, and that design work tends
to be dictated by immovable constraints imposed by the
real-world problem that is being addressed by the software.

Just as construction workers building a physical structure
must adapt by making small-scale modifications to account
for unanticipated gaps in the builder’s plans, software con-
struction workers must make modifications on a smaller or
larger scale to flesh out details of the software design dur-
ing construction.
The details of the design activity at the construction level
are essentially the same as described in the Software De-
sign KA, but they are applied on a smaller scale.
3.2. Construction Languages
 [Hun00; McC04]
Construction languages include all forms of communica-
tion by which a human can specify an executable problem
solution to a computer.
The simplest type of construction language is a configura-
tion language, in which software engineers choose from a
limited set of predefined options to create new or custom
software installations. The text-based configuration files
used in both the Windows and Unix operating systems are
examples of this, and the menu style selection lists of some
program generators constitute another.
Toolkit languages are used to build applications out of
toolkits (integrated sets of application-specific reusable
parts), and are more complex than configuration languages.
Toolkit languages may be explicitly defined as application
programming languages (for example, scripts), or may
simply be implied by the set of interfaces of a toolkit.
Programming languages are the most flexible type of con-
struction languages. They also contain the least amount of
information about specific application areas and develop-
ment processes, and so require the most training and skill to
use effectively.
There are three general kinds of notation used for pro-
gramming languages, namely:
 Linguistic
 Formal
 Visual

Linguistic notations are distinguished in particular by the
use of word-like strings of text to represent complex soft-
ware constructions, and the combination of such word-like
strings into patterns which have a sentence-like syntax.
Properly used, each such string should have a strong se-
mantic connotation providing an immediate intuitive under-
standing of what will happen when the underlying software
construction is executed.
Formal notations rely less on intuitive, everyday meanings
of words and text strings, and more on definitions backed
up by precise, unambiguous, and formal (or mathematical)
definitions. Formal construction notations and formal
methods are at the heart of most forms of system program-
ming, where accuracy, time behavior, and testability are
more important than ease of mapping into natural language.
Formal constructions also use precisely defined ways of

 4–4 © IEEE – 2004 Version

combining symbols which avoid the ambiguity of many
natural language constructions.
Visual notations rely much less on the text-oriented nota-
tions of both linguistic and formal construction, and instead
rely on direct visual interpretation and placement of visual
entities which represent the underlying software. Visual
construction tends to be somewhat limited by the difficulty
of making “complex” statements using only movement of
visual entities on a display. However, it can also be a pow-
erful tool in cases where the primary programming task is
simply to build and “adjust” a visual interface to a program,
the detailed behavior of which had been defined earlier.
3.3. Coding
 [Ben00; IEEE12207-95; McC04]
The following considerations apply to the software con-
struction coding activity:
 Techniques for creating understandable source code,

including naming and source code layout
 Use of classes, enumerated types, variables, named

constants, and other similar entities
 Use of control structures
 Handling of error conditions—both planned errors and

exceptions (input of bad data, for example)
 Prevention of code-level security breaches (buffer over-

runs or array index overflows, for example)
 Resource usage via use of exclusion mechanisms and

discipline in accessing serially reusable resources (in-
cluding threads or database locks)
 Source code organization (into statements, routines,

classes, packages, or other structures)
 Code documentation
 Code tuning

3.4. Construction Testing
 [Bec99; Hun00; Mag93; McC04]
Construction involves two forms of testing, which are often
performed by the software engineer who wrote the code:
 Unit testing
 Integration testing

The purpose of construction testing is to reduce the gap
between the time at which faults are inserted into the code
and the time those faults are detected. In some cases, con-
struction testing is performed after code has been written.
In other cases, test cases may be created before code is
written.
Construction testing typically involves a subset of types of
testing, which are described in the Software Testing KA.
For instance, construction testing does not typically include
system testing, alpha testing, beta testing, stress testing,
configuration testing, usability testing, or other, more spe-
cialized kinds of testing.
Two standards have been published on the topic: IEEE Std
829-1998, IEEE Standard for Software Test Documentation

and IEEE Std 1008-1987, IEEE Standard for Software Unit
Testing.
See also the corresponding sub-topics in the Software Test-
ing KA: 2.1.1 Unit Testing and 2.1.2 Integration Testing
for more specialized reference material.

3.5. Reuse
 [IEEE1517-99; Som05].
As stated in the introduction of (IEEE1517-99):
 “Implementing software reuse entails more than creating
and using libraries of assets. It requires formalizing the
practice of reuse by integrating reuse processes and activi-
ties into the software life cycle.” However, reuse is impor-
tant enough in software construction that it is included here
as a topic.
The tasks related to reuse in software construction during
coding and testing are:
 the selection of the reusable units, databases, test pro-

cedures, or test data
 the evaluation of code or test reusability
 the reporting of reuse information on new code, test

procedures, or test data.
3.6. Construction Quality
 [Bec99; Hun00; IEEE12207-95; Mag93;
 McC04]
Numerous techniques exist to ensure the quality of code as
it is constructed. The primary techniques used for construc-
tion include:
 Unit testing and integration testing (as mentioned in

topic 3.4 Construction Testing)
 Test-first development (see also the Software Testing

KA, topic 2.2 Objectives of Testing)
 Code stepping
 Use of assertions
 Debugging
 Technical reviews (see also the Software Quality KA,

sub-topic 3.3 Technical Reviews)
 Static analysis (IEEE1028) (see also the Software Qual-

ity KA, topic 3.3 Reviews and Audits)
The specific technique or techniques selected depend on the
nature of the software being constructed, as well as on the
skills set of the software engineers performing the construc-
tion.
Construction quality activities are differentiated from other
quality activities by their focus. Construction quality activi-
ties focus on code and on artifacts that are closely related to
code: small-scale designs—as opposed to other artifacts
which are less directly connected to the code, such as re-
quirements, high-level designs, and plans.

© IEEE – 2004 Version 4–5

3.7. Integration
 [Bec99; IEEE12207-95; McC04]
A key activity during construction is the integration of
separately constructed routines, classes, components, and
subsystems. In addition, a particular software system may
need to be integrated with other software or hardware sys-
tems.

Concerns related to construction integration include plan-
ning the sequence in which components will be integrated,
creating scaffolding to support interim versions of the soft-
ware, determining the degree of testing and quality work
performed on components before they are integrated, and
determining points in the project at which interim versions
of the software are tested.

 4–6 © IEEE – 2004 Version

Matrix of Topics vs. Reference Material

[B

ec
99

]

[B
en

00
]

[H
un

00
]

[I
E

E
E

15

17
]

[I
E

E
E

12

20
7.

0]

[K
er

99
]

[M
ag

93
]

[M
cc

04
]

[S
om

05
]

1. Software Construction
 Fundamentals

1.1 Minimizing Complexity c17 c2, c3 c7, c8

 c2, c3 c6

c2, c3,
c7-c9,
c24,
c27,
c28,
c31,

c32, c34

1.2 Anticipating Change c11,
c13, c14

 c2, c9

c3-c5,
c24,
c31,

c32, c34

1.3 Constructing for Veri-
fication c4 c21, c23,

c34, c43

 c1, c5,

c6
c2, c3, c5,

c7

c8,
c20-c23,
c31, c34

1.4 Standards in Construc-
tion X c4

2. Managing Construc-
tion

2.1 Construction Modals c10 c2, c3,
c27, c29

2.2 Construction Planning c12,
c15, c21

c3, c4,
c21,

c27-c29

2.3 Construction Meas-
urement c25, c28

3. Practical Considera-
tions

3.1 Construction Design c17 c8-c10,
p175-6 c33 X c6 c3, c5,

c24

3.2 Construction Lan-
guages c12, c14-

c20
 c4

3.3 Coding c6-c10 X c5-c19,
c25-c26

3.4 Construction Testing c18 c34, c43 X c4 c22, c23
3.5 Reuse X c14

3.6 Construction Quality c18 c18 X c4, c6, c7 c8,
c20-c25

3.7 Integration c16 X c29

© IEEE – 2004 Version 4–7

RECOMMENDED REFERENCES FOR SOFTWARE CON-
STRUCTION

[Bec99] K. Beck, "Extreme Programming Explained:
Embrace Change," Addison-Wesley, 1999, Chap. 10, 12,
15, 16-18, 21.
[Ben00a] J. Bentley, "Programming Pearls," Second ed:
Addison-Wesley, 2000, Chap. 2-4, 6-11, 13, 14, pp. 175-
176.
[Hun00] A. Hunt and D. Thomas, "The Pragmatic Pro-
grammer," Addison-Wesley, 2000, Chap. 7, 8 12, 14-21,
23, 33, 34, 36-40, 42, 43.
[IEEE1517-99] IEEE Std 1517-1999, IEEE Standard for
Information Technology-Software Life Cycle Processes-
Reuse Processes: IEEE, 1999.
[IEEE12207.0-96] IEEE/EIA 12207.0-

1996//ISO/IEC12207:1995, Industry Implementation of
Int. Std. ISO/IEC 12207:95, Standard for Information
Technology-Software Life Cycle Processes, vol. IEEE,
1996.
[Ker99a] B. W. Kernighan and R. Pike, "The Practice of
Programming," Addison-Wesley, 1999, Chap. 2, 3, 5, 6,
9.
[Mag93] S. Maguire, "Writing Solid Code: Microsoft's
Techniques for Developing Bug-Free C Software," Mi-
crosoft Press, 1993, Chap. 2-7.
[McC04] S. McConnell, Code Complete: A Practical
Handbook of Software Construction, Microsoft Press, 2nd
edition, 2004.
[Som05] I. Sommerville, "Software Engineering," Sev-
enth ed: Addison-Wesley, 2005.

 4–8 © IEEE – 2004 Version

APPENDIX A. LIST OF FURTHER READINGS

(Bar98) T. T. Barker, Writing Software Documentation: A
Task-Oriented Approach: Allyn & Bacon, 1998.
(Bec02) K. Beck, "Test-Driven Development: By Exam-
ple," Addison-Wesley, 2002.
(Fow99) M. Fowler and al, Refactoring: Improving the
Design of Existing Code: Addison-Wesley, 1999.
(How02) M. Howard and D. C. Leblanc, Writing Secure

Code: Microsoft Press, 2002.
(Hum97b) W. S. Humphrey, Introduction to the Personal
Software Process: Addison-Wesley, 1997.
(Mey97) B. Meyer, "Object-Oriented Software Construc-
tion," Second ed: Prentice-Hall, 1997, Chap. 6, 10, 11.
(Set96) R. Sethi, "Programming Languages: Concepts &
Constructs," Second ed: Addison-Wesley, 1996, Parts II -
V.

© IEEE – 2004 Version 4–9

APPENDIX B. LIST OF STANDARDS

(IEEE829-98) IEEE Std 829-1998, IEEE Standard for
Software Test Documentation: IEEE, 1998.
(IEEE1008-87) IEEE Std 1008-1987 (R2003), IEEE
Standard for Software Unit Testing: IEEE, 1987.
(IEEE1028-97) IEEE Std 1028-1997 (R2002), IEEE
Standard for Software Reviews: IEEE, 1997.

(IEEE1517-99) IEEE Std 1517-1999, IEEE Standard for
Information Technology-Software Life Cycle Processes-
Reuse Processes: IEEE, 1999.
(IEEE12207.0-96) IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of
Int. Std. ISO/IEC 12207:95, Standard for Information
Technology-Software Life Cycle Processes, vol. IEEE,
1996.

 4–10 © IEEE – 2004 Version

© IEEE – 2004 Version 5–1

CHAPTER 5
SOFTWARE TESTING

ACRONYM

SRET Software Reliability Engineered Testing

INTRODUCTION

Testing is an activity performed for evaluating product
quality, and for improving it, by identifying defects and
problems.
Software testing consists of the dynamic verification of the
behavior of a program on a finite set of test cases, suitably
selected from the usually infinite executions domain,
against the expected behavior.
In the above definition, italicized words correspond to key
issues in identifying the Knowledge Area of Software
Testing. In particular:
 Dynamic: This term means that testing always implies

executing the program on (valued) inputs. To be
precise, the input value alone is not always sufficient to
determine a test, since a complex, non deterministic
system might react to the same input with different
behaviors, depending on the system state. In this KA,
though, the term “input” will be maintained, with the
implied convention that its meaning also includes a
specified input state, in those cases in which it is
needed. Different from testing, and complementary to
it, are static techniques, as described in the Software
Quality KA

 Finite: Even in simple programs, so many test cases
are theoretically possible that exhaustive testing could
require months or years to execute. This is why in
practice the whole test set can generally be considered
infinite. Testing always implies a trade-off between
limited resources and schedules, and inherently
unlimited test requirements

 Selected: The many proposed test techniques differ
essentially in how they select the test set, and software
engineers must be aware that different selection criteria
may yield vastly different degrees of effectiveness.
How to identify the most suitable selection criterion
under given conditions is a very complex problem; in
practice, risk analysis techniques and test engineering
expertise are applied

 Expected: It must be possible, although not always
easy, to decide whether the observed outcomes of
program execution are acceptable or not, otherwise the
testing effort would be useless. The observed behavior
may be checked against user expectations (commonly
referred to as testing for validation), against a
specification (testing for verification), or, finally,
against the anticipated behavior from implicit

requirements or reasonable expectations. See, in the
Software Requirements KA, topic 6.4 Acceptance
Tests

The view of software testing has evolved towards a more
constructive one. Testing is no longer seen as an activity
which starts only after the coding phase is complete, with
the limited purpose of detecting failures. Software testing is
now seen as an activity which should encompass the whole
development and maintenance process, and is itself an
important part of the actual product construction. Indeed,
planning for testing should start with the early stages of the
requirement process, and test plans and procedures must be
systematically and continuously developed, and possibly
refined, as development proceeds. These test planning and
designing activities themselves constitute useful input for
designers in highlighting potential weaknesses (like design
oversights or contradictions, and omissions or ambiguities
in the documentation).
It is currently considered that the right attitude towards
quality is one of prevention: it is obviously much better to
avoid problems than to correct them. Testing must be seen,
then, primarily as a means for checking not only whether
the prevention has been effective, but also for identifying
faults in those cases where, for some reason, it has not been
effective. It is perhaps obvious, but worth recognizing, that,
even after successful completion of an extensive testing
campaign, the software could still contain faults. The
remedy for software failures experienced after delivery is
provided by corrective maintenance actions. Software
maintenance topics are covered in the Software
Maintenance KA.
In the Software Quality KA (See topic 3.3 Software Quality
Management techniques), software quality management
techniques are notably categorized into: static techniques
(no code execution), and dynamic techniques (code
execution). Both categories are useful. This knowledge area
focuses on dynamic techniques.
Software testing is also related to software construction
(see topic 3.4 Construction Testing in that KA). Unit and
integration testing are intimately related to software
construction, if not part of it.

BREAKDOWN OF TOPICS

The Software Testing KA breakdown of topics is shown in
Figure 1.
The first sub-area describes Software Testing
Fundamentals. It covers the basic definitions in the field of
software testing, the basic terminology and key issues, and
its relationship with other activities.
The second sub-area, Test Levels, consists of two
(orthogonal) topics: 2.1 lists the levels in which the testing

 5–2 © IEEE – 2004 Version

of large software is traditionally subdivided; and 2.2
considers testing for specific conditions or properties, and
is referred to as objectives of testing. Not all types of testing
apply to every software product, nor has every possible
type been listed.
The test target and test objective together determine how
the test set is identified, both with regard to its consistency–
how much testing is enough for achieving the stated
objective–and its composition–which test cases should be
selected for achieving the stated objective (although usually
the “for achieving the stated objective” part is left implicit
and only the first part of the two italicized questions above

is posed). Criteria for addressing the first question are
referred to as test adequacy criteria, while those addressing
the second question are the test selection criteria.
Several Test Techniques have been developed in the past
few decades, and new ones are still being proposed.
Generally accepted techniques are covered in sub-area 3.
Test-related Measures are dealt with in sub-area 4.
Finally, issues relative to Test Process are covered in sub-
area 5.

Figure 1 Breakdown of topics for the Software Testing KA.

1. Software Testing Fundamentals

1.1. Testing-related terminology
1.1.1. Definitions of testing and related terminology

[Bei90:c1; Jor02:c2; Lyu96:c2s2.2] (IEEE610.12-
90)

A comprehensive introduction to the Software Testing KA
is provided in the recommended references.
1.1.2. Faults vs. Failures
 [Jor02:c2; Lyu96:c2s2.2; Per95:c1; Pfl01:c8]
 (IEEE610.12-90; IEEE982.1-88)
Many terms are used in the software engineering literature
to describe a malfunction, notably fault, failure, error, and

several others. This terminology is precisely defined in
IEEE Standard 610.12-1990, Standard Glossary of
Software Engineering Terminology (IEEE610-90), and is
also discussed in the Software Quality KA. It is essential to
clearly distinguish between the cause of a malfunction, for
which the term fault or defect will be used here, and an
undesired effect observed in the system’s delivered service,
which will be called a failure. Testing can reveal failures,
but it is the faults that can and must be removed.
However, it should be recognized that the cause of a failure
cannot always be unequivocally identified. No theoretical
criteria exist to definitively determine what fault caused the
observed failure. It might be said that it was the fault that
had to be modified to remove the problem, but other
modifications could have worked just as well. To avoid

Software Testing

Software Testing
Fundamentals Test Levels Test

Techniques
Test Related

Measures Test Process

 Testing-Related
Terminology

Keys Issues

Relationships of
Testing to Other

Activities

The Target of the
Test

Objectives of
Testing

Based on Tester's
Intuition and Experience

Specification-based

Evaluation of the
Program Under Test

Evaluation of the
Tests Performed

Practical
Considerations

Test Activities

Code-based

Usage-based

Fault-based

Based on Nature
of Application

Selecting and
Combining Techniques

© IEEE – 2004 Version 5–3

ambiguity, some authors prefer to speak of failure-causing
inputs (Fra98) instead of faults, that is, those sets of inputs
that cause a failure to appear.
1.2. Key issues
1.2.1. Test selection criteria/Test adequacy criteria (or

stopping rules)
 [Pfl01:c8s7.3; Zhu97:s1.1] (Wey83; Wey91; Zhu97)
A test selection criterion is a means of deciding what a
suitable set of test cases should be. A selection criterion can
be used for selecting the test cases, or for checking whether
or not a selected test suite is adequate, that is, to decide
whether or not the testing can be stopped. See also the sub-
topic Termination, under topic 5.1 Management concerns.
1.2.2. Testing effectiveness/Objectives for testing

[Bei90:c1s1.4; Per95:c21] (Fra98)
Testing is the observation of a sample of program
executions. Sample selection can be guided by different
objectives: it is only in light of the objective pursued that
the effectiveness of the test set can be evaluated.
1.2.3. Testing for defect identification
 [Bei90:c1; Kan99:c1]
In testing for defect identification, a successful test is one
which causes the system to fail. This is quite different from
testing to demonstrate that the software meets its
specifications, or other desired properties, in which case
testing is successful if no (significant) failures are observed.
1.2.4. The oracle problem
 [Bei90:c1] (Ber96, Wey83)
An oracle is any (human or mechanical) agent which
decides whether or not a program behaved correctly in a
given test, and accordingly produces a verdict of “pass” or
“fail”. There exist many different kinds of oracles, and
oracle automation can be very difficult and expensive.
1.2.5. Theoretical and practical limitations of testing

[Kan99:c2] (How76)
Testing theory warns against ascribing an unjustified level
of confidence to series of passed tests. Unfortunately, most
established results of testing theory are negative ones, in
that they state what testing can never achieve as opposed to
what it actually achieved. The most famous quotation in
this regard is the Dijkstra aphorism that “program testing
can be used to show the presence of bugs, but never to
show their absence.” The obvious reason is that complete
testing is not feasible in real software. Because of this,
testing must be driven based on risk, and can be seen as a
risk management strategy.
1.2.6. The problem of infeasible paths
 [Bei90:c3]
Infeasible paths, the control flow paths that cannot be
exercised by any input data, are a significant problem in
path-oriented testing, and particularly in the automated
derivation of test inputs for code-based testing techniques.

1.2.7. Testability
 [Bei90:c3,c13] (Bac90; Ber96a; Voa95)
The term “software testability” has two related, but
different, meanings: on the one hand, it refers to the degree
to which it is easy for a software to fulfill a given test
coverage criterion, as in (Bac90); on the other hand, it is
defined as the likelihood, possibly measured statistically,
that the software will expose a failure under testing, if it is
faulty, as in (Voa95, Ber96a). Both meanings are
important.
1.3. Relationships of testing to other activities
Software testing is related to, but different from, static
software quality management techniques, proofs of
correctness, debugging, and programming. However, it is
informative to consider testing from the point of view of
software quality analysts and of certifiers.
 Testing vs. Static Software Quality Management

techniques See also the Software Quality KA, sub-area
2. Software Quality Management Processes

 [Bei90:c1; Per95:c17] (IEEE1008-87)
 Testing vs. Correctness Proofs and Formal Verification

[Bei90:c1s5; Pfl01:c8]
 Testing vs. Debugging. See also the Software

Construction KA, topic 3.4 Construction Testing
[Bei90:c1s2.1] (IEEE1008-87)

 Testing vs. Programming. See also the Software
Construction KA, topic 3.4 Construction Testing
[Bei90:c1s2.3]

 Testing and Certification (Wak99)

2. Test Levels

2.1. The target of the test
Software testing is usually performed at different levels
along the development and maintenance processes. That is
to say, the target of the test can vary: a single module, a
group of such modules (related by purpose, use, behavior,
or structure), or a whole system. [Bei90:c1; Jor02:c13;
Pfl01:c8] Three big test stages can be conceptually
distinguished, namely Unit, Integration, and System. No
process model is implied, nor are any of those three stages
assumed to have greater importance than the other two.
2.1.1. Unit testing
 [Bei90:c1; Per95:c17; Pfl01:c8s7.3] (IEEE1008-87)
Unit testing verifies the functioning in isolation of software
pieces which are separately testable. Depending on the
context, these could be the individual subprograms or a
larger component made of tightly related units. A test unit
is defined more precisely in the IEEE Standard for
Software Unit Testing (IEEE1008-87), which also
describes an integrated approach to systematic and
documented unit testing. Typically, unit testing occurs with
access to the code being tested and with the support of

 5–4 © IEEE – 2004 Version

debugging tools, and might involve the programmers who
wrote the code.
2.1.2. Integration testing
 [Jor02:c13,14; Pfl01:c8s7.4]
Integration testing is the process of verifying the interaction
between software components. Classical integration testing
strategies, such as top-down or bottom-up, are used with
traditional, hierarchically structured software.
Modern systematic integration strategies are rather
architecture-driven, which implies integrating the software
components or subsystems based on identified functional
threads. Integration testing is a continuous activity, at each
stage of which software engineers must abstract away
lower-level perspectives and concentrate on the
perspectives of the level they are integrating. Except for
small, simple software, systematic, incremental integration
testing strategies are usually preferred to putting all the
components together at once, which is pictorially called
“big bang” testing.
2.1.3. System testing
 [Jor02:c15; Pfl01:c9]
System testing is concerned with the behavior of a whole
system. The majority of functional failures should already
have been identified during unit and integration testing.
System testing is usually considered appropriate for
comparing the system to the non-functional system
requirements, such as security, speed, accuracy, and
reliability. External interfaces to other applications,
utilities, hardware devices, or the operating environment
are also evaluated at this level. See the Software
Requirements KA for more information on functional and
non-functional requirements.
2.2. Objectives of Testing
2.3. [Per95:c8; Pfl01:c9s8.3]
Testing is conducted in view of a specific objective, which
is stated more or less explicitly, and with varying degrees
of precision. Stating the objective in precise, quantitative
terms allows control to be established over the test process.
Testing can be aimed at verifying different properties. Test
cases can be designed to check that the functional
specifications are correctly implemented, which is
variously referred to in the literature as conformance
testing, correctness testing, or functional testing. However,
several other non-functional properties may be tested as
well, including performance, reliability, and usability,
among many others.
Other important objectives for testing include (but are not
limited to) reliability measurement, usability evaluation,
and acceptance, for which different approaches would be
taken. Note that the test objective varies with the test target;
in general, different purposes being addressed at a different
level of testing.

References recommended above for this topic describe the
set of potential test objectives. The sub-topics listed below
are those most often cited in the literature. Note that some
kinds of testing are more appropriate for custom-made
software packages, installation testing, for example; and
others for generic products, like beta testing.
2.3.1. Acceptance/qualification testing
 [Per95:c10; Pfl01:c9s8.5] (IEEE12207.0-96:s5.3.9)
Acceptance testing checks the system behavior against the
customer’s requirements, however these may have been
expressed; the customers undertake, or specify, typical
tasks to check that their requirements have been met, or that
the organization has identified these for the target market
for the software. This testing activity may or may not
involve the developers of the system.
2.3.2. Installation testing
 [Per95:c9; Pfl01:c9s8.6]
Usually after completion of software and acceptance
testing, the software can be verified upon installation in the
target environment. Installation testing can be viewed as
system testing conducted once again according to hardware
configuration requirements. Installation procedures may
also be verified.
2.3.3. Alpha and beta testing
 [Kan99:c13]
Before the software is released, it is sometimes given to a
small, representative set of potential users for trial use,
either in-house (alpha testing) or external (beta testing).
These users report problems with the product. Alpha and
beta use is often uncontrolled, and the testing is not always
referred to a test plan.
2.3.4. Conformance testing/Functional testing/Correctness

testing
 [Kan99:c7; Per95:c8] (Wak99)
Conformance testing is aimed at validating whether or not
the observed behavior of the tested software conforms to its
specifications.
2.3.5. Reliability achievement and evaluation
 [Lyu96:c7; Pfl01:c9s.8.4] (Pos96)
In helping to identify faults, testing is a means to improve
reliability. By contrast, by randomly generating test cases
according to the operational profile, statistical measures of
reliability can be derived. Using reliability growth models,
both objectives can be pursued together (see also sub-topic
4.1.4 Life test, reliability evaluation).
2.3.6. Regression testing
 [Kan99:c7; Per95:c11,c12; Pfl01:c9s8.1] (Rot96)
According to (IEEE610.12-90), regression testing is the
“selective retesting of a system or component to verify that
modifications have not caused unintended effects [...]”. In
practice, the idea is to show that software which previously

© IEEE – 2004 Version 5–5

passed the? tests still does. Beizer (Bei90) defines it as any
repetition of tests intended to show that the software’s
behavior is unchanged, except insofar as required.
Obviously a trade-off must be made between the assurance
given by regression testing every time a change is made
and the resources required to do that.
Regression testing can be conducted at each of the test
levels described in topic 2.1 The target of the test, and may
apply to functional and non-functional testing.
2.3.7. Performance testing
 [Per95:c17; Pfl01:c9s8.3] (Wak99)
This is specifically aimed at verifying that the software
meets the specified performance requirements, for instance,
capacity and response time. A specific kind of performance
testing is volume testing (Per95:p185,p487; Pfl01:p401), in
which internal program or system limitations are tried.
2.3.8. Stress testing
 [Per95:c17; Pfl01:c9s8.3]
Stress testing exercises a software at the maximum design
load, as well as beyond it.
2.3.9. Back-to-back testing
A single test set is performed on two implemented versions
of a software product, and the results are compared.
2.3.10. Recovery testing [Per95:c17; Pfl01:c9s8.3]
Recovery testing is aimed at verifying software restart
capabilities after a “disaster”.
2.3.11. Configuration testing
 [Kan99:c8; Pfl01:c9s8.3]
In cases where software is built to serve different users,
configuration testing analyzes the software under the
various specified configurations.
2.3.12. Usability testing
 [Per95:c8; Pfl01:c9s8.3]
This process evaluates how easy it is for end-users to use
and learn the software, including user documentation, how
effectively the software functions in supporting user tasks,
and, finally, its ability to recover from user errors.
2.3.13. Test-driven development
 [Bec02]
Test-driven development is not a test technique per se,
promoting the use of tests as a surrogate for a requirements
specification document rather than as an independent check
that the software has correctly implemented the
requirements.

3. Test Techniques

One of the aims of testing is to reveal as much potential for
failure as possible, and many techniques have been
developed to do this, which attempt to “break” the program,
by running one or more tests drawn from identified classes

of executions deemed equivalent. The leading principle
underlying such techniques is to be as systematic as
possible in identifying a representative set of program
behaviors; for instance, considering subclasses of the input
domain, scenarios, states, and dataflow.
It is difficult to find a homogeneous basis for classifying all
techniques, and the one used here must be seen as a
compromise. The classification is based on how tests are
generated from the software engineer’s intuition and
experience, the specifications, the code structure, the (real
or artificial) faults to be discovered, the field usage, or,
finally, the nature of the application. Sometimes these
techniques are classified as white-box, also called glass-
box, if the tests rely on information about how the software
has been designed or coded, or as black-box if the test cases
rely only on the input/output behavior. One last category
deals with combined use of two or more techniques.
Obviously, these techniques are not used equally often by
all practitioners. Included in the list are those that a
software engineer should know.
3.1. Based on the software engineer’s intuition and

experience
3.1.1. Ad hoc testing
 [Kan99:c1]
Perhaps the most widely practiced technique remains ad
hoc testing: tests are derived relying on the software
engineer’s skill, intuition, and experience with similar
programs. Ad hoc testing might be useful for identifying
special tests, those not easily captured by formalized
techniques.
3.1.2. Exploratory testing
Exploratory testing is defined as simultaneous learning, test
design, and test execution; that is, the tests are not defined
in advance in an established test plan, but are dynamically
designed, executed, and modified. The effectiveness of
exploratory testing relies on the software engineer’s
knowledge, which can be derived from various sources:
observed product behavior during testing, familiarity with
the application, the platform, the failure process, the type of
possible faults and failures, the risk associated with a
particular product, and so on. [Kan01:c3]
3.2. Specification-based techniques
3.2.1. Equivalence partitioning
 [Jor02:c7; Kan99:c7]
The input domain is subdivided into a collection of subsets,
or equivalent classes, which are deemed equivalent
according to a specified relation, and a representative set of
tests (sometimes only one) is taken from each class.
3.2.2. Boundary-value analysis
 [Jor02:c6; Kan99:c7]
Test cases are chosen on and near the boundaries of the
input domain of variables, with the underlying rationale
that many faults tend to concentrate near the extreme values

 5–6 © IEEE – 2004 Version

of inputs. An extension of this technique is robustness
testing, wherein test cases are also chosen outside the input
domain of variables, to test program robustness to
unexpected or erroneous inputs.
3.2.3. Decision table
 [Bei90:c10s3] (Jor02)
Decision tables represent logical relationships between
conditions (roughly, inputs) and actions (roughly, outputs).
Test cases are systematically derived by considering every
possible combination of conditions and actions. A related
techniques is cause-effect graphing. [Pfl01:c9]
3.2.4. Finite-state machine-based
 [Bei90:c11; Jor02:c8]
By modeling a program as a finite state machine, tests can
be selected in order to cover states and transitions on it.
3.2.5. Testing from formal specifications
 [Zhu97:s2.2] (Ber91; Dic93; Hor95)
Giving the specifications in a formal language allows for
automatic derivation of functional test cases, and, at the
same time, provides a reference output, an oracle, for
checking test results. Methods exist for deriving test cases
from model-based (Dic93, Hor95) or from algebraic
specifications. (Ber91)
3.2.6. Random testing
 [Bei90:c13; Kan99:c7]
Tests are generated purely at random, not to be confused
with statistical testing from the operational profile as
described in sub-topic 3.5.1 Operational profile. This form
of testing falls under the heading of the specification-based
entry, since at least the input domain must be known, to be
able to pick random points within it.
3.3. Code-based techniques
3.3.1. Control flow-based criteria
 [Bei90:c3; Jor02:c10] (Zhu97)
Control flow-based coverage criteria is aimed at covering
all the statements or blocks of statements in a program, or
specified combinations of them. Several coverage criteria
have been proposed, like decision/condition coverage. The
strongest of the control flow-based criteria is path testing,
which aims to execute all entry-to-exit control flow paths in
the flowgraph. Since path testing is generally not feasible
because of loops, other, less stringent criteria tend to be
used in practice, such as statement testing, branch testing,
and condition/decision testing. The adequacy of such tests
is measured in percentages; for example, when all branches
have been executed at least once by the tests, 100% branch
coverage is said to have been achieved.
3.3.2. Data flow-based criteria
 [Bei90:c5] (Jor02; Zhu97)
In data flow-based testing, the control flowgraph is
annotated with information about how the program

variables are defined, used, and killed (undefined). The
strongest criterion, all definition-use paths, requires that,
for each variable, every control flow path segment from a
definition of that variable to a use of that definition is
executed. In order to reduce the number of paths required,
weaker strategies such as all-definitions and all-uses are
employed.
3.3.3. Reference models for code-based testing

(flowgraph, call graph)
 [Bei90:c3; Jor02:c5].
Although not a technique in itself, the control structure of a
program is graphically represented using a flowgraph in
code-based testing techniques. A flowgraph is a directed
graph the nodes and arcs of which correspond to program
elements. For instance, nodes may represent statements or
uninterrupted sequences of statements, and arcs the transfer
of control between nodes.
3.4. Fault-based techniques
3.5. (Mor90)
With different degrees of formalization, fault-based testing
techniques devise test cases specifically aimed at revealing
categories of likely or pre-defined faults.
3.5.1. Error guessing
 [Kan99:c7]
In error guessing, test cases are specifically designed by
software engineers trying to figure out the most plausible
faults in a given program. A good source of information is
the history of faults discovered in earlier projects, as well as
the software engineer’s expertise.
3.5.2. Mutation testing
 [Per95:c17; Zhu97:s3.2-s3.3]
A mutant is a slightly modified version of the program
under test, differing from it by a small, syntactic change.
Every test case exercises both the original and all generated
mutants: if a test case is successful in identifying the
difference between the program and a mutant, the latter is
said to be “killed”. Originally conceived as a technique to
evaluate a test set (see 4.2), mutation testing is also a
testing criterion in itself: either tests are randomly
generated until enough mutants have been killed, or tests
are specifically designed to kill surviving mutants. In the
latter case, mutation testing can also be categorized as a
code-based technique. The underlying assumption of
mutation testing, the coupling effect, is that, by looking for
simple syntactic faults, more complex faults, but real ones,
will be found. For the technique to be effective, a large
number of mutants must be automatically derived in a
systematic way.

© IEEE – 2004 Version 5–7

3.6. Usage-based techniques
3.6.1. Operational profile
 [Jor02:c15; Lyu96:c5; Pfl01:c9]
In testing for reliability evaluation, the test environment
must reproduce the operational environment of the software
as closely as possible. The idea is to infer, from the
observed test results, the future reliability of the software
when in actual use. To do this, inputs are assigned a
probability distribution, or profile, according to their
occurrence in actual operation.
3.6.2. Software Reliability Engineered Testing
 [Lyu96:c6]
Software Reliability Engineered Testing (SRET) is a testing
method encompassing the whole development process,
whereby testing is “designed and guided by reliability
objectives and expected relative usage and criticality of
different functions in the field.”
3.7. Techniques based on the nature of the application
The above techniques apply to all types of software.
However, for some kinds of applications, some additional
know-how is required for test derivation. A list of a few
specialized testing fields is provided here, based on the
nature of the application under test:
 Object-oriented testing [Jor02:c17; Pfl01:c8s7.5]

(Bin00)
 Component-based testing
 Web-based testing
 GUI testing [Jor20]
 Testing of concurrent programs (Car91)
 Protocol conformance testing (Pos96; Boc94)
 Testing of real-time systems (Sch94)
 Testing of safety-critical systems (IEEE1228-94)

3.8. Selecting and combining techniques
3.8.1. Functional and structural
 [Bei90:c1s.2.2; Jor02:c2,c9,c12; Per95:c17]
 (Pos96)
Specification-based and code-based test techniques are
often contrasted as functional vs. structural testing. These
two approaches to test selection are not to be seen as
alternative, but rather as complementary; in fact, they use
different sources of information, and have proved to
highlight different kinds of problems. They could be used
in combination, depending on budgetary considerations.
3.8.2. Deterministic vs. random
 (Ham92; Lyu96:p541-547)
Test cases can be selected in a deterministic way, according
to one of the various techniques listed, or randomly drawn
from some distribution of inputs, such as is usually done in
reliability testing. Several analytical and empirical

comparisons have been conducted to analyze the conditions
that make one approach more effective than the other.

4. Test-related measures

Sometimes, test techniques are confused with test
objectives. Test techniques are to be viewed as aids which
help to ensure the achievement of test objectives. For
instance, branch coverage is a popular test technique.
Achieving a specified branch coverage measure should not
be considered as the objective of testing per se: it is a
means to improve the chances of finding failures by
systematically exercising every program branch out of a
decision point. To avoid such misunderstandings, a clear
distinction should be made between test-related measures,
which provide an evaluation of the program under test
based on the observed test outputs, and those which
evaluate the thoroughness of the test set. Additional
information on measurement programs is provided in the
Software Engineering Management KA, sub-area 6.
Software Engineering Measurement. Additional
information on measures can be found in the Software
Engineering Process KA, sub-area 4. Process and Product
Measurement.
Measurement is usually considered instrumental to quality
analysis. Measurement may also be used to optimize the
planning and execution of the tests. Test management can
use several process measures to monitor progress.
Measures relative to the test process for management
purposes are considered in topic 5.1 Practical
Considerations.
4.1. Evaluation of the program under test (IEEE982.1-

98)
4.1.1. Program measurements to aid in planning and

designing testing
 [Bei90:c7s4.2; Jor02:c9] (Ber96; IEEE982.1-88)
Measures based on program size (for example, source lines
of code or function points) or on program structure (like
complexity) are used to guide testing. Structural measures
can also include measurements among program modules, in
terms of the frequency with which modules call each other.
4.1.2. Fault types, classification, and statistics
 [Bei90:c2; Jor02:c2; Pfl01:c8]
 (Bei90; IEEE1044-93; Kan99; Lyu96)
The testing literature is rich in classifications and
taxonomies of faults. To make testing more effective, it is
important to know which types of faults could be found in
the software under test, and the relative frequency with
which these faults have occurred in the past. This
information can be very useful in making quality
predictions, as well as for process improvement. More
information can be found in the Software Quality KA, topic
3.2 Defect Characterization. An IEEE standard exists on
how to classify software “anomalies” (IEEE1044-93).

 5–8 © IEEE – 2004 Version

4.1.3. Fault density
 [Per95:c20] (IEEE982.1-88; Lyu96:c9)
A program under test can be assessed by counting and
classifying the discovered faults by their types. For each
fault class, fault density is measured as the ratio between
the number of faults found and the size of the program.
4.1.4. Life test, reliability evaluation
 [Pfl01:c9] (Pos96:p146-154)
A statistical estimate of software reliability, which can be
obtained by reliability achievement and evaluation (see
sub-topic 2.2.5), can be used to evaluate a product and
decide whether or not testing can be stopped.
4.1.5. Reliability growth models
 [Lyu96:c7; Pfl01:c9] (Lyu96:c3,c4)
Reliability growth models provide a prediction of reliability
based on the failures observed under reliability
achievement and evaluation (see sub-topic 2.2.5). They
assume, in general, that the faults that caused the observed
failures have been fixed (although some models also accept
imperfect fixes), and thus, on average, the product’s
reliability exhibits an increasing trend. There now exist
dozens of published models. Many are laid down on some
common assumptions, while others differ. Notably, these
models are divided into failure-count and time-between-
failure models.
4.2. Evaluation of the tests performed
4.2.1. Coverage/thoroughness measures
 [Jor02:c9; Pfl01:c8] (IEEE982.1-88)
Several test adequacy criteria require that the test cases
systematically exercise a set of elements identified in the
program or in the specifications (see sub-area 3). To
evaluate the thoroughness of the executed tests, testers can
monitor the elements covered, so that they can dynamically
measure the ratio between covered elements and their total
number. For example, it is possible to measure the
percentage of covered branches in the program flowgraph,
or that of the functional requirements exercised among
those listed in the specifications document. Code-based
adequacy criteria require appropriate instrumentation of the
program under test.
4.2.2. Fault seeding
 [Pfl01:c8] (Zhu97:s3.1)
Some faults are artificially introduced into the program
before test. When the tests are executed, some of these
seeded faults will be revealed, and possibly some faults
which were already there will be as well. In theory,
depending on which of the artificial faults are discovered,
and how many, testing effectiveness can be evaluated, and
the remaining number of genuine faults can be estimated.
In practice, statisticians question the distribution and
representativeness of seeded faults relative to genuine faults
and the small sample size on which any extrapolations are

based. Some also argue that this technique should be used
with great care, since inserting faults into software involves
the obvious risk of leaving them there.
4.2.3. Mutation score
 [Zhu97:s3.2-s3.3]
In mutation testing (see sub-topic 3.4.2), the ratio of killed
mutants to the total number of generated mutants can be a
measure of the effectiveness of the executed test set.
4.2.4. Comparison and relative effectiveness of different

techniques
 [Jor02:c9,c12; Per95:c17; Zhu97:s5] (Fra93; Fra98;
 Pos96: p64-72)
Several studies have been conducted to compare the
relative effectiveness of different test techniques. It is
important to be precise as to the property against which the
techniques are being assessed; what, for instance, is the
exact meaning given to the term “effectiveness”? Possible
interpretations are: the number of tests needed to find the
first failure, the ratio of the number of faults found through
testing to all the faults found during and after testing, or
how much reliability was improved. Analytical and
empirical comparisons between different techniques have
been conducted according to each of the notions of
effectiveness specified above.

5. Test Process

Testing concepts, strategies, techniques, and measures need
to be integrated into a defined and controlled process which
is run by people. The test process supports testing activities
and provides guidance to testing teams, from test planning
to test output evaluation, in such a way as to provide
justified assurance that the test objectives will be met cost-
effectively.
5.1. Practical Considerations
5.1.1. Attitudes/Egoless programming
 [Bei90:c13s3.2; Pfl01:c8]
A very important component of successful testing is a
collaborative attitude towards testing and quality assurance
activities. Managers have a key role in fostering a generally
favorable reception towards failure discovery during
development and maintenance; for instance, by preventing
a mindset of code ownership among programmers, so that
they will not feel responsible for failures revealed by their
code.
5.1.2. Test guides
 [Kan01]
The testing phases could be guided by various aims, for
example: in risk-based testing, which uses the product risks
to prioritize and focus the test strategy; or in scenario-based
testing, in which test cases are defined based on specified
software scenarios.

© IEEE – 2004 Version 5–9

5.1.3. Test process management
 [Bec02: III; Per95:c1-c4; Pfl01:c9] (IEEE1074:97;
 IEEE12207.0-96:s5.3.9,s5.4.2, s6.4,s6.5)
Test activities conducted at different levels (see sub-area 2.
Test Levels) must be organized, together with people, tools,
policies, and measurements, into a well-defined process
which is an integral part of the life cycle. In IEEE/EIA
Standard 12207.0, testing is not described as a stand-alone
process, but principles for testing activities are included
along with both the five primary life cycle processes and
the supporting process. In IEEE Std 1074, testing is
grouped with other evaluation activities as integral to the
entire life cycle.
5.1.4. Test documentation and work products

[Bei90:c13s5; Kan99:c12; Per95:c19; Pfl01:c9s8.8]
(IEEE829-98)

Documentation is an integral part of the formalization of
the test process. The IEEE Standard for Software Test
Documentation (IEEE829-98) provides a good description
of test documents and of their relationship with one another
and with the testing process. Test documents may include,
among others, Test Plan, Test Design Specification, Test
Procedure Specification, Test Case Specification, Test Log,
and Test Incident or Problem Report. The software under
test is documented as the Test Item. Test documentation
should be produced and continually updated, to the same
level of quality as other types of documentation in software
engineering.
5.1.5. Internal vs. independent test team
 [Bei90:c13s2.2-c13s2.3; Kan99:c15; Per95:c4;
 Pfl01:c9]
Formalization of the test process may involve formalizing
the test team organization as well. The test team can be
composed of internal members (that is, on the project team,
involved or not in software construction), of external
members, in the hope of bringing in an unbiased,
independent perspective, or, finally, of both internal and
external members. Considerations of costs, schedule,
maturity levels of the involved organizations, and criticality
of the application may determine the decision.
5.1.6. Cost/effort estimation and other process measures

[Per95:c4,c21] (Per95: Appendix B; Pos96:p139-
145; IEEE982.1-88)

Several measures related to the resources spent on testing,
as well as to the relative fault-finding effectiveness of the
various test phases, are used by managers to control and
improve the test process. These test measures may cover
such aspects as: number of test cases specified, number of
test cases executed, number of test cases passed, and
number of test cases failed, among others.
Evaluation of test phase reports can be combined with root-
cause analysis to evaluate test process effectiveness in
finding faults as early as possible. Such an evaluation could

be associated with the analysis of risks. Moreover, the
resources that are worth spending on testing should be
commensurate with the use/criticality of the application:
different techniques have different costs, and yield different
levels of confidence in product reliability.
5.1.7. Termination
 [Bei90:c2s2.4; Per95:c2]
A decision must be made as to how much testing is enough
and when a test stage can be terminated. Thoroughness
measures, such as achieved code coverage or functional
completeness, as well as estimates of fault density or of
operational reliability, provide useful support, but are not
sufficient in themselves. The decision also involves
considerations about the costs and risks incurred by the
potential for remaining failures, as opposed to the costs
implied by continuing to test. See also sub-topic 1.2.1 Test
selection criteria/Test adequacy criteria.
5.1.8. Test reuse and test patterns
 [Bei90:c13s5]
To carry out testing or maintenance in an organized and
cost/effective way, the means used to test each part of the
software should be reused systematically. This repository
of test materials must be under the control of software
configuration management, so that changes to software
requirements or design can be reflected in changes to the
scope of the tests conducted.
The test solutions adopted for testing some application
types under certain circumstances, with the motivations
behind the decisions taken, form a test pattern which can
itself be documented for later reuse in similar projects.
5.2. Test Activities
Under this topic, a brief overview of test activities is given;
as often implied by the following description, successful
management of test activities strongly depends on the
Software Configuration Management process.
5.2.1. Planning
 [Kan99:c12; Per95:c19; Pfl01:c8s7.6] (IEEE829-
 98:s4; IEEE1008-87:s1-s3)
Like any other aspect of project management, testing
activities must be planned. Key aspects of test planning
include coordination of personnel, management of available
test facilities and equipment (which may include magnetic
media, test plans and procedures), and planning for possible
undesirable outcomes. If more than one baseline of the
software is being maintained, then a major planning
consideration is the time and effort needed to ensure that
the test environment is set to the proper configuration.
5.2.2. Test-case generation
 [Kan99:c7] (Pos96:c2; IEEE1008-87:s4,s5)
Generation of test cases is based on the level of testing to
be performed, and the particular testing techniques. Test

 5–10 © IEEE – 2004 Version

cases should be under the control of software configuration
management and include the expected results for each test.
5.2.3. Test environment development
 [Kan99:c11]
The environment used for testing should be compatible
with the software engineering tools. It should facilitate
development and control of test cases, as well as logging
and recovery of expected results, scripts, and other testing
materials.
5.2.4. Execution
 [Bei90:c13; Kan99:c11] (IEEE1008-87:s6,s7)
Execution of tests should embody a basic principle of
scientific experimentation: everything done during testing
should be performed and documented clearly enough that
another person could replicate the results. Hence, testing
should be performed in accordance with documented
procedures using a clearly defined version of the software
under test.
5.2.5. Test results evaluation
 [Per95:c20,c21] (Pos96:p18-20, p131-138)
The results of testing must be evaluated to determine
whether or not the test has been successful. In most cases,
‘successful’ means that the software performed as
expected, and did not have any major unexpected
outcomes. Not all unexpected outcomes are necessarily
faults, however, but could be judged to be simply noise.
Before a failure can be removed, an analysis and debugging
effort is needed to isolate, identify, and describe it. When

test results are particularly important, a formal review
board may be convened to evaluate them.
5.2.6. Problem reporting/Test log
 [Kan99:c5; Per95:c20] (IEEE829-98:s9-s10)
Testing activities can be entered into a test log to identify
when a test was conducted, who performed the test, what
software configuration was the basis for testing, and other
relevant identification information. Unexpected or incorrect
test results can be recorded in a problem reporting system,
the data of which form the basis for later debugging and for
fixing the problems that were observed as failures during
testing. Also, anomalies not classified as faults could be
documented in case they later turn out to be more serious
than first thought. Test Reports are also an input to the
Change Management request process (see the Software
Configuration Management KA, sub-area 3. Software
Configuration Control).
5.2.7. Defect tracking
 [Kan99:c6]
Failures observed during testing are most often due to faults
or defects in the software. Such defects can be analyzed to
determine when they were introduced into the software,
what kind of error caused them to be created (poorly
defined requirements, incorrect variable declaration,
memory leak, programming syntax error, for example), and
when they could have been first observed in the software.
Defect tracking information is used to determine what
aspects of software engineering need improvement and how
effective previous analyses and testing have been.

© IEEE – 2004 Version 5–11

MATRIX OF TOPICS VS. REFERENCE MATERIAL

 [Bec02] [Bei90] [Jor02] [Kan99 [Kan01] [Lyu96] [Per95] [Pfl01] [Zhu97]

1. Software Testing
Fundamentals

5.3. Testing-related
Terminology

Definitions of testing and
related terminology

 c1 c2 c2s2.2
Faults vs. Failures c2 c2s2.2 c1 c8

5.4. Key Issues
Test selection criteria/Test
adequacy criteria (or stopping
rules)

 c8s7.3 s1.1

Testing
effectiveness/Objectives for
testing

c1s1.4

 c21

Testing for defect identification c1 c1
The oracle problem c1
Theoretical and practical
limitations of testing

 c2
The problem of infeasible paths c3
Testability c3,c13

5.5. Relationships of Testing
to other Activities

Testing vs. Static Analysis
Techniques

 c1 c17
Testing vs. Correctness Proofs
and Formal Verification

 c1s5 c8

Testing vs. Debugging c1s2.1
Testing vs. Programming c1s2.3
Testing and Certification

2. Test Levels

5.6. The Target of the Tests c1 c13 c8

Unit testing c1 c17 c8s7.3
Integration testing c13,c14 c8s7.4
System testing c15 c9

5.7. Objectives of Testing c8 c9s8.3

Acceptance/qualification testing c10 c9s8.5
Installation testing c9 c9s8.6
Alpha and Beta testing c13
Conformance testing/
Functional testing/ Correctness
testing

 c7

 c8

Reliability achievement and
evaluation by testing

 c7 c9s8.4

Regression testing c7 c11,c12 c9s8.1
Performance testing c17 c9s8.3
Stress testing c17 c9s8.3
Back-to-back testing
Recovery testing c17 c9s8.3
Configuration testing c8 c9s8.3
Usability testing c8 c9s8.3
Test-driven development III

 5–12 © IEEE – 2004 Version

 [Bec02] [Bei90] [Jor02] [Kan99] [Kan01] [Lyu96] [Per95] [Pfl01] [Zhu97]

3. Test Techniques

5.8. Based on Tester’s Intuition
and Experience

Ad hoc testing c1
Exploratory testing c3

5.9. Specification-based
Equivalence partitioning c7 c7
Boundary-value analysis c6 c7
Decision table c10s3 c9
Finite-state machine-based c11 c8
Testing from formal specifications s2.2
Random testing c13 c7

5.10. Code-based
Control flow-based criteria c3 c10 c8
Data flow-based criteria c5
Reference models for code-based
testing

 c3 c5

5.11. Fault-based
Error guessing c7
Mutation testing c17 s3.2, s3.3

5.12. Usage-based
Operational profile c15 c5 c9
Software Reliability Engineered
Testing

 c6

5.13. Based on Nature of
Application

Object-oriented testing c17 c8s7.5
Component-based testing
Web-based testing
GUI testing c20
Testing of concurrent programs
Protocol conformance testing
Testing of distributed systems
Testing of real-time systems

5.14. Selecting and Combining
Techniques

Functional and structural c1s2.2 c1,c11s11.3 c17
Deterministic vs. Random

© IEEE – 2004 Version 5–13

 [Bec02] [Bei90] [Jor02] [Kan99 [Kan01] [Lyu96] [Per95] [Pfl01] [Zhu97]

4. Test Related Measures

5.15. Evaluation of the Program
under Test

Program measurements to aid in
planning and designing testing.

 c7s4.2 c9

Types, classification and statistics of
faults

 c2 c1 c8

Fault density c20
Life test, reliability evaluation c9
Reliability growth models c7 c9

5.16. Evaluation of the Tests
Performed

Coverage/thoroughness measures c9 c8
Fault seeding c8
Mutation score s3.2, s3.3
Comparison and relative
effectiveness of different techniques

 c8,c11 c17 s5

5. Test Process

5.17. Practical Considerations

Attitudes/Egoless programming c13s3.2 c8
Test guides III C5
Test process management c1-c4 c9
Test documentation and work
products

 c13s5 c12 c19 c9s8.8

Internal vs. independent test team c13s2.2,
c1s2.3 c15 c4 c9

Cost/effort estimation and other
process measures

 c4,c21

Termination c2s2.4 c2
Test reuse and test patterns c13s5

5.18. Test Activities

Planning c12 c19 c87s7.6
Test case generation c7
Test environment development c11
Execution c13 c11
Test results evaluation c20,c21
Problem reporting/Test log c5 c20
Defect tracking c6

 5–14 © IEEE – 2004 Version

RECOMMENDED REFERENCES FOR SOFTWARE TESTING

[Bec02] K. Beck, "Test-Driven Development by
Example," Addison-Wesley, 2002.
[Bei90] B. Beizer, "Software Testing Techniques,"
International Thomson Press, 1990, Chap. 1-3, 5, 7s4,
10s3, 11, 13.
[Jor02] P. C. Jorgensen, "Software Testing: A Craftsman's
Approach," Second Edition, CRC Press, 2004, Chap. 2, 5-
10, 12-15, 17, 20.
[Kan99] C. Kaner, J. Falk and H. Q. Nguyen, "Testing
Computer Software," Second ed: Wiley, 1999, Chap. 1, 2,
5-8, 11-13, 15.
[Kan01] C. Kaner, J. Bach and B. Pettichord, Lessons

Learned in Software Testing: Wiley Computer Publishing,
2001.
[Lyu96] M. R. Lyu, "Handbook of Software Reliability
Engineering," Mc-Graw-Hill/IEEE, 1996, Chap. 2s2.2, 5-
7.
[Per95] W. Perry, "Effective Methods for Software
Testing," Wiley, 1995, Chap. 1-4, 9, 10-12, 17, 19-21.
[Pfl01] S. L. Pfleeger, "Software Engineering: Theory and
Practice," Second ed: Prentice-Hall, 2001, Chap. 8, 9.
[Zhu97] H. Zhu, P. A. V. Hall and J. H. R. May,
"Software Unit Test Coverage and Adequacy," ACM
Computing Surveys, vol. 29, iss. 4, 366-427 (Sections 1,
2.2, 3.2, 3.3), Dec., 1997

© IEEE – 2004 Version 5–15

APPENDIX A. LIST OF FURTHER READINGS

(Bac90) R. Bache and M. Müllerburg, "Measures of
Testability as a Basis for Quality Assurance," Software
Engineering Journal, vol. 5, 86-92, March, 1990
(Bei90) B. Beizer, "Software Testing Techniques,"
Second ed: International Thomson Press, 1990.
(Ber91) G. Bernot, M. C. Gaudel and B. Marre, "Software
Testing Based On Formal Specifications: a Theory and a
Tool," Software Engineering Journal, 387-405, Nov.,
1991
(Ber96) A. Bertolino and M. Marrè, "How many paths are
needed for branch testing?," The Journal of Systems and
Software, vol. 35, iss. 2, 95-106, 1996
(Ber96a) A. Bertolino and L. Strigini, "On the Use of
Testability Measures for Dependability Assessment,"
IEEE Transactions on Software Engineering, vol. 22, iss.
2, 97-108, Feb., 1996
(Bin00) R. V. Binder, Testing Object-Oriented Systems
Models, Patterns, and Tools: Addison-Wesley, 2000.
(Boc94) G. V. Bochmann and A. Petrenko, "Protocol
Testing: Review of Methods and Relevance for Software
Testing," presented at ACM Proc. Int. Symposium on Sw
Testing and Analysis (ISSTA' 94), Seattle, Washington,
USA, 1994
(Car91) R. H. Carver and K. C. Tai, "Replay and testing
for concurrent programs," IEEE Software, 66-74, March,
1991
(Dic93) J. Dick and A. Faivre, "Automating The
Generation and Sequencing of Test Cases From Model-
Based Specifications," presented at FME'93: Industrial-
Strenght Formal Method, LNCS 670, 1993
(Fran93) P. Frankl and E. Weyuker, "A formal analysis of
the fault detecting ability of testing methods," IEEE
Transactions on Software Engineering, vol. 19, iss. 3,
202-, March, 1993
(Fran98) P. Frankl, D. Hamlet, B. Littlewood and L.
Strigini, "Evaluating testing methods by delivered
reliability," IEEE Transactions on Software Engineering,
vol. 24, iss. 8, 586-601, August, 1998
(Ham92) D. Hamlet, "Are we testing for true reliability?,"
IEEE Software, 21-27, July, 1992
(Hor95) H. Horcher and J. Peleska, "Using Formal
Specifications to Support Software Testing," Software
Quality Journal, vol. 4, 309-327, 1995
(How76) W. E. Howden, "Reliability of the Path Analysis
Testing Strategy," IEEE Transactions on Software
Engineering, vol. 2, iss. 3, 208-215, Sept., 1976
(Jor02) P. C. Jorgensen, "Software Testing: A Craftsman's
Approach," Second Edition, CRC Press, 2004.

(Kan99) C. Kaner, J. Falk and H. Q. Nguyen, "Testing
Computer Software," Second ed: Wiley, 1999.
(Lyu96) M. R. Lyu, Handbook of Software Reliability
Engineering: Mc-Graw-Hill/IEEE, 1996.
(Mor90) L. J. Morell, "A Theory of Fault-Based Testing,"
IEEE Transactions on Software Engineering, vol. 16, iss.
8, 844-857, August, 1990
(Ost88) T. J. Ostrand and M. J. Balcer, "The Category-
Partition Method for Specifying and Generating
Functional Tests," Communications of ACM, vol. 31, iss.
3, 676-686, June, 1988
(Ost98) T. Ostrand, A. Anodide, H. Foster and T.
Goradia, "A Visual Test Development Environment for
GUI Systems," presented at ACM Proc. Int. Symposium
on Sw Testing and Analysis (ISSTA' 98), Clearwater
Beach, Florida, USA, 1998
(Per95) W. Perry, Effective Methods for Software Testing:
Wiley, 1995.
(Pfl01) S. L. Pfleeger, "Software Engineering: Theory and
Practice," Second ed: Prentice-Hall, 2001, Chap. 8, 9.
(Pos96) R. M. Poston, Automating Specification-based
Software Testing: IEEE, 1996.
(Rot96) G. Rothermel and M. J. Harrold, "Analyzing
Regression Test Selection Techniques," IEEE
Transactions on Software Engineering, vol. 22, iss. 8,
529-, Aug., 1996
(Sch94) W. Schütz, "Fundamental Issues in Testing
Distributed Real-Time Systems," Real-Time Systems
Journal, vol. 7, iss. 2, 129-157, Sept., 1994
(Voa95) J. M. Voas and K. W. Miller, "Software
Testability: The New Verification," IEEE Software, 17-
28, May, 1995
(Wak99) S. Wakid, D. R. Kuhn and D. R. Wallace,
"Toward Credible IT Testing and Certification," IEEE
Software, 39-47, July-August, 1999
(Wey82) E. J. Weyuker, "On Testing Non-testable
Programs," The Computer Journal, vol. 25, iss. 4, 465-
470, 1982
(Wey83) E. J. Weyuker, "Assessing Test Data Adequacy
through Program Inference," ACM Trans. on
Programming Languages and Systems, vol. 5, iss. 4, 641-
655, October, 1983
(Wey91) E. J. Weyuker, S. N. Weiss and D. Hamlet,
"Comparison of Program Test Strategies," presented at
Proc. Symposium on Testing, Analysis and Verification
TAV 4, Victoria, British Columbia, 1991
(Zhu97) H. Zhu, P. A. V. Hall and J. H. R. May,
"Software Unit Test Coverage and Adequacy," ACM
Computing Surveys, vol. 29, iss. 4, 366-427, Dec., 1997

 5–16 © IEEE – 2004 Version

APPENDIX B. LIST OF STANDARDS

(IEEE610.12-90) IEEE Std 610.12-1990 (R2002), IEEE
Standard Glossary of Software Engineering Terminology:
IEEE, 1990.
(IEEE829-98) IEEE Std 829-1998, Standard for Software
Test Documentation: IEEE, 1998.
(IEEE982.1-88) IEEE Std 982.1-1988, IEEE Standard
Dictionary of Measures to Produce Reliable Software:
IEEE, 1988.
(IEEE1008-87) IEEE Std 1008-1987 (R2003), IEEE

Standard for Software Unit Testing: IEEE, 1987.
(IEEE1044-93) IEEE Std 1044-1993 (R2002), IEEE
Standard for the Classification of Software Anomalies:
IEEE, 1993.
(IEEE1228-94) IEEE Std 1228-1994, Standard for
Software Safety Plans: IEEE, 1994.
(IEEE12207.0-96) IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of
Int. Std. ISO/IEC 12207:95, Standard for Information
Technology-Software Life Cycle Processes, vol. IEEE,
1996.

© IEEE – 2004 Version 6-1

CHAPTER 6

SOFTWARE MAINTENANCE

ACRONYMS

CMMi Capability Maturity Model Integration
ICSM International Conference on Software

Maintenance
SCM Software Configuration Management
SQA Software Quality Assurance
V&V Verification and Validation
Y2K Year 2000

INTRODUCTION

Software development efforts result in the delivery of a
software product which satisfies user requirements.
Accordingly, the software product must change or evolve.
Once in operation, defects are uncovered, operating
environments change, and new user requirements surface.
The maintenance phase of the life cycle begins following
a warranty period or post-implementation support
delivery, but maintenance activities occur much earlier.
Software maintenance is an integral part of a software life
cycle. However, it has not, historically, received the same
degree of attention that the other phases have.
Historically, software development has had a much higher
profile than software maintenance in most organizations.
This is now changing, as organizations strive to squeeze
the most out of their software development investment by
keeping software operating as long as possible. Concerns
about the Year 2000 (Y2K) rollover focused significant
attention on the software maintenance phase, and the
Open Source paradigm has brought further attention to
the issue of maintaining software artifacts developed by
others.
In the Guide, software maintenance is defined as the
totality of activities required to provide cost-effective
support to software. Activities are performed during the
pre-delivery stage, as well as during the post-delivery
stage. Pre-delivery activities include planning for post-
delivery operations, for maintainability, and for logistics
determination for transition activities. Post-delivery
activities include software modification, training, and
operating or interfacing to a help desk.
The Software Maintenance KA is related to all other
aspects of software engineering. Therefore, this KA
description is linked to all other chapters of the Guide.

BREAKDOWN OF TOPICS FOR SOFTWARE MAINTENANCE

The Software Maintenance KA breakdown of topics is
shown in Figure 1.

1. Software Maintenance Fundamentals

This first section introduces the concepts and terminology
that form an underlying basis to understanding the role
and scope of software maintenance. The topics provide
definitions and emphasize why there is a need for
maintenance. Categories of software maintenance are
critical to understanding its underlying meaning.
1.1. Definitions and Terminology
 [IEEE1219-98:s3.1.12; IEEE12207.0-96:s3.1,s5.5;
 ISO14764-99:s6.1]
Software maintenance is defined in the IEEE Standard for
Software Maintenance, IEEE 1219, as the modification of
a software product after delivery to correct faults, to
improve performance or other attributes, or to adapt the
product to a modified environment. The standard also
addresses maintenance activities prior to delivery of the
software product, but only in an information appendix of
the standard.
The IEEE/EIA 12207 standard for software life cycle
processes essentially depicts maintenance as one of the
primary life cycle processes, and describes maintenance
as the process of a software product undergoing
“modification to code and associated documentation due
to a problem or the need for improvement. The objective
is to modify the existing software product while
preserving its integrity.” ISO/IEC 14764, the international
standard for software maintenance, defines software
maintenance in the same terms as IEEE/EIA 12207 and
emphasizes the pre-delivery aspects of maintenance,
planning, for example.
1.2. Nature of Maintenance
 [Pfl01:c11s11.2]
Software maintenance sustains the software product
throughout its operational life cycle. Modification
requests are logged and tracked, the impact of proposed
changes is determined, code and other software artifacts
are modified, testing is conducted, and a new version of
the software product is released. Also, training and daily
support are provided to users. Pfleeger [Pfl01] states that
“maintenance has a broader scope, with more to track and
control” than development.

 6-2 © IEEE – 2004 Version

A maintainer is defined by IEEE/EIA 12207 as an
organization which performs maintenance activities
[IEEE12207.0-96]. In this KA, the term will sometimes
refer to individuals who perform those activities,
contrasting them with the developers.
IEEE/EIA 12207 identifies the primary activities of
software maintenance as: process implementation;
problem and modification analysis; modification
implementation; maintenance review/acceptance;
migration; and retirement. These activities are discussed
in topic 3.2 Maintenance Activities.

Maintainers can learn from the developer’s knowledge of
the software. Contact with the developers and early
involvement by the maintainer helps reduce the
maintenance effort. In some instances, the software
engineer cannot be reached or has moved on to other
tasks, which creates an additional challenge for the
maintainers. Maintenance must take the products of the
development, code, or documentation, for example, and
support them immediately and evolve/maintain them
progressively over the software life cycle.

Software Maintenance

Software
Maintenance

Fundamentals

Key Issues in
Software

Maintenance

Maintenance
Process

Techniques for
Maintenance

Definitions and
Terminology

Nature of
Maintenance

Need for Maintenance

Majority of
Maintenance Costs

Evolution of Soffware

Categories of
Maintenance

Technical
Issues

Management
Issues

Maintenance Cost
Estimation

Software Maintenance
Measurement

Maintenance Processes

Maintenance Activities

Program Comprehension

Re-engineering

Reverse Engineering

Figure 1 Breakdown of topics for the Software Maintenance KA

1.3. Need for Maintenance
 [Pfl01:c11.s11.2; Pig97: c2s2.3; Tak97:c1]
Maintenance is needed to ensure that the software
continues to satisfy user requirements. Maintenance is
applicable to software developed using any software life
cycle model (for example, spiral). The system changes due

to corrective and non-corrective software actions.
Maintenance must be performed in order to:
 Correct faults
 Improve the design
 Implement enhancements

© IEEE – 2004 Version 6-3

 Interface with other systems
 Adapt programs so that different hardware, software,

system features, and telecommunications facilities can
be used

 Migrate legacy software
 Retire software

The maintainer’s activities comprise four key
characteristics, according to Pfleeger [Pfl01]:
 Maintaining control over the software’s day-to-day

functions
 Maintaining control over software modification
 Perfecting existing functions
 Preventing software performance from degrading to

unacceptable levels
1.4. Majority of Maintenance Costs
 [Abr93:63-90; Pfl01:c11s11.3; Pig97:c3;
 Pre01:c30s2.1,c30s2.2]
Maintenance consumes a major share of software life cycle
financial resources. A common perception of software
maintenance is that it merely fixes faults. However, studies
and surveys over the years have indicated that the majority,
over 80%, of the software maintenance effort is used for
non-corrective actions. [Abr93, Pig97, Pre01] Jones
(Jon91) describes the way in which software maintenance
managers often group enhancements and corrections
together in their management reports. This inclusion of
enhancement requests with problem reports contributes to
some of the misconceptions regarding the high cost of
corrections. Understanding the categories of software
maintenance helps to understand the structure of software
maintenance costs. Also, understanding the factors that
influence the maintainability of a system can help to
contain costs. Pfleeger [Pfl01] presents some of the
technical and non-technical factors affecting software
maintenance costs, as follows:
 Application type
 Software novelty
 Software maintenance staff availability
 Software life span
 Hardware characteristics
 Quality of software design, construction,

documentation and testing
1.5. Evolution of Software

[Art88:c1s1.0,s1.1,s1.2,c11,s1.1,s1.2; Leh97:108-124],
(Bel72)

Lehman first addressed software maintenance and
evolution of systems in 1969. Over a period of twenty
years, his research led to the formulation of eight “Laws of
Evolution”. [Leh97] Key findings include the fact that
maintenance is evolutionary developments, and that

maintenance decisions are aided by understanding what
happens to systems (and software) over time. Others state
that maintenance is continued development, except that
there is an extra input (or constraint)–existing large
software is never complete and continues to evolve. As it
evolves, it grows more complex unless some action is taken
to reduce this complexity.
Since software demonstrates regular behavior and trends,
these can be measured. Attempts to develop predictive
models to estimate maintenance effort have been made,
and, as a result, useful management tools have been
developed. [Art88], (Bel72)
1.6. Categories of Maintenance
 [Art88:c1s1.2; Lie78; Dor02:v1c9s1.5; IEEE1219-
 98:s3.1.1,s3.1.2,s3.1.7,A.1.7; ISO14764-
 99:s4.1,s4.3,s4.10, s4.11,s6.2; Pig97:c2s2.3]
Lientz & Swanson initially defined three categories of
maintenance: corrective, adaptive, and perfective. [Lie78;
IEEE 1219-98] This definition was later updated in the
Standard for Software Engineering-Software Maintenance,
ISO/IEC 14764 to include four categories, as follows:
 Corrective maintenance: Reactive modification of a

software product performed after delivery to correct
discovered problems

 Adaptive maintenance: Modification of a software
product performed after delivery to keep a software
product usable in a changed or changing environment

 Perfective maintenance: Modification of a software
product after delivery to improve performance or
maintainability

 Preventive maintenance: Modification of a software
product after delivery to detect and correct latent
faults in the software product before they become
effective faults

ISO/IEC 14764 classifies adaptive and perfective
maintenance as enhancements. It also groups together the
corrective and preventive maintenance categories into a
correction category, as shown in Table 1. Preventive
maintenance, the newest category, is most often performed
on software products where safety is critical.

 Correction Enhancement
Proactive Preventive Perfective

Reactive Corrective Adaptive

Table 1: Software maintenance categories

2. Key Issues in Software Maintenance

A number of key issues must be dealt with to ensure the
effective maintenance of software. It is important to
understand that software maintenance provides unique

 6-4 © IEEE – 2004 Version

technical and management challenges for software
engineers. Trying to find a fault in software containing
500K lines of code that the software engineer did not
develop is a good example. Similarly, competing with
software developers for resources is a constant battle.
Planning for a future release, while coding the next release
and sending out emergency patches for the current release,
also creates a challenge. The following section presents
some of the technical and management issues related to
software maintenance. They have been grouped under the
following topic headings:
 Technical issues
 Management issues
 Cost estimation and
 Measures

2.1. Technical Issues

2.1.1. Limited understanding
[Dor02:v1c9s1.11.4; Pfl01:c11s11.3; Tak97:c3]

Limited understanding refers to how quickly a software
engineer can understand where to make a change or a
correction in software which this individual did not
develop. Research indicates that some 40% to 60% of the
maintenance effort is devoted to understanding the
software to be modified. Thus, the topic of software
comprehension is of great interest to software engineers.
Comprehension is more difficult in text-oriented
representation, in source code, for example, where it is
often difficult to trace the evolution of software through its
releases/versions if changes are not documented and when
the developers are not available to explain it, which is often
the case. Thus, software engineers may initially have a
limited understanding of the software, and much has to be
done to remedy this.

2.1.2. Testing
[Art88:c9; Pfl01:c11s11.3]

The cost of repeating full testing on a major piece of
software can be significant in terms of time and money.
Regression testing, the selective retesting of a software or
component to verify that the modifications have not caused
unintended effects, is important to maintenance. As well,
finding time to test is often difficult. There is also the
challenge of coordinating tests when different members of
the maintenance team are working on different problems at
the same time. [Plf01] When software performs critical
functions, it may be impossible to bring it offline to test.
The Software Testing KA provides additional information
and references on the matter in its sub-topic 2.2.6
Regression testing.

2.1.3. Impact analysis
[Art88:c3; Dor02:v1c9s1.10; Pfl01: c11s11.5]

Impact analysis describes how to conduct, cost effectively,
a complete analysis of the impact of a change in existing

software. Maintainers must possess an intimate knowledge
of the software’s structure and content [Pfl01]. They use
that knowledge to perform impact analysis, which
identifies all systems and software products affected by a
software change request and develops an estimate of the
resources needed to accomplish the change. [Art88]
Additionally, the risk of making the change is determined.
The change request, sometimes called a modification
request (MR) and often called a problem report (PR), must
first be analyzed and translated into software terms.
[Dor02] It is performed after a change request enters the
software configuration management process. Arthur
[Art88] states that the objectives of impact analysis are:
 Determination of the scope of a change in order to

plan and implement work
 Development of accurate estimates of resources

needed to perform the work
 Analysis of the cost/benefits of the requested change
 Communication to others of the complexity of a given

change
The severity of a problem is often used to decide how and
when a problem will be fixed. The software engineer then
identifies the affected components. Several potential
solutions are provided and then a recommendation is made
as to the best course of action.
Software designed with maintainability in mind greatly
facilitates impact analysis. More information can be found
in the Software Configuration Management KA.

2.1.4. Maintainability
[ISO14764-99:s6.8s6.8.1; Pfl01: c9s9.4; Pig97:c16]

How does one promote and follow up on maintainability
issues during development? The IEEE [IEEE610.12-90]
defines maintainability as the ease with which software can
be maintained, enhanced, adapted, or corrected to satisfy
specified requirements. ISO/IEC defines maintainability as
one of the quality characteristics (ISO9126-01).
Maintainability sub-characteristics must be specified,
reviewed, and controlled during the software development
activities in order to reduce maintenance costs. If this is
done successfully, the maintainability of the software will
improve. This is often difficult to achieve because the
maintainability sub-characteristics are not an important
focus during the software development process. The
developers are preoccupied with many other things and
often disregard the maintainer’s requirements. This in turn
can, and often does, result in a lack of system
documentation, which is a leading cause of difficulties in
program comprehension and impact analysis. It has also
been observed that the presence of systematic and mature
processes, techniques, and tools helps to enhance the
maintainability of a system.

© IEEE – 2004 Version 6-5

2.2. Management Issues

2.2.1. Alignment with organizational objectives
[Ben00:c6sa; Dor02:v1c9s1.6]

Organizational objectives describe how to demonstrate the
return on investment of software maintenance activities.
Bennett [Ben00] states that “initial software development is
usually project-based, with a defined time scale and budget.
The main emphasis is to deliver on time and within budget
to meet user needs. In contrast, software maintenance often
has the objective of extending the life of a software for as
long as possible. In addition, it may be driven by the need
to meet user demand for software updates and enhance-
ments. In both cases, the return on investment is much less
clear, so that the view at senior management level is often
of a major activity consuming significant resources with no
clear quantifiable benefit for the organization.”

2.2.2. Staffing
[Dek92:10-17; Dor02:v1c9s1.6; Par86: c4s8-c4s11]
(Lie81)

Staffing refers to how to attract and keep software
maintenance staff. Maintenance is often not viewed as
glamorous work. Deklava provides a list of staffing-related
problems based on survey data. [Dek92] As a result,
software maintenance personnel are frequently viewed as
“second-class citizens” (Lie81) and morale therefore
suffers. [Dor02]

2.2.3. Process
[Pau93; Ben00:c6sb; Dor02:v1c9s1.3]

Software process is a set of activities, methods, practices,
and transformations which people use to develop and
maintain software and the associated products. [Pau93] At
the process level, software maintenance activities shares
much in common with software development (for example,
software configuration management is a crucial activity in
both). [Ben00] Maintenance also requires several activities
which are not found in software development (see section
3.2 on unique activities for details). These activities present
challenges to management. [Dor02]

2.2.4. Organizational aspects of maintenance
[Pfl01:c12s12.1-c12s12.3; Par86:c4s7;
Pig97:c2s2.5; Tak97:c8]

Organizational aspects describe how to identify which
organization and/or function will be responsible for the
maintenance of software. The team that develops the
software is not necessarily assigned to maintain the
software once it is operational.
In deciding where the software maintenance function will
be located, software engineering organizations may, for
example, stay with the original developer or go to a
separate team (or maintainer). Often, the maintainer option
is chosen to ensure that the software runs properly and
evolves to satisfy changing user needs. Since there are

many pros and cons to each of these options [Par86,
Pig97], the decision should be made on a case-by-case
basis. What is important is the delegation or assignment of
the maintenance responsibility to a single group or person
[Pig97], regardless of the organization’s structure.

2.2.5. Outsourcing
[Dor02:v1c9s1.7; Pig97:c9s9.1,s9.2], (Car94;
McC02)

Outsourcing of maintenance is becoming a major industry.
Large corporations are outsourcing entire portfolios of
software systems, including software maintenance. More
often, the outsourcing option is selected for less mission-
critical software, as companies are unwilling to lose control
of the software used in their core business. Carey (Car94)
reports that some will outsource only if they can find ways
of maintaining strategic control. However, control
measures are hard to find. One of the major challenges for
the outsourcers is to determine the scope of the
maintenance services required and the contractual details.
McCracken (McC02) states that 50% of outsourcers
provide services without any clear service-level agreement.
Outsourcing companies typically spend a number of
months assessing the software before they will enter into a
contractual relationship. [Dor02] Another challenge
identified is the transition of the software to the outsourcer.
[Pig97]
2.3. Maintenance Cost Estimation
Software engineers must understand the different
categories of software maintenance, discussed above, in
order to address the question of estimating the cost of
software maintenance. For planning purposes, estimating
costs is an important aspect of software maintenance.

2.3.1. Cost estimation
[Art88:c3; Boe81:c30; Jon98:c27; Pfl01:c11s11.3;
Pig97:c8]

It was mentioned in sub-topic 2.1.3, Impact Analysis, that
impact analysis identifies all systems and software products
affected by a software change request and develops an
estimate of the resources needed to accomplish that change.
[Art88]
Maintenance cost estimates are affected by many technical
and non-technical factors. ISO/IEC14764 states that “the
two most popular approaches to estimating resources for
software maintenance are the use of parametric models and
the use of experience” [ISO14764-99:s7.4.1]. Most often, a
combination of these is used.

2.3.2. Parametric models
[Ben00:s7; Boe81:c30; Jon98:c27; Pfl01:c11s11.3]

Some work has been undertaken in applying parametric
cost modeling to software maintenance. [Boe81, Ben00] Of
significance is that data from past projects are needed in
order to use the models. Jones [Jon98] discusses all aspects

 6-6 © IEEE – 2004 Version

of estimating costs, including function points
(IEEE14143.1-00), and provides a detailed chapter on
maintenance estimation.

2.3.3. Experience
[ISO14764-00:s7,s7.2,s7.2.1,s7.2.4; Pig97:c8;
Sta94]

Experience, in the form of expert judgment (using the
Delphi technique, for example), analogies, and a work
breakdown structure, are several approaches which should
be used to augment data from parametric models. Clearly
the best approach to maintenance estimation is to combine
empirical data and experience. These data should be
provided as a result of a measurement program.
2.4. Software Maintenance Measurement

[IEEE1061-98:A.2; Pig97:c14s14.6; Gra87 ; Tak97:
c6s6.1-c6s6.3]

Grady and Caswell [Gra87] discuss establishing a
corporate-wide software measurement program, in which
software maintenance measurement forms and data
collection are described. The Practical Software and
Systems Measurement (PSM) project describes an issue-
driven measurement process that is used by many
organizations and is quite practical. [McG01]
There are software measures that are common to all
endeavors, the following categories of which the Software
Engineering Institute (SEI) has identified: size; effort;
schedule; and quality. [Pig97] These measures constitute a
good starting point for the maintainer. Discussion of
process and product measurement is presented in the
Software Engineering Process KA. The software
measurement program is described in the Software
Engineering Management KA.

2.4.1. Specific Measures
[Car90:s2-s3; IEEE1219-98:Table3; Sta94:239-
249]

Abran [Abr93] presents internal benchmarking techniques
to compare different internal maintenance organizations.
The maintainer must determine which measures are
appropriate for the organization in question. [IEEE1219-
98; ISO9126-01; Sta94] suggests measures which are more
specific to software maintenance measurement programs.

That list includes a number of measures for each of the four
sub-characteristics of maintainability:
 Analyzability: Measures of the maintainer’s effort or

resources expended in trying to diagnose deficiencies
or causes of failure, or in identifying parts to be
modified

 Changeability: Measures of the maintainer’s effort
associated with implementing a specified modification

 Stability: Measures of the unexpected behavior of
software, including that encountered during testing

 Testability: Measures of the maintainer’s and users’
effort in trying to test the modified software

Certain measures of the maintainability of software can be
obtained using available commercial tools. (Lag96; Apr00)

3. Maintenance Process

The Maintenance Process sub-area provides references and
standards used to implement the software maintenance
process. The Maintenance Activities topic differentiates
maintenance from development and shows its relationship
to other software engineering activities.
The need for software engineering process is well
documented. CMMi models apply to software
maintenance processes, and are similar to the developers’
processes. [SEI01] Software Maintenance Capability
Maturity models which address the unique processes of
software maintenance are described in (Apr03, Nie02,
Kaj01).
3.1. Maintenance Processes

[IEEE1219-98:s4; ISO14764-99:s8; IEEE12207.0-
96:s5.5; Par86:c7s1; Pig97:c5; Tak97:c2]

Maintenance processes provide needed activities and
detailed inputs/outputs to those activities, and are described
in software maintenance standards IEEE 1219 and ISO/IEC
14764.
The maintenance process model described in the Standard
for Software Maintenance (IEEE 1219) starts with the
software maintenance effort during the post-delivery stage
and discusses items such as planning for maintenance. That
process is depicted in Figure 3.

© IEEE – 2004 Version 6-7

Figure 2 The IEEE1219-98 Maintenance Process Activities

ISO/IEC 14764 [ISO14764-99] is an elaboration of the
IEEE/EIA 12207.0-96 maintenance process. The activities
of the ISO/IEC maintenance process are similar to those of
the IEEE, except that they are aggregated a little
differently. The maintenance process activities developed
by ISO/IEC are shown in Figure 4.

Migration
Retirement

Mai ntenance
Review/

Acceptance

Problem and
Modification

Analysis

Modification
Implementation

Process
Implementation

Figure 3 ISO/IEC 14764-00 Software Maintenance
Process

Each of the ISO/IEC 14764 primary software maintenance
activities is further broken down into tasks, as follows.

 Process Implementation
 Problem and Modification Analysis
 Modification Implementation
 Maintenance Review/Acceptance
 Migration
 Software Retirement

Takang & Grubb [Tak97] provide a history of maintenance
process models leading up to the development of the IEEE
and ISO/IEC process models. Parikh [Par86] also gives a
good overview of a generic maintenance process. Recently,
agile methodologies have been emerging which promote
light processes. This requirement emerges from the ever-
increasing demand for fast turn-around of maintenance
services. Some experiments with Xtreme maintenance are
presented in (Poo01).
3.2. Maintenance Activities
As already noted, many maintenance activities are similar
to those of software development. Maintainers perform
analysis, design, coding, testing, and documentation. They
must track requirements in their activities just as is done in
development, and update documentation as baselines
change. ISO/IEC14764 recommends that, when a
maintainer refers to a similar development process, he must
adapt it to meet his specific needs [ISO14764-99:s8.3.2.1,
2]. However, for software maintenance, some activities
involve processes unique to software maintenance.

3.2.1. Unique activities
[Art88:c3; Dor02:v1c9s1.9.1; IEEE1219-
98:s4.1,s4.2; ISO14764-99:s8.2.2.1,s8.3.2.1;
Pfl01:c11s11.2]

There are a number of processes, activities, and practices
that are unique to software maintenance, for example:

 6-8 © IEEE – 2004 Version

 Transition: a controlled and coordinated sequence of
activities during which software is transferred
progressively from the developer to the maintainer
[Dek92, Pig97]

 Modification Request acceptance/rejection:
modification request work over a certain
size/effort/complexity may be rejected by maintainers
and rerouted to a developer [Dor02], (Apr01)

 Modification Request and Problem Report Help Desk:
an end-user support function that triggers the
assessment, prioritization, and costing of modification
requests [Ben00]

 Impact Analysis (see section 2.1.3 for details)
 Software Support: help and advice to users

concerning a request for information (for example,
business rules, validation, data meaning and ad-hoc
requests/reports) (Apr03)

 Service Level Agreements (SLAs) and specialized
(domain-specific) maintenance contracts which are
the responsibility of the maintainers (Apr01)

3.2.2. Supporting activities
[IEEE1219-98:A.7,A.11; IEEE12207.0-96:c6,c7;
ITI01; Pig97:c10s10.2,c18] ;(Kaj01)

Maintainers may also perform supporting activities, such as
software maintenance planning, software configuration
management, verification and validation, software quality
assurance, reviews, audits, and user training.
Another supporting activity, maintainer training, is also
needed. [Pig97;IEEE12207.0-96] (Kaj01)

3.2.3. Maintenance planning activity
[IEEE1219-98:A.3; ISO14764-99:s7; ITI01;
Pig97:c7,c8]

An important activity for software maintenance is planning,
and maintainers must address the issues associated with a
number of planning perspectives:

� Business planning (organizational level)
� Maintenance planning (transition level)
� Release/version planning (software level)
� Individual software change request planning

(request level)
At the individual request level, planning is carried out
during the impact analysis (refer to sub-topic 2.1.3 Impact
Analysis for details). The release/version planning activity
requires that the maintainer [ITI01]:

� Collect the dates of availability of individual
requests

� Agree with users on the content of subsequent
releases/versions

� Identify potential conflicts and develop alternatives

� Assess the risk of a given release and develop a
back-out plan in case problems should arise

� Inform all the stakeholders
Whereas software development projects can typically last
from some months to a few of years, the maintenance phase
usually lasts for many years. Making estimates of resources
is a key element of maintenance planning. Those resources
should be included in the developers’ project planning
budgets. Software maintenance planning should begin with
the decision to develop a new system and should consider
quality objectives (IEEE1061-98). A concept document
should be developed, followed by a maintenance plan.
The concept document for maintenance [ISO14764-
99:s7.2] should address:

� The scope of the software maintenance
� Adaptation of the software maintenance process
� Identification of the software maintenance

organization
� An estimate of software maintenance costs

The next step is to develop a corresponding software
maintenance plan. This plan should be prepared during
software development, and should specify how users will
request software modifications or report problems.
Software maintenance planning [Pig97] is addressed in
IEEE 1219 [IEEE1219-98] and ISO/IEC 14764.
[ISO14764-99] ISO/IEC14764 provides guidelines for a
maintenance plan.
Finally, at the highest level, the maintenance organization
will have to conduct business planning activities
(budgetary, financial, and human resources) just like all the
other divisions of the organization. The management
knowledge required to do so can be found in the Related
Disciplines of Software Engineering chapter.

3.2.4. Software configuration management
[Art88:c2,c10; IEEE1219-98:A.11; IEEE12207.0-
96:s6.2; Pfl01:c11s11.5; Tak97:c7]

The IEEE Standard for Software Maintenance, IEEE 1219
[IEEE1219-98], describes software configuration
management as a critical element of the maintenance
process. Software configuration management procedures
should provide for the verification, validation, and audit of
each step required to identify, authorize, implement, and
release the software product.
It is not sufficient to simply track Modification Requests or
Problem Reports. The software product and any changes
made to it must be controlled. This control is established by
implementing and enforcing an approved software
configuration management (SCM) process. The Software
Configuration Management KA provides details of SCM
and discusses the process by which software change
requests are submitted, evaluated, and approved. SCM for
software maintenance is different from SCM for software

© IEEE – 2004 Version 6-9

development in the number of small changes that must be
controlled on operational software. The SCM process is
implemented by developing and following a configuration
management plan and operating procedures. Maintainers
participate in Configuration Control Boards to determine
the content of the next release/version.

3.2.5. Software quality
[Art98:c7s4; IEE12207.0-96:s6.3; IEEE1219-
98:A.7; ISO14764-99:s5.5.3.2]

It is not sufficient, either, to simply hope that increased
quality will result from the maintenance of software. It
must be planned and processes implemented to support the
maintenance process. The activities and techniques for
Software Quality Assurance (SQA), V&V, reviews, and
audits must be selected in concert with all the other
processes to achieve the desired level of quality. It is also
recommended that the maintainer adapt the software
development processes, techniques and deliverables, for
instance testing documentation, and test results.
[ISO14764-99]
More details can be found in the Software Quality KA.

4. Techniques for Maintenance

This sub-area introduces some of the generally accepted
techniques used in software maintenance.
4.1. Program Comprehension

[Arn92:c14; Dor02:v1c9s1.11.4; Tak97:c3]
Programmers spend considerable time in reading and
understanding programs in order to implement changes.
Code browsers are key tools for program comprehension.
Clear and concise documentation can aid in program
comprehension.

4.2. Reengineering
[Arn92:c1,c3-c6; Dor02:v1c9s1.11.4; IEEE1219-98:
B.2], (Fow99)

Reengineering is defined as the examination and alteration
of software to reconstitute it in a new form, and includes
the subsequent implementation of the new form. Dorfman
and Thayer [Dor02] state that reengineering is the most
radical (and expensive) form of alteration. Others believe
that reengineering can be used for minor changes. It is
often not undertaken to improve maintainability, but to
replace aging legacy software. Arnold [Arn92] provides a
comprehensive compendium of topics, for example:
concepts, tools and techniques, case studies, and risks and
benefits associated with reengineering.
4.3. Reverse engineering

[Arn92:c12; Dor02:v1c9s1.11.3; IEEE1219-98:B.3;
Tak97:c4, Hen01]

Reverse engineering is the process of analyzing software to
identify the software’s components and their inter-
relationships and to create representations of the software
in another form or at higher levels of abstraction. Reverse
engineering is passive; it does not change the software, or
result in new software. Reverse engineering efforts produce
call graphs and control flow graphs from source code. One
type of reverse engineering is redocumentation. Another
type is design recovery [Dor02]. Refactoring is program
transformation which reorganizes a program without
changing its behavior, and is a form of reverse engineering
that seeks to improve program structure. (Fow99)
Finally, data reverse engineering has gained in importance
over the last few years where logical schemas are recovered
from physical databases. (Hen01)

 6-10 © IEEE – 2004 Version

MATRIX OF TOPICS VS. REFERENCE MATERIAL

[A
br

93
]

[A
rn

92
]

[A
rt

88
]

[B
en

00
]

[B
oe

81
]

[C
ar

90
]

[D
ek

92
]

[D
or

97
]

[I
E

E
E

61
0.

12
-9

0]

[I
E

E
E

10
61

-9
8]

[I
E

E
E

12
19

-9
8]

[I
E

E
E

12
20

7.
0-

96
]

[I
SO

14
76

4-
00

]

[J
on

98
]

[L
eh

97
]

[P
ar

86
]

[P
fl0

1]

[P
ig

97
]

[P
re

04
]

[S
ta

94
]

[T
ak

97
]

1. Software Maintenance
Fundamentals

1.1 Definitions and
Terminology

63-90 s4 s3.1.12 s6.1

1.2 Nature of Maintenance s3, s5.5 c11s11.2

1.3 Need for Maintenance c11s11.2 c2s2.3 c1

1.4 Majority of Maintenance
Costs

63-90 c11s11.3 c3 C31

1.5 Evolution of Software

c1s1.0-
c1s1.2,
c11s1.1,
c11s1.2

108-124

1.6 Categories of Maintenance 63-90 c1s1.2 s5 v1c9s1.5

s3.1.1,
s3.1.2,
s3.1.7,
A.1.7

s4.1,
s4.3s4.1
0, s4.11,

s6.2

 c2s2.3

2. Key Issues in Software
Maintenance

2.1 Technical Issues s6c

Limited understanding s11.4 v1c9s1.1
1.4 c11s11.3 c3

Testing c9 c11s11.3

Impact analysis c3
s10.1,
s10.2,
s10.3

v1c9s1.1
0.1-

v1c9s1.1
0.3

 c11s11.5

Maintainability s3 s5, s9.3,
s11.4 s6.8,

s6.8.1 c9s9.4 c16

2.2 Management Issues

Alignment with
organizational objectives s6a v1c9s1.6

Staffing 10-17 v1c9s1.6 c4s8-
c4s11

Process s6b v1c9s1.3

Organizational aspects of
maintenance s6a, s7 c4s7

c12s12.1
-

c12s12.3
c2s2.5 c8

Outsourcing s7 v1c9s1.7 c9s9.1-
c9s9.2

2.3 Maintenance Cost
Estimation

Cost estimation c3 s7 c30 c27 c11s11.3 c8

Parametric models s7 c30 c27 c11s11.3

Experience
s7,s7.2,
s7.2.1,
s7.2.4

 c8

© IEEE – 2004 Version 6-11

2.4 Measures 63-90 A.2
s9.1,
s9.2,
s10.1

 c14s14.6 c6s6.1-
c6s6.3

Specific Measures 63-90 s9.2 s2-s3 Table 3 239-249

3. Maintenance Process

3.1 Maintenance Processes s8 s4 s8 c7s1 c5 c2

3.2 Maintenance Activities s9.1 s5.5

Unique Activities 63-90 c3 s6b v1c9s1.9
.1 s4.1-s4.2 s8.2.2.1,

s8.3.2.1 c11s11.2

Supporting Activities A.7,A.11 c6,c7 c10s10.2
, c18

Maintenance Planning
Activity A.3 s7 c7,c8

Software Configuration
Management c2,c10

s2, s6b,
s9.2,

s10.1,
s11.4

 A.11 s6.2 c11s11.5 c7

Software Quality 63-90 c7s4

s7, s8,
s9.2,
s9.3,

s11.4,
s11.5

 A.7 s6.3 s5.5.3.2

4. Techniques for
Maintenance

4.1 Program Comprehension c14 s11.4 v1c9s1.1
1.4 c3

4.2 Re-engineering c1,c3-c6
s9.2,

s11.4,
s11.5

 v1c9s1.1
1.4 B.2

4.3 Reverse Engineering c12

s9.2,
s10.3,
s11.2,
s11.3,
s11.5

 v1c9s1.1
1.3 B.3 c4

 6-12 © IEEE – 2004 Version

RECOMMENDED REFERENCES FOR SOFTWARE
MAINTENANCE

 [Abr93] A. Abran and H. Nguyenkim, "Measurement of
the Maintenance Process from a Demand-Based
Perspective," Journal of Software Maintenance: Research
and Practice, vol. 5, iss. 2, 63-90, 1993
[Arn93] R. S. Arnold, Software Reengineering: IEEE
Computer Society, 1993.
[Art98] L. J. Arthur, Software Evolution: The Software
Maintenance Challenge: John Wiley & Sons, 1988.
[Ben00] K. H. Bennett, "Software Maintenance: A
Tutorial," in Software Engineering, M. Dorfman and R.
Thayer, Eds.: IEEE Computer Society Press, 2000.
[Boe81] B. W. Boehm, Software Engineering Economics:
Prentice-Hall, 1981.
[Car90] D. N. Card and R. L. Glass, Measuring Software
Design Quality: Prentice Hall, 1990.
[Dek92] S. Dekleva, "Delphi Study of Software
Maintenance Problems," presented at Proceedings of the
International Conference on Software Maintenance, 1992
[Dor02] M. Dorfman and R. H. Thayer, Eds., "Software
Engineering." (Vol. 1 & vol. 2), IEEE Computer Society
Press, 2002.
[Gra87] R. B. Grady and D. L. Caswell, Software Metrics:
Establishing A Company-Wide Program. Englewood Cliffs
NJ, USA: Prentice-Hall, 1987.
[IEEE610.12-90] IEEE Std 610.12-1990 (R2002), IEEE
Standard Glossary of Software Engineering Terminology:
IEEE, 1990.
[IEEE1061-98] IEEE Std 1061-1998, IEEE Standard for a
Software Quality Metrics Methodology: IEEE, 1998.
[IEEE1219-98] IEEE Std 1219-1998, IEEE Standard for
Software Maintenance: IEEE, 1998.
[IEEE12207.0-96] IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of Int.
Std. ISO/IEC 12207:95, Standard for Information

Technology-Software Life Cycle Processes, vol. IEEE,
1996.
[ISO9126-01] ISO/IEC 9126-1:2001, Software
Engineering-Product Quality-Part 1: Quality Model: ISO
and IEC, 2001.
[ISO14764-99] ISO/IEC 14764-1999, Software
Engineering-Software Maintenance: ISO and IEC, 1999.
 [ITI01] IT Infrastructure Library, "Service Delivery and
Service Support," Stationary Office, Office of Government
of Commerce, 2001
[Jon98] T. C. Jones, Estimating Software Costs: McGraw-
Hill, 1998.
[Leh97] M. M. Lehman, "Laws of Software Evolution
Revisited," presented at EWSPT96, 1997
[Lie78] B. Lienz, E. B. Swanson and G. E. Tompkins,
"Characteristics of Applications Software Maintenance,"
Communications of the ACM, vol. 21, 1978
[Par86] G. Parikh, Handbook of Software Maintenance:
John Wiley & Sons, 1986.
[Pfl01] S. L. Pfleeger, Software Engineering: Theory and
Practice, Second ed: Prentice-Hall, 2001.
[Pig97] T. M. Pigoski, Practical Software Maintenance:
Best Practices for Managing your Software Investment,
First ed: John Wiley & Sons, 1997.
[Pre04] R. S. Pressman, Software Engineering: A
Practitioner's Approach, Sixth ed: McGraw-Hill, 2004.
[SEI01] Software Engineering Institute, "Capability
Maturity Model Integration, v1.1," CMU/SEI-2002-TR-
002, ESC-TR-2002-002, December, 2001
[Sta94] G. E. Stark, L. C. Kern and C. V. Vowell, "A
Software Metric Set for Program Maintenance
Management," Journal of Systems and Software, vol. 24,
iss. 3, March, 1994
[Tak97] A. Takang and P. Grubb, Software Maintenance
Concepts and Practice: International Thomson Computer
Press, 1997.

© IEEE – 2004 Version 6-13

APPENDIX A. LIST OF FURTHER READINGS

(Abr93) A. Abran, "Maintenance Productivity & Quality
Studies: Industry Feedback on Benchmarking," presented
at Proceedings of the Software Maintenance Conference,
ICSM93, Montréal, 1993
(Apr00) A. April and D. Al-Shurougi, "Software Product
Measurement for Supplier Evaluation," presented at
FESMA2000, Madrid, 2000
(Apr01) A. April, J. Bouman, A. Abran and D. Al-
Shurougi, "Software Maintenance in a Service Level
Agreement: Controlling the Customer's Expectations,"
presented at European Software Measurement Conference,
Heidelberg, Germany, 2001
(Apr03) A. April, A. Abran and R. Dumke, "Software
Maintenance Capability Maturity Model (SM-CMM):
Process Performance Measurement," presented at 13th
International Wokshop on Software Measurement _
IWSM2003, Montreal, 2003
(Bas85) V. R. Basili, "Quantitative Evaluation of Software
Methodology," presented at Proceedings First Pan-Pacific
Computer Conference, 1985
(Bel72) L. Belady and M. M. Lehman, "An introduction to
growth dynamics," in Statistical Computer Performance
Evaluation, W. Freiberger, Ed. New York: Academic
Press, 1972.
(Ben00) K. H. Bennett and V. T. Rajlich, "Software
Maintenance and Evolution: A Roadmap," in The Future
of Software Engineering, A. Finklestein, Ed.: ACM Press,
2000.
(Bol95) C. Boldyreff, E. Burd, R. Hather, R. Mortimer, M.
Munro and E. Younger, "The AMES Approach to
Application Understanding: A Case Study," presented at
Proceedings of the International Conference on Software
Maintenance-1995, Los Alamitos, CA, 1995
(Boo94) G. Booch and D. Bryan, Software Engineering
with Ada, Third ed: Benjamin/Cummings, 1994.
(Cap94) M. A. Capretz and M. Munro, "Software
Configuration Management Issues in the Maintenance of
Existing Systems," Journal of Software Maintenance:
Research and Practice, vol. 6, iss. 2, 1994
(Car92) J. Cardow, "You Can't Teach Software
Maintenance!," presented at Proceedings of the Sixth
Annual Meeting and Conference of the Software
Management Association, 1992
(Car94) D. Carey, "Executive round-table on business
issues in outsourcing- Making the decision," CIO Canada,
iss. June/July, 1994
(Dor97) M. Dorfman and R. H. Thayer, Eds., "Software
Engineering." IEEE Computer Society Press, 1997.
(Dor02) M. Dorfman and R. H. Thayer, Eds., "Software

Engineering." (Vol. 1 & vol. 2), IEEE Computer Society
Press, 2002.
(Fow99) M. Fowler and al, Refactoring: Improving the
Design of Existing Code: Addison-Wesley, 1999.
(Gra87) R. B. Grady and D. L. Caswell, Software Metrics:
Establishing A Company-Wide Program. Englewood Cliffs
NJ, USA: Prentice-Hall, 1987.
(Gra92) R. B. Grady, Practical Software Metrics for
project Management and Process Management: Prentice
Hall, Englewood Cliffs, NJ 07632, 1992.
(Jon91) C. Jones, Applied Software Measurement:
McGraw-Hill, 1991.
(Kaj01) M. Kajko-Mattson, "Motivating the Corrective
Maintenance Maturity Model (Cm3)," presented at 7th
International Conference on Engineering of Complex
Systems, 2001
(Kaj01a) M. Kajko-Mattson, S. Forssander and U. Olsson,
"Corrective Maintenance Maturity Model: Maintainer's
Education and Training," presented at International
Conference on Software Engineering, 2001
(Kho95) T. M. Khoshgoftaar, R. M. Szabo and J. M. Voas,
"Detecting Program Module with Low Testability,"
presented at Proceedings of the International Conference
on Software Maintenance-1995, Los Alamitos, CA, 1995
(Lag96) B. Laguë and A. April, "Mapping for the ISO9126
Maintainability Internal Metrics to an industrial research
tool," presented at SESS, Montréal, 1996
(Leh85) M. M. Lehman and L. A. Belady, Program
Evolution: Processes of Software Change. (London) Ltd.:
Academic Press Inc., 1985.
(Leh97) M. M. Lehman, "Laws of Software Evolution
Revisited," presented at EWSPT96, 1997
(Lie81) B. P. Lientz and E. B. Swanson, "Problems in
application software mainteanance," Communications of
ACM, vol. 24, iss. 11, 763-769, 1981
(McC02) B. McCracken, "Taking Control of IT
Performance," presented at InfoServer LLC, Dallas, Texas,
2002
(Nie02) F. Niessink, V. Clerk and H. v. Vliet, "The IT
Capability Maturity Model," release L2+3-0.3 draft, 2002,
available at http://www.itservicecmm.org/doc/itscmm-123-
0.3.pdf
(Oma91) P. W. Oman, J. Hagemeister and D. Ash, "A
Definition and Taxonomy for Software Maintainability,"
University of Idaho, Software Engineering Test Lab,
Technical Report, 91-08 TR November, 1991
(Oma92) P. Oman and J. Hagemeister, "Metrics for
Assessing Software System Maintainability," presented at
Proceedings of the International Conference on Software
Maintenance-1992, Los Alamitos, CA, 1992
(Pig93) T. M. Pigoski, "Maintainable Software: Why You

 6-14 © IEEE – 2004 Version

Want It and How to Get It," presented at Proceedings of the
Third Software Engineering Research Forum-November
1993, University of West Florida Press, 1993
(Pig94) T. M. Pigoski, "Software Maintenance," in
Encyclopedia of Software Engineering. New York, NY:
John Wiley & Sons, 1994.
(Pol03) M. Polo, M. Piattini and F. R. (editors), Eds., "
Advances in Software Maintenance Management:
Technologies and Solutions.." Hershey, PA, Idea Group
Publishing, 2003.
(Poo00) C. Poole and W. Huisman, "Using Extreme
Programming in a Maintenance Environment," IEEE
Software, iss. November/December, 42-50, 2001
(Put97) L. H. Putman and W. Myers, "Industrial Strength
Software - Effective Management Using Measurement,"
Los Alamitos, CA, 1997

(Sch99) S. R. Schach, Classical and Object-Oriented
Software Engineering With UML and C++: McGraw-Hill,
1999.
(Sch97) S. L. Schneberger, Client/Server Software
Maintenance: McGraw-Hill, 1997.
(Sch87) N. F. Schneidewind, "The State of Software
Maintenance," presented at Proceedings of the IEEE, 1987
(Som96) I. Sommerville, Software Engineering, Fifth ed:
Addison-Wesley, 1996.
(Val94) J. D. Vallett, S. E. Condon, L. Briand, Y. M. Kim
and V. R. Basili, "Building on Experience Factory for
Maintenance," presented at Proceedings of the Software
Engineering Workshop, Software Engineering Laboratory,
1994

© IEEE – 2004 Version 6-15

APPENDIX A. LIST OF STANDARDS

(IEEE610.12-90) IEEE Std 610.12-1990 (R2002), IEEE
Standard Glossary of Software Engineering Terminology:
IEEE, 1990.
(IEEE1061-98) IEEE Std 1061-1998, IEEE Standard for a
Software Quality Metrics Methodology: IEEE, 1998.
(IEEE1219-98) IEEE Std 1219-1998, IEEE Standard for
Software Maintenance: IEEE, 1998.
(IEEE12207.0-96) IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of Int.
Std. ISO/IEC 12207:95, Standard for Information
Technology-Software Life Cycle Processes, vol. IEEE,
1996.

(IEEE14143.1-00) IEEE Std 14143.1-
2000//ISO/IEC14143-1:1998, Information Technology-
Software Measurement-Functional Size Measurement-Part
1: Definitions of Concepts: IEEE, 2000.
(ISO9126-01) ISO/IEC 9126-1:2001, Software
Engineering-Product Quality-Part 1: Quality Model: ISO
and IEC, 2001.
(ISO14764-99) ISO/IEC 14764-1999, Software
Engineering-Software Maintenance: ISO and IEC, 1999.
(ISO15271-98) ISO/IEC TR 15271:1998, Information
Technology - Guide for ISO/IEC 12207, (Software Life
Cycle Process): ISO and IEC, 1998. [Abr93]

 6-16 © IEEE – 2004 Version

© IEEE – 2004 Version 7–1

CHAPTER 7

SOFTWARE CONFIGURATION MANAGEMENT

ACRONYMS

CCB Configuration Control Board
CM Configuration Management
FCA Functional Configuration Audit
MTBF Mean Time Between Failures
PCA Physical Configuration Audit
SCCB Software Configuration Control Board
SCI Software Configuration Item
SCM Software Configuration Management
SCMP Software Configuration Management Plan
SCR Software Change Request
SCSA Software Configuration Status Accounting
SEI/CMMi Software Engineering Institute’s Capability

Maturity Model Integration
SQA Software Quality Assurance
SRS Software Requirement Specification
USNRC U.S. Nuclear Regulatory Commission

INTRODUCTION

A system can be defined as a collection of components
organized to accomplish a specific function or set of
functions (IEEE 610.12-90). The configuration of a system
is the functional and/or physical characteristics of
hardware, firmware, or software, or a combination of these,
as set forth in technical documentation and achieved in a
product. (Buc96) It can also be thought of as a collection
of specific versions of hardware, firmware, or software
items combined according to specific build procedures to
serve a particular purpose. Configuration management
(CM), then, is the discipline of identifying the
configuration of a system at distinct points in time for the
purpose of systematically controlling changes to the
configuration, and maintaining the integrity and traceability
of the configuration throughout the system life
cycle.(Ber97) It is formally defined (IEEE610.12-90) as:
“A discipline applying technical and administrative
direction and surveillance to: identify and document the
functional and physical characteristics of a configuration
item, control changes to those characteristics, record and
report change processing and implementation status, and
verify compliance with specified requirements.”

Software configuration management (SCM) is a supporting
software life cycle process (IEEE12207.0-96) which
benefits project management, development and
maintenance activities, assurance activities, and the
customers and users of the end-product.
The concepts of configuration management apply to all
items to be controlled, although there are some differences
in implementation between hardware CM and software
CM.
SCM is closely related to the software quality assurance
(SQA) activity. As defined in the Software Quality KA,
SQA processes provide assurance that the software
products and processes in the project life cycle conform to
their specified requirements by planning, enacting, and
performing a set of activities to provide adequate
confidence that quality is being built into the software.
SCM activities help in accomplishing these SQA goals. In
some project contexts (see, for example, IEEE730-02),
specific SQA requirements prescribe certain SCM
activities.
The SCM activities are: management and planning of the
SCM process, software configuration identification,
software configuration control, software configuration
status accounting, software configuration auditing, and
software release management and delivery.
Figure 1 shows a stylized representation of these activities.

Mgmt. &
Planning

SCMP

Configuration Identification

Control Status
Accounting

Release
Processing

Auditing
Management

Development
Team

Coordination of Change Activities (“Code Management”)

Authorization of Changes
 (Should changes be made?)

Project Management
 Product Assurance
 Development Team

Status for:

Supports
 Customer
 Maintenance Team

Physical &
 Functional
 Completeness

Figure 1. SCM Activities
The Software Configuration Management KA is related to
all the other KAs, since the object of configuration
management is the artifact produced and used throughout
the software engineering process.

 7–2 © IEEE – 2004 Version

BREAKDOWN OF TOPICS FOR SCM

1. Management of the SCM Process

SCM controls the evolution and integrity of a product by
identifying its elements, managing and controlling change,
and verifying, recording, and reporting on configuration
information. From the software engineer’s perspective,
SCM facilitates development and change implementation
activities. A successful SCM implementation requires
careful planning and management. This, in turn, requires an
understanding of the organizational context for, and the
constraints placed on, the design and implementation of the
SCM process.
1.1. Organizational Context for SCM

[Ber92 :c4; Dar90:c2; IEEE828-98:c4s2.1]
To plan an SCM process for a project, it is necessary to
understand the organizational context and the relationships
among the organizational elements. SCM interacts with
several other activities or organizational elements.
The organizational elements responsible for the software
engineering supporting processes may be structured in
various ways. Although the responsibility for performing
certain SCM tasks might be assigned to other parts of the
organization, such as the development organization, the
overall responsibility for SCM often rests with a distinct
organizational element or designated individual.
Software is frequently developed as part of a larger system
containing hardware and firmware elements. In this case,
SCM activities take place in parallel with hardware and
firmware CM activities, and must be consistent with
system-level CM. Buckley [Buc96:c2] describes SCM
within this context. Note that firmware contains hardware
and software, therefore both hardware and software CM
concepts are applicable.
SCM might interface with an organization’s quality
assurance activity on issues such as records management
and non-conforming items. Regarding the former, some
items under SCM control might also be project records
subject to provisions of the organization’s quality assurance

program. Managing non-conforming items is usually the
responsibility of the quality assurance activity; however,
SCM might assist with tracking and reporting on software
configuration items falling into this category.
Perhaps the closest relationship is with the software
development and maintenance organizations.
It is within this context that many of the software
configuration control tasks are conducted. Frequently, the
same tools support development, maintenance, and SCM
purposes.
1.2. Constraints and Guidance for the SCM Process

[Ber92 :c5; IEEE828-98:c4s1,c4s2.3; Moo98]
Constraints affecting, and guidance for, the SCM process
come from a number of sources. Policies and procedures
set forth at corporate or other organizational levels might
influence or prescribe the design and implementation of the
SCM process for a given project. In addition, the contract
between the acquirer and the supplier might contain
provisions affecting the SCM process. For example, certain
configuration audits might be required, or it might be
specified that certain items be placed under CM. When
software products to be developed have the potential to
affect public safety, external regulatory bodies may impose
constraints (see, for example, USNRC1.169-97). Finally,
the particular software life cycle process chosen for a
software project and the tools selected to implement the
software affect the design and implementation of the SCM
process. [Ber92]
Guidance for designing and implementing an SCM process
can also be obtained from ‘best practice’, as reflected in the
standards on software engineering issued by the various
standards organizations. Moore [Moo98] provides a
roadmap to these organizations and their standards. Best
practice is also reflected in process improvement and
process assessment models such as the Software
Engineering Institute’s Capability Maturity Model
Integration (SEI/CMMi) (SEI01) and ISO/IEC15504
Software Engineering–Process Assessment (ISO/IEC
15504-98).

© IEEE – 2004 Version 7–3

Software Configuration Management

Software
Configuration

Control

Software
Configuration

Status
Accounting

Software
Configuration

Auditing

Software
Release

Management
and Delivery

In-Process
Audits of SCM

Requesting,
Evaluating and

Approving
Software
Changes
Software

Configuration
Control Board

Software Change
Request Process

Implementing
Software
Changes

Deviations and
Waivers

Software
Configuration

Status
Information

Software
Configuration

Status
Reporting

Software
Functional

Configuration
Audit

Software
Physical

Configuration
Audit

In-Process
Audits of a
Software
Baseline

Software
Building

Software
Release

Management

Software
Configuration
Identification

Identifying
Items to be
Controlled

Software
Configuration

Software
Configuration

Items
Software

Configuration
Item

Relationships
Software
Versions

Baseline
Acquiring
Software

Configuration
Items

Software
Library

Management
of the SCM

Process

Organizational
Context for SCM

Constraints and
Guidance for
SCM Process
Planning for

SCM

Software
Configuration

Management Plan

SCM
Organization and
Responsibilities

SCM Resources
and Schedules

Tool Selection
and

Implementation
Vendor/

Subcontractor
Control

Interface Control

Surveillance of
SCM

SCM Measures
and

Measurement

Figure 2 Breakdown of topics for the Software Configuration Management KA

1.3. Planning for SCM
[Dar90 :c2; IEEE12207.0-96 :c6.s2.1;
Som01 :c29]

The planning of an SCM process for a given project should
be consistent with the organizational context, applicable
constraints, commonly accepted guidance, and the nature of
the project (for example, size and criticality). The major
activities covered are: Software Configuration
Identification, Software Configuration Control, Software
Configuration Status Accounting, Software Configuration
Auditing, and Software Release Management and Delivery.
In addition, issues such as organization and responsibilities,
resources and schedules, tool selection and implementation,
vendor and subcontractor control, and interface control are
typically considered. The results of the planning activity are
recorded in an SCM Plan (SCMP), which is typically
subject to SQA review and audit.

1.3.1. SCM organization and responsibilities
[Ber92:c7; Buc96:c3; IEEE828-98:c4s2]

To prevent confusion about who will perform given SCM
activities or tasks, organizations to be involved in the SCM
process need to be clearly identified. Specific
responsibilities for given SCM activities or tasks also need
to be assigned to organizational entities, either by title or by
organizational element. The overall authority and reporting
channels for SCM should also be identified, although this
might be accomplished at the project management or
quality assurance planning stage.

1.3.2. SCM Resources and Schedules
[Ber92:c7; Buc96:c3; IEEE828-98:c4s4; c4s5]

Planning for SCM identifies the staff and tools involved in
carrying out SCM activities and tasks. It addresses
scheduling questions by establishing necessary sequences

 7–4 © IEEE – 2004 Version

of SCM tasks and identifying their relationships to the
project schedules and milestones established at the project
management planning stage. Any training requirements
necessary for implementing the plans and training new staff
members are also specified.

1.3.3. Tool selection and implementation
[Ber92:c15; Con98:c6; Pre01:c31]

Different types of tool capabilities, and procedures for their
use, support SCM activities. Depending on the situation,
these tool capabilities can be made available with some
combination of manual tools, automated tools providing a
single SCM capability, automated tools integrating a range
of SCM (and perhaps other) capabilities, or integrated tool
environments which serve the needs of multiple
participants in the software engineering process (for
example, SCM, development, V&V). Automated tool
support becomes increasingly important, and increasingly
difficult to establish, as projects grow in size and as project
environments become more complex. These tool
capabilities provide support for:
 the SCM Library
 the software change request (SCR) and approval

procedures
 code (and related work products) and change

management tasks
 reporting software configuration status and collecting

SCM measurements
 software configuration auditing
 managing and tracking software documentation
 performing software builds
 managing and tracking software releases and their

delivery
The tools used in these areas can also provide
measurements for process improvement. Royce [Roy98]
describes seven core measures of value in managing
software engineering processes. Information available from
the various SCM tools relates to Royce’s Work and
Progress management indicator and to his quality indicators
of Change Traffic and Stability, Breakage and Modularity,
Rework and Adaptability, and MTBF (mean time between
failures) and Maturity. Reporting on these indicators can be
organized in various ways, such as by software
configuration item or by type of change requested.
Figure 4 shows a representative mapping of tool
capabilities and procedures to SCM Activities.

Planning

SCMP

Control

Management

Development
Team

Status
Accounting

Release
Management
and Delivery

Auditing

Change
Implementation

Change
Evaluation &

Approval

Release
Authorization
& Preparation

Audit
Procedures

Configuration Identification

Code Mgmt
Systems

Baselines,
Libraries,

SCRs

CCBs DBMS, Code Mgmt Systems

Figure 3 Characterization of SCM Tools and related
procedures

In this example, code management systems support the
operation of software libraries by controlling access to
library elements, coordinating the activities of multiple
users, and helping to enforce operating procedures. Other
tools support the process of building software and release
documentation from the software elements contained in the
libraries. Tools for managing software change requests
support the change control procedures applied to controlled
software items. Other tools can provide database
management and reporting capabilities for management,
development, and quality assurance activities. As
mentioned above, the capabilities of several tool types
might be integrated into SCM systems, which in turn are
closely coupled to various other software activities.
In planning, the software engineer picks SCM tools fit for
the job. Planning considers issues that might arise in the
implementation of these tools, particularly if some form of
culture change is necessary. An overview of SCM systems
and selection considerations is given in [Dar90:c3,AppA],
and a case study on selecting an SCM system is given in
[Mid97]. Complementary information on SCM tools can be
found in the Software Engineering Tools and Methods KA.

1.3.4. Vendor/Subcontractor Control
[Ber92:c13; Buc96:c11; IEEE828-98:c4s3.6]

A software project might acquire or make use of purchased
software products, such as compilers or other tools. SCM
planning considers if and how these items will be taken
under configuration control (for example, integrated into
the project libraries) and how changes or updates will be
evaluated and managed.
Similar considerations apply to subcontracted software. In
this case, the SCM requirements to be imposed on the
subcontractor’s SCM process as part of the subcontract and
the means for monitoring compliance also need to be
established. The latter includes consideration of what SCM
information must be available for effective compliance
monitoring.

© IEEE – 2004 Version 7–5

1.3.5. Interface control
[IEEE828-98:c4s3.5]

When a software item will interface with another software
or hardware item, a change to either item can affect the
other. The planning for the SCM process considers how the
interfacing items will be identified and how changes to the
items will be managed and communicated. The SCM role
may be part of a larger, system-level process for interface
specification and control, and may involve interface
specifications, interface control plans, and interface control
documents. In this case, SCM planning for interface control
takes place within the context of the system-level process.
A discussion of the performance of interface control
activities is given in [Ber92:c12].
1.4. SCM Plan [Ber92:c7; Buc96:c3; Pau93:L2-81]
The results of SCM planning for a given project are
recorded in a Software Configuration Management Plan
(SCMP), a ‘living document’ which serves as a reference
for the SCM process. It is maintained (that is, updated and
approved) as necessary during the software life cycle. In
implementing the SCMP, it is typically necessary to
develop a number of more detailed, subordinate procedures
defining how specific requirements will be carried out
during day-to-day activities.
Guidance on the creation and maintenance of an SCMP,
based on the information produced by the planning activity,
is available from a number of sources, such as [IEEE828-
98:c4]. This reference provides requirements for the
information to be contained in an SCMP. It also defines and
describes six categories of SCM information to be included
in an SCMP:
 Introduction (purpose, scope, terms used)
 SCM Management (organization, responsibilities,

authorities, applicable policies, directives, and
procedures)

 SCM Activities (configuration identification,
configuration control, and so on)

 SCM Schedules (coordination with other project
activities)

 SCM Resources (tools, physical resources, and human
resources)

 SCMP Maintenance
1.5. Surveillance of Software Configuration

Management
[Pau93 :L2-87]

After the SCM process has been implemented, some degree
of surveillance may be necessary to ensure that the
provisions of the SCMP are properly carried out (see, for
example [Buc96]). There are likely to be specific SQA
requirements for ensuring compliance with specified SCM
processes and procedures. This could involve an SCM
authority ensuring that those with the assigned
responsibility perform the defined SCM tasks correctly.

The software quality assurance authority, as part of a
compliance auditing activity, might also perform this
surveillance.
The use of integrated SCM tools with process control
capability can make the surveillance task easier. Some tools
facilitate process compliance while providing flexibility for
the software engineer to adapt procedures. Other tools
enforce process, leaving the software engineer with less
flexibility. Surveillance requirements and the level of
flexibility to be provided to the software engineer are
important considerations in tool selection.

1.5.1. SCM measures and measurement
[Buc96:c3; Roy98]

SCM measures can be designed to provide specific
information on the evolving product or to provide insight
into the functioning of the SCM process. A related goal of
monitoring the SCM process is to discover opportunities
for process improvement. Measurements of SCM processes
provide a good means for monitoring the effectiveness of
SCM activities on an ongoing basis. These measurements
are useful in characterizing the current state of the process,
as well as in providing a basis for making comparisons over
time. Analysis of the measurements may produce insights
leading to process changes and corresponding updates to
the SCMP.
Software libraries and the various SCM tool capabilities
provide sources for extracting information about the
characteristics of the SCM process (as well as providing
project and management information). For example,
information about the time required to accomplish various
types of changes would be useful in an evaluation of the
criteria for determining what levels of authority are optimal
for authorizing certain types of changes.
Care must be taken to keep the focus of the surveillance on
the insights that can be gained from the measurements, not
on the measurements themselves. Discussion of process
and product measurement is presented in the Software
Engineering Process KA. The software measurement
program is described in the Software Engineering
Management KA.

1.5.2. In-process audits of SCM
[Buc96:c15]

Audits can be carried out during the software engineering
process to investigate the current status of specific elements
of the configuration or to assess the implementation of the
SCM process. In-process auditing of SCM provides a more
formal mechanism for monitoring selected aspects of the
process and may be coordinated with the SQA function.
See also sub-area 5. Software Configuration Auditing.

 7–6 © IEEE – 2004 Version

2. Software Configuration Identification
[IEEE12207.0-96 :c6s2.2]

The software configuration identification activity identifies
items to be controlled, establishes identification schemes
for the items and their versions, and establishes the tools
and techniques to be used in acquiring and managing
controlled items. These activities provide the basis for the
other SCM activities.
2.1. Identifying Items to be Controlled

[Ber92 :c8; IEEE828-98:c4s3.1; Pau93 :L2-83;
Som05:c29]

A first step in controlling change is to identify the software
items to be controlled. This involves understanding the
software configuration within the context of the system
configuration, selecting software configuration items,
developing a strategy for labeling software items and
describing their relationships, and identifying the baselines
to be used, along with the procedure for a baseline’s
acquisition of the items.

2.1.1. Software configuration
[Buc96:c4; c6, Pre04:c27]

A software configuration is the set of functional and
physical characteristics of software as set forth in the
technical documentation or achieved in a product
(IEEE610.12-90). It can be viewed as a part of an overall
system configuration.

2.1.2. Software configuration item
[Buc96:c4;c6; Con98:c2; Pre04:c27]

A software configuration item (SCI) is an aggregation of
software designated for configuration management, and is
treated as a single entity in the SCM process (IEEE610.12-
90). A variety of items, in addition to the code itself, are
typically controlled by SCM. Software items with potential
to become SCIs include plans, specifications and design
documentation, testing materials, software tools, source and
executable code, code libraries, data and data dictionaries,
and documentation for installation, maintenance,
operations, and software use.
Selecting SCIs is an important process in which a balance
must be achieved between providing adequate visibility for
project control purposes and providing a manageable
number of controlled items. A list of criteria for SCI
selection is given in [Ber92].

2.1.3. Software configuration item relationships
[Con98:c2; Pre04:c27]

The structural relationships among the selected SCIs, and
their constituent parts, affect other SCM activities or tasks,
such as software building or analyzing the impact of
proposed changes. Proper tracking of these relationships is
also important for supporting traceability. The design of the
identification scheme for SCIs should consider the need to
map the identified items to the software structure, as well as

the need to support the evolution of the software items and
their relationships.

2.1.4. Software version
[Bab86:c2]

Software items evolve as a software project proceeds. A
version of a software item is a particular identified and
specified item. It can be thought of as a state of an evolving
item. [Con98:c3-c5] A revision is a new version of an item
that is intended to replace the old version of the item. A
variant is a new version of an item that will be added to the
configuration without replacing the old version.

2.1.5. Baseline
[Bab86:c5; Buc96:c4; Pre04:c27]

A software baseline is a set of software configuration items
formally designated and fixed at a specific time during the
software life cycle. The term is also used to refer to a
particular version of a software configuration item that has
been agreed on. In either case, the baseline can only be
changed through formal change control procedures. A
baseline, together with all approved changes to the
baseline, represents the current approved configuration.
Commonly used baselines are the functional, allocated,
developmental, and product baselines (see, for example,
[Ber92]). The functional baseline corresponds to the
reviewed system requirements. The allocated baseline
corresponds to the reviewed software requirements
specification and software interface requirements
specification. The developmental baseline represents the
evolving software configuration at selected times during the
software life cycle. Change authority for this baseline
typically rests primarily with the development organization,
but may be shared with other organizations (for example,
SCM or Test). The product baseline corresponds to the
completed software product delivered for system
integration. The baselines to be used for a given project,
along with their associated levels of authority needed for
change approval, are typically identified in the SCMP.

2.1.6. Acquiring software configuration items
[Buc96:c4]

Software configuration items are placed under SCM control
at different times; that is, they are incorporated into a
particular baseline at a particular point in the software life
cycle. The triggering event is the completion of some form
of formal acceptance task, such as a formal review. Figure
2 characterizes the growth of baselined items as the life
cycle proceeds. This figure is based on the waterfall model
for purposes of illustration only; the subscripts used in the
figure indicate versions of the evolving items. The software
change request (SCR) is described in topic 3.1 Requesting,
Evaluating, and Approving Software Changes.

© IEEE – 2004 Version 7–7

SRSA SRSB

SDDA

SRSC

SDDB

CodeA

Test
PlansA

SRSD

SDDC

CodeB

Test
PlansB

User
ManualA

Regression
Test DBA

Requirements
 Review

Design
 Review

Test Readiness
 Review

Acceptance

SCR control
of SRS
models

SCR control
of SRS, SDD
models

SCR control
of SRS, SDD
Code, Test
Plans

Figure 4 Acquisition of items
Following the acquisition of an SCI, changes to the item
must be formally approved as appropriate for the SCI and
the baseline involved, as defined in the SCMP. Following
approval, the item is incorporated into the software baseline
according to the appropriate procedure.
2.2. Software Library

[Bab86 :c2 ;c5; Buc96 :c4; IEEE828-
98:c4s3.1;Pau93:L2-82; Som01:c29]

A software library is a controlled collection of software and
related documentation designed to aid in software
development, use, and maintenance (IEEE610.12-90). It is
also instrumental in software release management and
delivery activities. Several types of libraries might be used,
each corresponding to a particular level of maturity of the
software item. For example, a working library could
support coding and a project support library could support
testing, while a master library could be used for finished
products. An appropriate level of SCM control (associated
baseline and level of authority for change) is associated
with each library. Security, in terms of access control and
the backup facilities, is a key aspect of library management.
A model of a software library is described in [Ber92:c14].
The tool(s) used for each library must support the SCM
control needs for that library, both in terms of controlling
SCIs and controlling access to the library. At the working
library level, this is a code management capability serving
developers, maintainers, and SCM. It is focused on
managing the versions of software items while supporting
the activities of multiple developers. At higher levels of
control, access is more restricted and SCM is the primary
user.
These libraries are also an important source of information
for measurements of work and progress.

3. Software Configuration Control

 [IEEE12207.0-96 :c6s2.3; Pau93 :L2-84]
Software configuration control is concerned with managing
changes during the software life cycle. It covers the process
for determining what changes to make, the authority for

approving certain changes, support for the implementation
of those changes, and the concept of formal deviations from
project requirements, as well as waivers of them.
Information derived from these activities is useful in
measuring change traffic and breakage, and aspects of
rework.
3.1. Requesting, Evaluating, and Approving Software

Changes
[IEEE828-98:c4s3.2; Pre04:c27; Som05:c29]

The first step in managing changes to controlled items is
determining what changes to make. The software change
request process (see Figure 5) provides formal procedures
for submitting and recording change requests, evaluating
the potential cost and impact of a proposed change, and
accepting, modifying, or rejecting the proposed change.
Requests for changes to software configuration items may
be originated by anyone at any point in the software life
cycle and may include a suggested solution and requested
priority. One source of change requests is the initiation of
corrective action in response to Problem Reports.
Regardless of the source, the type of change (for example,
defect or enhancement) is usually recorded on the SCR.

Need for
Change

Change
 identified for
controlled item

SCR generated
or updated

SCR evaluated incomplete

Preliminary
Investigation

CCB Review

Assign to
 Software
 Engineer

Schedule,
 design, test,
complete change

Approved

Rejected Inform
Requester

‘Emergency Path’
usually also exists.

Changes can be
implemented with
change process
performed afterward

complete
Figure 5 Flow of a Change Control Process

This provides an opportunity for tracking defects and
collecting change activity measurements by change type.
Once an SCR is received, a technical evaluation (also
known as an impact analysis) is performed to determine the
extent of the modifications that would be necessary should
the change request be accepted. A good understanding of
the relationships among software (and possibly, hardware)
items is important for this task. Finally, an established
authority, commensurate with the affected baseline, the SCI
involved, and the nature of the change, will evaluate the
technical and managerial aspects of the change request and
either accept, modify, reject, or defer the proposed change.

3.1.1. Software Configuration Control Board
[Ber92:c9; Buc96:c9,c11; Pre04:c27]

The authority for accepting or rejecting proposed changes
rests with an entity typically known as a Configuration
Control Board (CCB). In smaller projects, this authority
may actually reside with the leader or an assigned
individual rather than a multi-person board. There can be
multiple levels of change authority depending on a variety

 7–8 © IEEE – 2004 Version

of criteria, such as the criticality of the item involved, the
nature of the change (for example, impact on budget and
schedule), or the current point in the life cycle. The
composition of the CCBs used for a given system varies
depending on these criteria (an SCM representative would
always be present). All stakeholders, appropriate to the
level of the CCB, are represented. When the scope of
authority of a CCB is strictly software, it is known as a
Software Configuration Control Board (SCCB). The
activities of the CCB are typically subject to software
quality audit or review.

3.1.2. Software change request process
[Buc96:c9,c11; Pre04:c27]

An effective software change request (SCR) process
requires the use of supporting tools and procedures ranging
from paper forms and a documented procedure to an
electronic tool for originating change requests, enforcing
the flow of the change process, capturing CCB decisions,
and reporting change process information. A link between
this tool capability and the problem reporting system can
facilitate the tracking of solutions for reported problems.
Change process descriptions and supporting forms
(information) are given in a variety of references, for
example [Ber92:c9].
3.2. Implementing Software Changes

[Bab86 :c6; Ber92 :c9; Buc96 :c9,c11; IEEE828-
98:c4s3.2.4; Pre04:c27; Som05:c29]

Approved SCRs are implemented using the defined
software procedures in accordance with the applicable
schedule requirements. Since a number of approved SCRs
might be implemented simultaneously, it is necessary to
provide a means for tracking which SCRs are incorporated
into particular software versions and baselines. As part of
the closure of the change process, completed changes may
undergo configuration audits and software quality
verification. This includes ensuring that only approved
changes have been made. The change request process
described above will typically document the SCM (and
other) approval information for the change.
The actual implementation of a change is supported by the
library tool capabilities, which provide version
management and code repository support. At a minimum,
these tools provide check-in/out and associated version
control capabilities. More powerful tools can support
parallel development and geographically distributed
environments. These tools may be manifested as separate
specialized applications under the control of an independent
SCM group. They may also appear as an integrated part of
the software engineering environment. Finally, they may be
as elementary as a rudimentary change control system
provided with an operating system.
3.3. Deviations and Waivers

[Ber92 :c9; Buc96 :c12]
The constraints imposed on a software engineering effort or
the specifications produced during the development

activities might contain provisions which cannot be
satisfied at the designated point in the life cycle. A
deviation is an authorization to depart from a provision
prior to the development of the item. A waiver is an
authorization to use an item, following its development,
that departs from the provision in some way. In these cases,
a formal process is used for gaining approval for deviations
from, or waivers of, the provisions.

4. Software Configuration Status Accounting
[IEEE12207.0-96 :c6s2.4; Pau93 :L2-85; Pre04:c27;
Som05:c29]

Software configuration status accounting (SCSA) is the
recording and reporting of information needed for effective
management of the software configuration.
4.1. Software Configuration Status Information

[Buc96 :c13; IEEE828-98:c4s3.3]
The SCSA activity designs and operates a system for the
capture and reporting of necessary information as the life
cycle proceeds. As in any information system, the
configuration status information to be managed for the
evolving configurations must be identified, collected, and
maintained. Various information and measurements are
needed to support the SCM process and to meet the
configuration status reporting needs of management,
software engineering, and other related activities. The types
of information available include the approved configuration
identification, as well as the identification and current
implementation status of changes, deviations, and waivers.
A partial list of important data elements is given in
[Ber92:c10].
Some form of automated tool support is necessary to
accomplish the SCSA data collection and reporting tasks.
This could be a database capability, or it could be a stand-
alone tool or a capability of a larger, integrated tool
environment.
4.2. Software Configuration Status Reporting

[Ber92 :c10; Buc96 :c13]
Reported information can be used by various organizational
and project elements, including the development team, the
maintenance team, project management, and software
quality activities. Reporting can take the form of ad hoc
queries to answer specific questions or the periodic
production of pre-designed reports. Some information
produced by the status accounting activity during the
course of the life cycle might become quality assurance
records.
In addition to reporting the current status of the
configuration, the information obtained by the SCSA can
serve as a basis for various measurements of interest to
management, development, and SCM. Examples include
the number of change requests per SCI and the average
time needed to implement a change request.

© IEEE – 2004 Version 7–9

5. Software Configuration Auditing

[IEEE828-98:c4s3.4; IEEE12207.0-96 :c6s2.5;
Pau93 :L2-86; Pre04:c276c27]

A software audit is an activity performed to independently
evaluate the conformance of software products and
processes to applicable regulations, standards, guidelines,
plans, and procedures (IEEE1028-97). Audits are
conducted according to a well-defined process consisting of
various auditor roles and responsibilities. Consequently,
each audit must be carefully planned. An audit can require
a number of individuals to perform a variety of tasks over a
fairly short period of time. Tools to support the planning
and conduct of an audit can greatly facilitate the process.
Guidance for conducting software audits is available in
various references, such as [Ber92:c11; Buc96:c15] and
(IEEE1028-97).
The software configuration auditing activity determines the
extent to which an item satisfies the required functional and
physical characteristics. Informal audits of this type can be
conducted at key points in the life cycle. Two types of
formal audits might be required by the governing contract
(for example, in contracts covering critical software): the
Functional Configuration Audit (FCA) and the Physical
Configuration Audit (PCA). Successful completion of
these audits can be a prerequisite for the establishment of
the product baseline. Buckley [Buc96:c15] contrasts the
purposes of the FCA and PCA in hardware versus software
contexts, and recommends careful evaluation of the need
for a software FCA and PCA before performing them.
5.1. Software Functional Configuration Audit
The purpose of the software FCA is to ensure that the
audited software item is consistent with its governing
specifications. The output of the software verification and
validation activities is a key input to this audit.
5.2. Software Physical Configuration Audit
The purpose of the software physical configuration audit
(PCA) is to ensure that the design and reference
documentation is consistent with the as-built software
product.
5.3. In-process Audits of a Software Baseline
As mentioned above, audits can be carried out during the
development process to investigate the current status of
specific elements of the configuration. In this case, an audit
could be applied to sampled baseline items to ensure that
performance is consistent with specifications or to ensure
that evolving documentation continues to be consistent with
the developing baseline item.

6. Software Release Management and Delivery

 [IEEE12207.0-96:c6s2.6]
The term “release” is used in this context to refer to the
distribution of a software configuration item outside the
development activity. This includes internal releases as

well as distribution to customers. When different versions
of a software item are available for delivery, such as
versions for different platforms or versions with varying
capabilities, it is frequently necessary to recreate specific
versions and package the correct materials for delivery of
the version. The software library is a key element in
accomplishing release and delivery tasks.
6.1. Software Building

[Bab86 :c6; Som05:c29]
Software building is the activity of combining the correct
versions of software configuration items, using the
appropriate configuration data, into an executable program
for delivery to a customer or other recipient, such as the
testing activity. For systems with hardware or firmware, the
executable program is delivered to the system building
activity. Build instructions ensure that the proper build
steps are taken and in the correct sequence. In addition to
building software for new releases, it is usually also
necessary for SCM to have the capability to reproduce
previous releases for recovery, testing, maintenance or
additional release purposes.
Software is built using particular versions of supporting
tools, such as compilers. It might be necessary to rebuild an
exact copy of a previously built software configuration
item. In this case, the supporting tools and associated build
instructions need to be under SCM control to ensure
availability of the correct versions of the tools.
A tool capability is useful for selecting the correct versions
of software items for a given target environment and for
automating the process of building the software from the
selected versions and appropriate configuration data. For
large projects with parallel development or distributed
development environments, this tool capability is
necessary. Most software engineering environments
provide this capability. These tools vary in complexity from
requiring the software engineer to learn a specialized
scripting language to graphics-oriented approaches that
hide much of the complexity of an “intelligent” build
facility.
The build process and products are often subject to
software quality verification. Outputs of the build process
might be needed for future reference and may become
quality assurance records.
6.2. Software Release Management

[Som05:c29]
Software release management encompasses the
identification, packaging, and delivery of the elements of a
product, for example, executable program, documentation,
release notes, and configuration data. Given that product
changes can occur on a continuing basis, one concern for
release management is determining when to issue a release.
The severity of the problems addressed by the release and
measurements of the fault densities of prior releases affect
this decision. (Som01) The packaging task must identify
which product items are to be delivered, and then select the

 7–10 © IEEE – 2004 Version

correct variants of those items, given the intended
application of the product. The information documenting
the physical contents of a release is known as a version
description document. The release notes typically describe
new capabilities, known problems, and platform
requirements necessary for proper product operation. The
package to be released also contains installation or
upgrading instructions. The latter can be complicated by the
fact that some current users might have versions that are
several releases old. Finally, in some cases, the release
management activity might be required to track the
distribution of the product to various customers or target

systems. An example would be a case where the supplier
was required to notify a customer of newly reported
problems.
A tool capability is needed for supporting these release
management functions. It is useful to have a connection
with the tool capability supporting the change request
process in order to map release contents to the SCRs that
have been received. This tool capability might also
maintain information on various target platforms and on
various customer environments.

© IEEE – 2004 Version 7–11

MATRIX OF TOPICS VS. REFERENCE MATERIAL

[B
ab

86
]

[B
er

92
]

[B
uc

96
]

[C
on

98
]

[D
ar

90
]

[I
E

E
E

82
8-

98
]

[I
E

E
E

12
20

7.
0-

96
]

[M
id

97
]

[M
oo

98
]

[P
au

93
]

[P
re

04
]

[R
oy

98
]

[S
om

05
]

1. Management of the SCM Process
1.1 Organizational Context for SCM c4 c2 c2 c4s2.1
1.2 Constraints and Guidance for SCM Process c5 c4s1, c4s2.3 *
1.3 Planning for SCM c2 6.2.1 c29
 SCM organization and responsibilities c7 c3 c4s2

 SCM resources and schedules c7 c3 c4s4, c4s5

 Tool selection and implementation c15 c6 c3, App A * *

 Vendor/subcontractor control c13 c11 c4s3.6

 Interface control c12 c4s3.5

1.4 SCM Plan c7 c3 c4 L2-81
1.5 Surveillance of SCM * c4 L2-87

 SCM measures and measurement c3 188-202, 283-298

 In-process audits of SCM c15

2. Software Configuration Identification c6s2.2
2.1 Identifying Items to be Controlled c8 c4s3.1 L2-83 c29

 Software configuration c4,c6 c27

 Software configuration item * c4,c6 c2 c27
 Software configuration item relationships c2 c27
 Software versions c2 c27
 Baseline c5 * c4 c27
 Acquiring software configuration items c4
2.2 Software Library c2,c5 c14 c4 c4s3.1 L2-82 c29

3. Software Configuration Control c6s2.3 L2-84
3.1 Requesting, Evaluating and Approving Software Changes c4s3.2 c27 c29

 Software configuration control board c9 c9,c11 c27

 Software change request process c9 c9,c11 c27

3.2 Implementing Software Changes c6 c9 c9,c11 c4s3.2.4 c27 c29

3.3 Deviations and Waivers c9 c12

4. Software Configuration Status Accounting c6s2.4 L2-85 c27 c29
4.1 Software Configuration Status Information c10 c13 c4s3.3
4.2 Software Configuration Status Reporting c10 c13

5. Software Configuration Auditing c11 c15 c4s3.4 c6s2.5 L2-86 c26, c27

 7–12 © IEEE – 2004 Version

RECOMMENDED REFERENCES FOR SCM

[Bab86] W. A. Babich, Software Configuration
Management, Coordination for Team Productivity:
Addison-Wesley, 1986.
[Ber92] H. R. Berlack, Software Configuration
Management. New York: John Wiley & Sons, 1992.
[Buc96] F. J. Buckley, Implementing Configuration
Management: Hardware, Software, and Firmware, Second
ed. Los Alamitos, CA: IEEE Computer Society Press,
1996.
[Con98] R. Conradi and B. Westfechtel, "Version Models
for Software Configuration Management," ACM
Computing Surveys, vol. 30, iss. 2, June, 1998
[Dar90] S. A. Dart, Spectrum of Functionality in
Configuration Management Systems. Carnegie Mellon
University: Software Engineering Institute, 1990.
[IEEE828-98] IEEE Std 828-1998, IEEE Standard for
Software Configuration Management Plans: IEEE, 1998.
[IEEE12207.0-96] IEEE/EIA 12207.0-

1996//ISO/IEC12207:1995, Industry Implementation of Int.
Std. ISO/IEC 12207:95, Standard for Information
Technology-Software Life Cycle Processes, vol. IEEE,
1996.
[Mid97] A. K. Midha, "Software Configuration
Management for the 21st Century," Bell Labs Technical
Journal, vol. 2, iss. 1, 154-165, Winter, 1997
[Moo98] J. W. Moore, Software Engineering Standards, A
User's Roadmap. Los Alamitos, CA: IEEE Computer
Society, 1998.
[Pau93] M. C. Paulk and al, "Key Practices of the
Capability Maturity Model, Version 1.1," Software
Engineering Institute, Carnegie Mellon University,
Technical Report CMU/SEI-93-TR-025, 1993
[Pre04] R. S. Pressman, Software Engineering: A
Practitioner's Approach, Sixth ed: McGraw-Hill, 2004.
[Roy98] W. Royce, Software Project Management, A
United Framework: Addison-Wesley, 1998.
[Som05] I. Sommerville, Software Engineering, Seventh
ed: Addison-Wesley, 2005.

© IEEE – 2004 Version 7–13

APPENDIX A. LIST OF FURTHER READINGS

(Bab86) W. A. Babich, Software Configuration
Management, Coordination for Team Productivity:
Addison-Wesley, 1986.
(Ber92) H. R. Berlack, Software Configuration
Management. New York: John Wiley & Sons, 1992.
(Ber97) E. H. Bersoff, "Elements of Software
Configuration Management," in Software Engineering, M.
Dorfman and R. H. Thayer, Eds. Los Alamitos, CA: IEEE
Computer Society Press, 1997.
(Buc96) F. J. Buckley, Implementing Configuration
Management: Hardware, Software, and Firmware, Second
ed. Los Alamitos, CA: IEEE Computer Society Press,
1996.
(ElE98) K. El-Emam and al, "SPICE, The Theory and
Practice of Software Process Improvement and Capability
Determination," presented at IEEE Computer Society, Los
Alamitos, CA, 1998
(Est95) J. Estublier, "Software Configuration
Management," presented at ICSE SCM-4 and SCM-5
Workshops Selected Papers, Berlin, 1995
(Gra92) R. B. Grady, Practical Software Metrics for
project Management and Process Management: Prentice
Hall, Englewood Cliffs, NJ 07632, 1992.

(Hoe02) A. v. d. Hoek, "Configuration Management
Yellow Pages," 2002, available at
http://www.cmtoday.com/yp/configuration_management.ht
ml
(Hum89) W. Humphrey, Managing the Software Process:
Massachusetts: Addison Wesley, 1989.
(Pau95) M. C. Paulk and al, The Capability Maturity
Model, Guidelines for Improving the Software Process.
Reading, Massachusetts: Addison-Wesley, 1995.
(Som01a) I. Sommerville, "Software Configuration
Management," presented at ICSE SCM-6 Workshop,
Berlin, 2001
(USNRC1.169-97) USNRC Regulatory Guide 1.169,
"Configuration Management Plans for Digital Computer
Software Used in Safety Systems of Nuclear Power Plants,"
presented at U.S. Nuclear Regulatory Commission,
Washington DC, 1997
(Vin88) J. Vincent, A. Waters and J. Sinclair, Software
Quality Assurance: Practice and Implementation.
Englewood Cliffs, NJ: Prentice-Hall, 1988.
(Whi91) D. Whitgift, Methods and Tools for Software
Configuration Management. Chichester, England: John
Wiley & Sons, 1991.

 7–14 © IEEE – 2004 Version

APPENDIX B. LIST OF STANDARDS

(IEEE730-02) IEEE Std 730-2002, IEEE Standard for
Software Quality Assurance Plans: IEEE, 2002.
(IEEE828-98) IEEE Std 828-1998, IEEE Standard for
Software Configuration Management Plans: IEEE, 1998.
(IEEE1028-97) IEEE Std 1028-1997 (R2002), IEEE
Standard for Software Reviews: IEEE, 1997.
(IEEE12207.0-96) IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of Int.
Std. ISO/IEC 12207:95, Standard for Information
Technology-Software Life Cycle Processes, vol. IEEE,

1996.
(IEEE12207.1-96) IEEE/EIA 12207.1-1996, Industry
Implementation of Int. Std. ISO/IEC 12207:95, Standard
for Information Technology-Software Life Cycle Processes
- Life cycle data: IEEE, 1996.
(IEEE12207.2-97) IEEE/EIA 12207.2-1997, Industry
Implementation of Int. Std. ISO/IEC 12207:95, Standard
for Information Technology-Software Life Cycle Processes
- Implementation. Considerations: IEEE, 1997.
(ISO15846-98) ISO/IEC TR 15846:1998, Information
Technology - Software Life Cycle Processes -
Configuration Management. Geneva, Switzerland,: ISO
and IEC, 1998.

© IEEE – 2004 Version 8–1

CHAPTER 8
SOFTWARE ENGINEERING MANAGEMENT

ACRONYM

PMBOK Guide to the Project
Management Body of
Knowledge

SQA Software Quality Assurance

INTRODUCTION

Software Engineering Management can be defined as the
application of management activities–planning,
coordinating, measuring, monitoring, controlling, and
reporting–to ensure that the development and maintenance
of software is systematic, disciplined, and quantified
(IEEE610.12-90).
The Software Engineering Management KA therefore
addresses the management and measurement of software
engineering. While measurement is an important aspect of
all KAs, it is here that the topic of measurements programs
is presented.
While it is true to say that, in one sense it should be
possible to manage software engineering in the same way
as any other (complex) process, there are aspects specific to
software products and the software life cycle processes
which complicate effective management–just a few of
which are as follows:
 The perception of clients is such that there is often a

lack of appreciation for the complexity inherent in
software engineering, particularly in relation to the
impact of changing requirements.
 It is almost inevitable that the software engineering

processes themselves will generate the need for new or
changed client requirements.
 As a result, software is often built in an iterative process

rather than a sequence of closed tasks.
 Software engineering necessarily incorporates aspects

of creativity and discipline–maintaining an appropriate
balance between the two is often difficult.
 The degree of novelty and complexity of software is

often extremely high.
 There is a rapid rate of change in the underlying

technology.
With respect to software engineering, management
activities occur at three levels: organizational and
infrastructure management, project management, and
measurement program planning and control. The last two
are covered in detail in this KA description. However, this

is not to diminish the importance of organizational
management issues.
Since the link to the related disciplines–obviously
management–is important, it will be described in more
detail than in the other KA descriptions. Aspects of
organizational management are important in terms of their
impact on software engineering, policy management, for
instance: organizational policies and standards provide the
framework in which software engineering is undertaken.
These policies may need to be influenced by the
requirements of effective software development and
maintenance, and a number of software engineering-
specific policies may need to be established for effective
management of software engineering at an organizational
level. For example, policies are usually necessary to
establish specific organization-wide processes or
procedures for such software engineering tasks as
designing, implementing, estimating, tracking, and
reporting. Such policies are essential to effective long-term
software engineering management, by establishing a
consistent basis on which to analyze past performance and
implement improvements, for example.
Another important aspect of management is personnel
management: policies and procedures for hiring, training
and motivating personnel, and mentoring for career
development are important not only at the project level, but
also to the longer term success of an organization. Software
engineering personnel may present unique training or
personnel management challenges (for example,
maintaining currency in a context where the underlying
technology undergoes continuous and rapid change).
Communication management is also often mentioned as an
overlooked, but major aspect of the performance of
individuals in a field where precise understanding of user
needs and of complex requirements and designs is
necessary. Finally, portfolio management, which is the
capacity to have an overall vision not only of the set of
software under development, but also of the software
already in use in an organization, is necessary.
Furthermore, software reuse is a key factor in maintaining
and improving productivity and competitiveness. Effective
reuse requires a strategic vision that reflects the unique
power and requirements of this technique.
In addition to understanding the aspects of management
that are uniquely influenced by software, software
engineers must have some knowledge of the more general
aspects, even in the first four years after graduation that is
targeted in the Guide.

 8–2 © IEEE – 2004 Version

Organizational culture and behavior, and functional
enterprise management in terms of procurement, supply
chain management, marketing, sales, and distribution, all
have an influence, albeit indirectly, on an organization’s
software engineering process.
Relevant to this KA is the notion of project management, as
“the construction of useful software artifacts” is normally
managed in the form of (perhaps programs of) individual
projects. In this regard, we find extensive support in the
Guide to the Project Management Body of Knowledge
(PMBOK) (PMI00), which itself includes the following
project management KAs: project integration management,
project scope management, project time management,
project cost management, project quality management,
project human resource management, and project
communications management. Clearly, all these topics have
direct relevance to the Software Engineering Management
KA. To attempt to duplicate the content of the Guide to the
PMBOK here would be both impossible and inappropriate.
Instead, we suggest that the reader interested in project
management beyond what is specific to software
engineering projects consult the PMBOK itself. Project
management is also found in the Related Disciplines of
Software Engineering chapter.
The Software Engineering Management KA consists of
both the software project management process, in its first
five sub-areas, and software engineering measurement in
the last sub-area. While these two subjects are often
regarded as being separate, and indeed they do possess
many unique aspects, their close relationship has led to
their combined treatment in this KA. Unfortunately, a
common perception of the software industry is that it
delivers products late, over budget, and of poor quality and
uncertain functionality. Measurement-informed
management–an assumed principle of any true engineering
discipline–can help to turn this perception around. In
essence, management without measurement, qualitative and
quantitative, suggests a lack of rigor, and measurement
without management suggests a lack of purpose or context.
In the same way, however, management and measurement
without expert knowledge is equally ineffectual, so we
must be careful to avoid over-emphasizing the quantitative
aspects of Software Engineering Management (SEM).
Effective management requires a combination of both
numbers and experience.
The following working definitions are adopted here:
 Management process refers to the activities that are

undertaken in order to ensure that the software
engineering processes are performed in a manner
consistent with the organization’s policies, goals, and
standards.
 Measurement refers to the assignment of values and

labels to aspects of software engineering (products,
processes, and resources as defined by [Fen98]) and the
models that are derived from them, whether these

models are developed using statistical, expert
knowledge, or other techniques.

The software engineering project management sub-areas
makes extensive use of the software engineering
measurement sub-area.
Not unexpectedly, this KA is closely related to others in the
Guide to the SWEBOK, and reading the following KA
descriptions in conjunction with this one would be
particularly useful.
 Software Requirements, where some of the activities to

be performed during the Initiation and Scope definition
phase of the project are described
 Software Configuration Management, as this deals with

the identification, control, status accounting, and audit
of the software configuration, along with software
release management and delivery
 Software Engineering Process, because processes and

projects are closely related (this KA also describes
process and product measurement)
 Software Quality, as quality is constantly a goal of

management and is an aim of many activities that must
be managed

BREAKDOWN OF TOPICS FOR SOFTWARE ENGINEERING
MANAGEMENT

As the Software Engineering Management KA is viewed
here as an organizational process which incorporates the
notion of process and project management, we have created
a breakdown that is both topic-based and life cycle-based.
However, the primary basis for the top-level breakdown is
the process of managing a software engineering project.
There are six major sub-areas. The first five sub-areas
largely follow the IEEE/EIA 12207 Management Process.
The six sub-areas are:
 Initiation and scope definition, which deals with the

decision to initiate a software engineering project
 Software project planning, which addresses the

activities undertaken to prepare for a successful
software engineering, from a management perspective
 Software project enactment, which deals with generally

accepted software engineering management activities
that occur during software engineering
 Review and evaluation, which deal with assurance that

the software is satisfactory
 Closure, which addresses the post-completion activities

of a software engineering project
 Software engineering measurement, which deals with

the effective development and implementation of
measurement programs in software engineering
organizations (IEEE12207.0-96)

The Software Maintenance KA breakdown of topics is
shown in Figure 1.

© IEEE – 2004 Version 8–3

Process Planning

Determine
Deliverables

Effort, Schedule
and Cost
Estimation

Resource
Allocation

Risk
Management

Quality
Management

Plan
Management

Software Engineering
Management

Initiation and
Scope Definition

Determination
and Negotiation
of Requirements

Feasibility
Analysis

Process for the
Review and
Revision of
Requirements

Software Project
Enactment

Implementation
of Plans

Supplier
Contract
Management

Implementation
of Measurement
Process

Monitor Process

Control Process

Reporting

Review and
Evaluation

Determining
Satisfaction of
Requirements

Reviewing and
Evaluating
Performance

Closure

Determining
Closure

Closure
Activities

SW Engineering
Measurement

Establish and
Sustain
Measurement
Commitment
Plan the
Measurement
Process

Perform the
Measurement
Process

Evaluate
Measurement

Software Project
Planning

Figure 1 Breakdown of topics for the Software Engineering Management KA

Figure 1 Breakdown of topics for the Software Engineering Management KA

1. Initiation and Scope Definition

The focus of this set of activities is on the effective
determination of software requirements via various
elicitation methods and the assessment of the project’s
feasibility from a variety of standpoints. Once feasibility
has been established, the remaining task within this process
is the specification of requirements validation and change
procedures (see also the Software Requirements KA).
1.1. Determination and negotiation of requirements
 [Dor02: v2c4; Pfl01: c4; Pre04: c7; Som05: c5]

Software requirement methods for requirements elicitation
(for example, observation), analysis (for example, data
modeling, use-case modeling), specification, and validation
(for example, prototyping) must be selected and applied,
taking into account the various stakeholder perspectives.
This leads to the determination of project scope, objectives,
and constraints. This is always an important activity, as it
sets the visible boundaries for the set of tasks being
undertaken, and is particularly so where the novelty of the
undertaking is high. Additional information can be found in
the Software Requirements KA.

 8–4 © IEEE – 2004 Version

1.2. Feasibility analysis (technical, operational,
financial, social/political)

 [Pre04: c6; Som05: c6]
Software engineers? must be assured that adequate
capability and resources are available in the form of people,
expertise, facilities, infrastructure, and support (either
internally or externally) to ensure that the project can be
successfully completed in a timely and cost-effective
manner (using, for example, a requirement-capability
matrix). This often requires some ‘ball-park’ estimation of
effort and cost based on appropriate methods (for example,
expert-informed analogy techniques).
1.3. Process for the review and revision of requirements
Given the inevitability of change, it is vital that agreement
among stakeholders is reached at this early point as to the
means by which scope and requirements are to be reviewed
and revised (for example, via agreed change management
procedures). This clearly implies that scope and
requirements will not be ‘set in stone’, but can and should
be revisited at predetermined points as the process unfolds
(for example, at design reviews, management reviews). If
changes are accepted, then some form of traceability
analysis and risk analysis (see topic 2..5 Risk Management)
should be used to ascertain the impact of those changes. A
managed change approach should also be useful when it
comes time to review the outcome of the project, as the
scope and requirements should form the basis for the
evaluation of success. [Som05: c6] See also the software
configuration control sub-area of the Software
Configuration Management KA.

2. Software Project Planning

The iterative planning process is informed by the scope and
requirements and by the establishment of feasibility. At this
point, software life cycle processes are evaluated and the
most appropriate (given the nature of the project, its degree
of novelty, its functional and technical complexity, its
quality requirements, and so on) is selected. Where
relevant, the project itself is then planned in the form of a
hierarchical decomposition of tasks, the associated
deliverables of each task are specified and characterized in
terms of quality and other attributes in line with stated
requirements, and detailed effort, schedule, and cost
estimation is undertaken. Resources are then allocated to
tasks so as to optimize personnel productivity (at
individual, team, and organizational levels), equipment and
materials utilization, and adherence to schedule. Detailed
risk management is undertaken and the ‘risk profile’ of the
project is discussed among, and accepted by, all relevant
stakeholders. Comprehensive software quality management
processes are determined as part of the planning process in
the form of procedures and responsibilities for software
quality assurance, verification and validation, reviews, and
audits (see the Software Quality KA). As an iterative
process, it is vital that the processes and responsibilities for

ongoing plan management, review, and revision are also
clearly stated and agreed.
2.1. Process planning
Selection of the appropriate software life cycle model (for
example, spiral, evolutionary prototyping) and the
adaptation and deployment of appropriate software life
cycle processes are undertaken in light of the particular
scope and requirements of the project. Relevant methods
and tools are also selected. [Dor02: v1c6,v2c8; Pfl01: c2;
Pre04: c2; Rei02: c1,c3,c5; Som05: c3; Tha97: c3] At the
project level, appropriate methods and tools are used to
decompose the project into tasks, with associated inputs,
outputs, and completion conditions (for example, work
breakdown structure). [Dor02: v2c7; Pfl01: c3; Pre04: c21;
Rei02: c4,c5; Som05: c4; Tha97: c4,c6] This in turn
influences decisions on the project’s high-level schedule
and organization structure.
2.2. Determine deliverables
The product(s) of each task (for example, architectural
design, inspection report) are specified and characterized.
[Pfl01: c3; Pre04: c24; Tha97: c4] Opportunities to reuse
software components from previous developments or to
utilize off-the-shelf software products are evaluated. Use of
third parties and procured software are planned and
suppliers are selected.
2.3. Effort, schedule, and cost estimation
Based on the breakdown of tasks, inputs, and outputs, the
expected effort range required for each task is determined
using a calibrated estimation model based on historical
size-effort data where available and relevant, or other
methods like expert judgment. Task dependencies are
established and potential bottlenecks are identified using
suitable methods (for example, critical path analysis).
Bottlenecks are resolved where possible, and the expected
schedule of tasks with projected start times, durations, and
end times is produced (for example, PERT chart). Resource
requirements (people, tools) are translated into cost
estimates. [Dor02: v2c7; Fen98: c12; Pfl01: c3; Pre04: c23,
c24; Rei02: c5,c6; Som05: c4,c23; Tha97: c5] This is a
highly iterative activity which must be negotiated and
revised until consensus is reached among affected
stakeholders (primarily engineering and management).
2.4. Resource allocation
 [Pfl01: c3; Pre04: c24; Rei02: c8,c9; Som05: c4;
 Tha97: c6,c7]
Equipment, facilities, and people are associated with the
scheduled tasks, including the allocation of responsibilities
for completion (using, for example, a Gantt chart). This
activity is informed and constrained by the availability of
resources and their optimal use under these circumstances,
as well as by issues relating to personnel (for example,
productivity of individuals/teams, team dynamics,
organizational and team structures).

© IEEE – 2004 Version 8–5

2.5. Risk management
Risk identification and analysis (what can go wrong, how
and why, and what are the likely consequences), critical
risk assessment (which are the most significant risks in
terms of exposure, which can we do something about in
terms of leverage), risk mitigation and contingency
planning (formulating a strategy to deal with risks and to
manage the risk profile) are all undertaken. Risk
assessment methods (for example, decision trees and
process simulations) should be used in order to highlight
and evaluate risks. Project abandonment policies should
also be determined at this point in discussion with all other
stakeholders. [Dor02: v2c7; Pfl01: c3; Pre04: c25; Rei02:
c11; Som05: c4; Tha97: c4] Software-unique aspects of
risk, such as software engineers’ tendency to add unwanted
features or the risks attendant in software’s intangible
nature, must influence the project’s risk management.
2.6. Quality management
 [Dor02: v1c8,v2c3-c5; Pre04: c26; Rei02: c10;
 Som05: c24,c25; Tha97: c9,c10]
Quality is defined in terms of pertinent attributes of the
specific project and any associated product(s), perhaps in
both quantitative and qualitative terms. These quality
characteristics will have been determined in the
specification of detailed software requirements. See also
the Software Requirements KA.
Thresholds for adherence to quality are set for each
indicator as appropriate to stakeholder expectations for the
software at hand. Procedures relating to ongoing SQA
throughout the process and for product (deliverable)
verification and validation are also specified at this stage
(for example, technical reviews and inspections) (see also
the Software Quality KA).
2.7. Plan management
 [Som05: c4; Tha97: c4]
How the project will be managed and how the plan will be
managed must also be planned. Reporting, monitoring, and
control of the project must fit the selected software
engineering process and the realities of the project, and
must be reflected in the various artifacts that will be used
for managing it. But, in an environment where change is an
expectation rather than a shock, it is vital that plans are
themselves managed. This requires that adherence to plans
be systematically directed, monitored, reviewed, reported,
and, where appropriate, revised. Plans associated with other
management-oriented support processes (for example,
documentation, software configuration management, and
problem resolution) also need to be managed in the same
manner.

3. Software Project Enactment

The plans are then implemented, and the processes
embodied in the plans are enacted. Throughout, there is a
focus on adherence to the plans, with an overriding

expectation that such adherence will lead to the successful
satisfaction of stakeholder requirements and achievement
of the project objectives. Fundamental to enactment are the
ongoing management activities of measuring, monitoring,
controlling, and reporting.
3.1. Implementation of plans
 [Pfl01: c3; Som05: c4]
The project is initiated and the project activities are
undertaken according to the schedule. In the process,
resources are utilized (for example, personnel effort,
funding) and deliverables are produced (for example,
architectural design documents, test cases).
3.2. Supplier contract management
 [Som05:c4]
Prepare and execute agreements with suppliers, monitor
supplier performance, and accept supplier products,
incorporating them as appropriate.
3.3. Implementation of measurement process
 [Fen98: c13,c14; Pre04: c22; Rei02: c10,c12;
Tha97: c3,c10]
The measurement process is enacted alongside the software
project, ensuring that relevant and useful data are collected
(see also topics 6.2 Plan the Measurement Process and 6.3
Perform the Measurement Process).
3.4. Monitor process
 [Dor02: v1c8, v2c2-c5,c7; Rei02: c10;
 Som05: c25; Tha97: c3;c9]
Adherence to the various plans is assessed continually and
at predetermined intervals. Outputs and completion
conditions for each task are analyzed. Deliverables are
evaluated in terms of their required characteristics (for
example, via reviews and audits). Effort expenditure,
schedule adherence and costs to date are investigated, and
resource usage is examined. The project risk profile is
revisited, and adherence to quality requirements is
evaluated.
Measurement data are modeled and analyzed. Variance
analysis based on the deviation of actual from expected
outcomes and values is undertaken. This may be in the
form of cost overruns, schedule slippage, and the like.
Outlier identification and analysis of quality and other
measurement data is performed (for example, defect
density analysis). Risk exposure and leverage are
recalculated and decisions trees, simulations, and so on are
rerun in the light of new data. These activities enable
problem detection and exception identification based on
exceeded thresholds. Outcomes are reported as needed and
certainly where acceptable thresholds are surpassed.
3.5. Control process
 [Dor02: v2c7; Rei02: c10; Tha97: c3,c9]
The outcomes of the process monitoring activities provide
the basis on which action decisions are taken. Where

 8–6 © IEEE – 2004 Version

appropriate, and where the impact and associated risks are
modeled and managed, changes can be made to the project.
This may take the form of corrective action (for example,
retesting certain components), it may involve the
incorporation of contingencies so that similar occurrences
are avoided (for example, the decision to use prototyping to
assist in software requirements validation), and/or it may
entail the revision of the various plans and other project
documents (for example, requirements specification) to
accommodate the unexpected outcomes and their
implications.
In some instances, it may lead to abandonment of the
project. In all cases, change control and software
configuration management procedures are adhered to (see
also the Software Configuration Management KA),
decisions are documented and communicated to all relevant
parties, plans are revisited and revised where necessary,
and relevant data is recorded in the central database (see
also topic 6.3 Perform the Measurement Process).
3.6. Reporting
 [Rei02: c10; Tha97: c3,c10]
At specified and agreed periods, adherence to the plans is
reported, both within the organization (for example to the
project portfolio steering committee) and to external
stakeholders (for example clients, users). Reports of this
nature should focus on overall adherence, as opposed to the
detailed reporting required frequently within the project
team.

4. Review and Evaluation

At critical points in the project, overall progress towards
achievement of the stated objectives and satisfaction of
stakeholder requirements are evaluated. Similarly,
assessments of the effectiveness of the overall process to
date, the personnel involved, and the tools and methods
employed are also undertaken at particular milestones.
4.1. Determining satisfaction of requirements
 [Rei02: c10; Tha97: c3,c10]
Since attaining stakeholder (user and customer) satisfaction
is one of our principal aims, it is important that progress
towards this aim be formally and periodically assessed.
This occurs on achievement of major project milestones
(for example confirmation of software design architecture,
software integration technical review). Variances from
expectations are identified and appropriate action is taken.
As in the control process activity above (see topic 3.5
Control Process), in all cases change control and software
configuration management procedures are adhered to (see
the Software Configuration Management KA), decisions
are documented and communicated to all relevant parties,
plans are revisited and revised where necessary, and
relevant data are recorded in the central database (see also
topic 6.3 Perform the Measurement Process). More
information can also be found in the Software Testing KA,

in topic 2.2 Objectives of Testing and in the Software
Quality KA, in topic 2.3 Reviews and Audits.
4.2. Reviewing and evaluating performance
 [Dor02: v1c8,v2c3,c5; Pfl01: c8,c9;
 Rei02: c10; Tha97: c3,c10]
Periodic performance reviews for project personnel provide
insights as to the likelihood of adherence to plans as well as
possible areas of difficulty (for example, team member
conflicts). The various methods, tools, and techniques
employed are evaluated for their effectiveness and
appropriateness, and the process itself is systematically and
periodically assessed for its relevance, utility, and efficacy
in the project context. Where appropriate, changes are
made and managed.

5. Closure

The project reaches closure when all the plans and
embodied processes have been enacted and completed. At
this stage, the criteria for project success are revisited.
Once closure is established, archival, post mortem, and
process improvement activities are performed.
5.1. Determining closure
 [Dor02: v1c8,v2c3,c5; Rei02: c10; Tha97: c3,c10]
The tasks as specified in the plans are complete, and
satisfactory achievement of completion criteria is
confirmed. All planned products have been delivered with
acceptable characteristics. Requirements are checked off
and confirmed as satisfied, and the objectives of the project
have been achieved. These processes generally involve all
stakeholders and result in the documentation of client
acceptance and any remaining known problem reports.
5.2. Closure activities
 [Pfl01: c12; Som05: c4]
After closure has been confirmed, archival of project
materials takes place in line with stakeholder-agreed
methods, location, and duration. The organization’s
measurement database is updated with final project data
and post-project analyses are undertaken. A project post
mortem is undertaken so that issues, problems, and
opportunities encountered during the process (particularly
via review and evaluation, see sub-area 4.) are analyzed,
lessons are drawn from the process and fed into
organizational learning and improvement endeavors (see
also the Software Engineering Process KA).

6. Software Engineering Measurement

 [ISO15939-02]
The importance of measurement and its role in better
management practices is widely acknowledged, and so its
importance can only increase in the coming years. Effective
measurement has become one of the cornerstones of
organizational maturity.

© IEEE – 2004 Version 8–7

Key terms on software measures and measurement methods
have been defined in [ISO15939-02] on the basis of the
ISO international vocabulary of metrology [ISO93].
Nevertheless, readers will encounter terminology
differences in the literature; for example, the term
“metrics” is sometimes used in place of “measures”.
This topic follows international standard, ISO/IEC 15939,
which describes a process which defines the activities and
tasks necessary to implement a software measurement
process and includes, as well, a measurement information
model.
6.1. Establish and Sustain Measurement Commitment
 Accept requirements for measurement. Each

measurement endeavor should be guided by
organizational objectives and driven by a set of
measurement requirements established by the
organization and the project. For example, an
organizational objective might be “first-to-market with
new products”. [Fen98: c3,c13; Pre04: c22] This in
turn might engender a requirement that factors
contributing to this objective be measured so that
projects might be managed to meet this objective.
- Define scope of measurement. The organizational

unit to which each measurement requirement is to be
applied must be established. This may consist of a
functional area, a single project, a single site, or
even the whole enterprise. All subsequent
measurement tasks related to this requirement
should be within the defined scope. In addition, the
stakeholders should be identified.

- Commitment of management and staff to
measurement. The commitment must be formally
established, communicated, and supported by
resources (see next item).

 Commit resources for measurement. The organization’s
commitment to measurement is an essential factor for
success, as evidenced by assignment of resources for
implementing the measurement process. Assigning
resources includes allocation of responsibility for the
various tasks of the measurement process (such as user,
analyst, and librarian) and providing adequate funding,
training, tools, and support to conduct the process in an
enduring fashion.

6.2. Plan the Measurement Process
 Characterize the organizational unit. The organizational

unit provides the context for measurement, so it is
important to make this context explicit and to articulate
the assumptions that it embodies and the constraints that
it imposes. Characterization can be in terms of
organizational processes, application domains,
technology, and organizational interfaces. An
organizational process model is also typically an
element of the organizational unit characterization
[ISO15939-02: 5.2.1].

 Identify information needs. Information needs are based
on the goals, constraints, risks and problems of the
organizational unit. They may be derived from business,
organizational, regulatory, and/or product objectives.
They must be identified and prioritized. Then, a subset
to be addressed must be selected and the results
documented, communicated, and reviewed by
stakeholders [ISO15939-02: 5.2.2].
 Select measures. Candidate measures must be selected,

with clear links to the information needs. Measures
must then be selected based on the priorities of the
information needs and other criteria such as cost of
collection, degree of process disruption during
collection, ease of analysis, ease of obtaining accurate,
consistent data, and so on [ISO15939-02: 5.2.3 and
Appendix C].
 Define data collection, analysis, and reporting

procedures. This encompasses collection procedures
and schedules, storage, verification, analysis, reporting,
and configuration management of data [ISO15939-02:
5.2.4].
 Define criteria for evaluating the information products.

Criteria for evaluation are influenced by the technical
and business objectives of the organizational unit.
Information products include those associated with the
product being produced, as well as those associated
with the processes being used to manage and measure
the project [ISO15939-02: 5.2.5 and Appendices D, E].
 Review, approve, and provide resources for

measurement tasks.
- The measurement plan must be reviewed and

approved by the appropriate stakeholders. This
includes all data collection procedures, storage,
analysis, and reporting procedures; evaluation
criteria; schedules; and responsibilities. Criteria for
reviewing these artifacts should have been
established at the organizational unit level or higher
and should be used as the basis for these reviews.
Such criteria should take into consideration previous
experience, availability of resources, and potential
disruptions to projects when changes from current
practices are proposed. Approval demonstrates
commitment to the measurement process
[ISO15939-02: 5.2.6.1 and Appendix F].

- Resources should be made available for
implementing the planned and approved
measurement tasks. Resource availability may be
staged in cases where changes are to be piloted
before widespread deployment. Consideration
should be paid to the resources necessary for
successful deployment of new procedures or
measures [ISO15939-02: 5.2.6.2].

 Acquire and Deploy Supporting Technologies. This
includes evaluation of available supporting
technologies, selection of the most appropriate

 8–8 © IEEE – 2004 Version

technologies, acquisition of those technologies and
deployment of those technologies [ISO15939-02:
5.2.7].

6.3. Perform the Measurement Process
 Integrate measurement procedures with relevant

processes. The measurement procedures, such as data
collection, must be integrated into the processes they
are measuring. This may involve changing current
processes to accommodate data collection or generation
activities. It may also involve analysis of current
processes to minimize additional effort and evaluation
of the effect on employees to ensure that the
measurement procedures will be accepted. Morale
issues and other human factors need to be considered.
In addition, the measurement procedures must be
communicated to those providing the data, training may
need to be provided, and support must typically be
provided. Data analysis and reporting procedures must
typically be integrated into organizational and/or project
processes in a similar manner [ISO15939-02: 5.3.1].
 Collect data. The data must be collected, verified, and

stored [ISO15939-02 :5.3.2].
 Analyze data and develop information products. Data

may be aggregated, transformed, or re-coded as part of
the analysis process, using a degree of rigor appropriate
to the nature of the data and the information needs. The
results of this analysis are typically indicators such as
graphs, numbers, or other indications that must be
interpreted, resulting in initial conclusions to be
presented to stakeholders. The results and conclusions
must be reviewed, using a process defined by the
organization (which may be formal or informal). Data
providers and measurement users should participate in
reviewing the data to ensure that they are meaningful,
and accurate, and that they can result in reasonable
actions [ISO15939-02: 5.3.3 and Appendix G].

 Communicate results. Information products must be
documented and communicated to users and
stakeholders [ISO15939-02: 5.3.4].

6.4. Evaluate Measurement
 Evaluate information products. Evaluate information

products against specified evaluation criteria and
determine strengths and weaknesses of the information
products. This may be performed by an internal process
or an external audit and should include feedback from
measurement users. Record lessons learned in an
appropriate data base [ISO15939-02: 5.4.1 and
Appendix D].
 Evaluate the measurement process. Evaluate the

measurement process against specified evaluation
criteria and determine the strengths and weaknesses of
the process. This may be performed by an internal
process or an external audit and should include
feedback from measurement users. Record lessons
learned in an appropriate data base [ISO15939-02: 5.4.1
and Appendix D].
 Identify potential improvements. Such improvements

may be changes in the format of indicators, changes in
units measured, or reclassification of categories.
Determine the costs and benefits of potential
improvements and select appropriate improvement
actions. Communicate proposed improvements to the
measurement process owner and stakeholders for
review and approval. Also communicate lack of
potential improvements if the analysis fails to identify
improvements [ISO15939-02: 5.4.2].

© IEEE – 2004 Version 8–9

MATRIX OF TOPICS VS. REFERENCE MATERIAL

 [Dor02] [ISO15939-02] [Fen98] [Pfl01] [Pre04] [Rei02] [Som05] [Tha97]
1. Initiation and scope definition
1.1 Determination and negotiation of
requirements v2c4 c4 c7 c5

1.2 Feasibility analysis c6 c6

1.3 Process for the review and revision of
requirements c6

2. Software Project Planning

2.1 Process planning v1c6,v2c7,
v2c8 c2,c3 c2,c21 c1,c3,c5 c3,c4 c3,c4,c6

2.2 Determine deliverables c3 c24 c4

23 Effort, schedule and cost estimation v2c7 c12 c3 C23,c24 c5,c6 c4,c23 c5

2.4 Resource allocation c3 c24 c8,c9 c4 c6,c7

2.5 Risk management v2c7 c3 c25 c11 c4 c4

2.6 Quality management v1c8,v2c3-
c5 c26 c10 c24,c25 c9,c10

2.7 Plan management c4 c4

3. Software Project Enactment

3.1 Implementation of plans c3 c4

3.2 Supplier contract management c4

3.3 Implementation of measurement
process c13c,14 c22 c10,c12 c3,c10

3.4 Monitor process v1c8,v2c2-
c5,c7 c10 c25 c3,c9

3.5 Control process v2c7 c10 c3,c9

3.6 Reporting c10 c3,c10

4. Review and evaluation

4.1 Determining satisfaction of
requirements c10 c3,c10

4.2 Reviewing and evaluating performance v1c8,v2c3,
c5 c8,c9 c10 c3,c10

5. Closure

5.1 Determining closure v1c8,v2c3,
c5 c10 c3,c10

5.2 Closure activities c12 c4

6. Software Engineering Measurement *

6.1 Establish and sustain measurement
commitment c3,c13 c22

6.2 Plan the measurement process c5,C,D,E,F

6.3 Perform the measurement process c5,G

6.4 Evaluate measurement c5,D

 8–10 © IEEE – 2004 Version

RECOMMENDED REFERENCES FOR SOFTWARE
ENGINEERING MANAGEMENT

[Dor02] M. Dorfman and R. H. Thayer, Eds., "Software
Engineering." (Vol. 1 & vol. 2), IEEE Computer Society
Press, 2002, Vol. 1, Chap. 6, 8, Vol. 2, Chap. 3, 4, 5, 7, 8.
[Fen98] N. E. Fenton and S. L. Pfleeger, "Software
Metrics: A Rigorous & Practical Approach," Second ed:
International Thomson Computer Press, 1998, Chap. 1-14.
[ISO15939-02] ISO/IEC 15939:2002, Software
Engineering-Software Measurement Process: ISO and IEC,
2002.

[Pfl01] S. L. Pfleeger, "Software Engineering: Theory and
Practice," Second ed: Prentice-Hall, 2001, Chap 2-
4,8,9,12,13.
[Pre04] R. S. Pressman, "Software Engineering: A
Practitioner's Approach," Sixth ed: McGraw-Hill, 2004,
Chap. 2, 6, 7, 22-26.
[Rei02] D. J. Reifer, Ed., "Software Management." IEEE
Computer Society, 2002, Chap. 1-6, 7-12, 13.
[Som05] I. Sommerville, "Software Engineering," Seventh
ed: Addison-Wesley, 2005, Chap. 3-6, 23-25.
[Tha97] R. H. Thayer, Ed., "Software Engineering Project
Management." IEEE Computer Society, 1997, Chap. 1-10.

© IEEE – 2004 Version 8–11

APPENDIX A. LIST OF FURTHER READINGS

(Adl99) T. R. Adler, J. G. Leonard and R. K. Nordgren,
"Improving Risk Management: Moving from Risk
Elimination to Risk Avoidance," Information and Software
Technology, vol. 41, 29-34, 1999
(Bai98) R. Baines, "Across Disciplines: Risk, Design,
Method, Process, and Tools," IEEE Software, 61-64,
July/August, 1998
(Bin97) R. V. Binder, "Can a Manufacturing Quality Model
Work for Software?," IEEE Software, 101-102,105,
September/October, 1997
(Boe97) B. W. Boehm and T. DeMarco, "Software Risk
Management," IEEE Software, 17-19, May/June, 1997
(Bri96) L. C. Briand, S. Morasca and V. R. Basili,
"Property-Based Software Engineering Measurement,"
IEEE Transactions on Software Engineering, vol. 22, iss. 1,
68-86, 1996
(Bri96a) L. Briand, K. E. Emam and S. Morasca, "On the
Application of Measurement Theory in Software
Engineering," Empirical Software Engineering, vol. 1, 61-
88, 1996
(Bri97) L. C. Briand, S. Morasca and V. R. Basili,
"Response to: Comments on 'Property-based Software
Engineering Measurement: Refining the Addivity
Properties'," IEEE Transactions on Software Engineering,
vol. 23, iss. 3, 196-197, 1997
(Bro87) F. P. J. Brooks, "No Silver Bullet: Essence and
Accidents of Software Engineering," Computer, 10-19,
Apr., 1987
(Cap96) J. Capers, Applied Software Measurement:
Assuring Productivity and Quality, Second ed: McGraw-
Hill, Inc., 1996.
(Car97) M. J. Carr, "Risk Management May Not Be For
Everyone," IEEE Software, 21-24, May/June, 1997
(Cha96) R. N. Charette, "Large-Scale Project Management
is Risk Management," IEEE Software, 110-117, July, 1996
(Cha97) R. N. Charette, K. M. Adams and M. B. White,
"Managing Risk in Software Maintenance," IEEE Software,
43-50, May/June, 1997
(Col96) B. Collier, T. DeMarco and P. Fearey, "A Defined
Process for Project Postmortem Review," IEEE Software,
65-72, July, 1996
(Con97) E. H. Conrow and P. S. Shishido, "Implementing
Risk Management on Software Intensive Projects," IEEE
Software, 83-89, May/June, 1997
(Dav98) A. M. Davis, "Predictions and Farewells," IEEE
Software, 6-9, July/August, 1998
(Dem87) T. DeMarco and T. Lister, Peopleware:
Productive Projects and Teams: Dorset House Publishing,
1987.
(Dem96) T. DeMarco and A. Miller, "Managing Large
Software Projects," IEEE Software, 24-27, July, 1996
(Fav98) J. Favaro and S. L. Pfleeger, "Making Software
Development Investment Decisions," ACM SIGSoft
Software Engineering Notes, vol. 23, iss. 5, 69-74, 1998
(Fay96) M. E. Fayad and M. Cline, "Managing Object-

Oriented Software Development," Computer, 26-31,
September, 1996
(Fen98) N. E. Fenton and S. L. Pfleeger, Software Metrics:
A Rigorous & Practical Approach, Second ed: International
Thomson Computer Press, 1998.
(Fle99) R. Fleming, "A Fresh Perspective on Old
Problems," IEEE Software, 106-113, January/February,
1999
(Fug98) A. Fuggetta, L. Lavazza, S. Morasca, S. Cinti, G.
Oldano and E. Orazi, "Applying GQM in an Industrial
Software Factory," ACM Transactions on Software
Engineering and Methodology, vol. 7, iss. 4, 411-448, 1998
(Gar97) P. R. Garvey, D. J. Phair and J. A. Wilson, "An
Information Architecture for Risk Assessment and
Management," IEEE Software, 25-34, May/June, 1997
(Gem97) A. Gemmer, "Risk Management: Moving beyond
Process," Computer, 33-43, May, 1997
(Gla97) R. L. Glass, "The Ups and Downs of Programmer
Stress," Communications of the ACM, vol. 40, iss. 4, 17-19,
1997
(Gla98) R. L. Glass, "Short-Term and Long-Term
Remedies for Runaway Projects," Communications of the
ACM, vol. 41, iss. 7, 13-15, 1998
(Gla98a) R. L. Glass, "How Not to Prepare for a Consulting
Assignment, and Other Ugly Consultancy Truths,"
Communications of the ACM, vol. 41, iss. 12, 11-13, 1998
(Gla99) R. L. Glass, "The Realities of Software
Technology Payoffs," Communications of the ACM, vol.
42, iss. 2, 74-79, 1999
(Gra99) R. Grable, J. Jernigan, C. Pogue and D. Divis,
"Metrics for Small Projects: Experiences at the SED," IEEE
Software, 21-29, March/April, 1999
(Gra87) R. B. Grady and D. L. Caswell, Software Metrics:
Establishing A Company-Wide Program. Englewood Cliffs
NJ, USA: Prentice-Hall, 1987.
(Hal97) T. Hall and N. Fenton, "Implementing Effective
Software Metrics Programs," IEEE Software, 55-64,
Mar/Apr, 1997
(Hen99) S. M. Henry and K. T. Stevens, "Using Belbin's
Leadership Role to Improve Team Effectiveness: An
Empirical Investigation," Journal of Systems and Software,
vol. 44, 241-250, 1999
(Hoh99) L. Hohmann, "Coaching the Rookie Manager,"
IEEE Software, 16-19, January/February, 1999
(Hsi96) P. Hsia, "Making Software Development Visible,"
IEEE Software, 23-26, March, 1996
(Hum97) W. S. Humphrey, Managing Technical People:
Innovation, Teamwork, and the Software Process: Addison-
Wesley, 1997.
(IEEE12207.0-96) IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of Int.
Std. ISO/IEC 12207:95, Standard for Information
Technology-Software Life Cycle Processes, vol. IEEE,
1996.
(Jac98) M. Jackman, "Homeopathic Remedies for Team
Toxicity," IEEE Software, 43-45, July/August, 1998
(Kan97) K. Kansala, "Integrating Risk Assessment with

 8–12 © IEEE – 2004 Version

Cost Estimation," IEEE Software, 61-67, May/June, 1997
(Kar97) J. Karlsson and K. Ryan, "A Cost-Value Aproach
for Prioritizing Requirements," IEEE Software, 87-74,
September/October, 1997
(Kar96) D. W. Karolak, "Software Engineering Risk
Management," IEEE Computer Society, 1996
(Kau99) K. Kautz, "Making Sense of Measurement for
Small Organizations," IEEE Software, 14-20, March/April,
1999
(Kei98) M. Keil, P. E. Cule, K. Lyytinen and R. C.
Schmict, "A Framework for Identifying Software Project
Risks," Communications of the ACM, vol. 41, iss. 11, 76-
83, 1998
(Ker99) B. Kernighan and R. Pike, "Finding Performance
Improvements," IEEE Software, 61-65, March/April, 1999
(Kit97) B. Kitchenham and S. Linkman, "Estimates,
Uncertainty, and Risk," IEEE Software, 69-74, May/June,
1997
(Lat98) F. v. Latum, R. v. Solingen, M. Oivo, B. Hoisl,
D.Rombach and G. Ruhe, "Adopting GQM-Based
Measurement in an Industrial Environment," IEEE
Software, 78-86, January-February, 1998
(Leu96) H. K. N. Leung, "A Risk Index for Software
Producers," Software Maintenance: Research and Practice,
vol. 8, 281-294, 1996
(Lis97) T. Lister, "Risk Management is Project
Management for Adults," IEEE Software, 20-22, May/June,
1997
(Mac96) K. Mackey, "Why Bad Things Happen to Good
Projects," IEEE Software, 27-32, May, 1996
(Mac98) K. Mackey, "Beyond Dilbert: Creating Cultures
that Work," IEEE Software, 48-49, January/February, 1998
(Mad97) R. J. Madachy, "Heuristic Risk Assessment Using
Cost Factors," IEEE Software, 51-59, May/June, 1997
(McC96) S. C. McConell, Rapid Development: Taming
Wild Software Schedules: Microsoft Press, 1996.
(McC97) S. C. McConell, Software Project Survival Guide:
Microsoft Press, 1997.
(McC99) S. C. McConell, "Software Engineering
Principles," IEEE Software, 6-8, March/April, 1999
(Moy97) T. Moynihan, "How Experienced Project
Managers Assess Risk," IEEE Software, 35-41, May/June,
1997
(Ncs98) P. Ncsi, "Managing OO Projects Better," IEEE
Software, 50-60, July/August, 1998
(Nol99) A. J. Nolan, "Learning From Success," IEEE
Software, 97-105, January/February, 1999
(Off97) R. J. Offen and R. Jeffery, "Establishing Software

Measurement Programs," IEEE Software, 45-53, Mar/Apr,
1997
(Par96) K. V. C. Parris, "Implementing Accountability,"
IEEE Software, 83-93, July, 1996
(Pfl97) S. L. Pfleeger, "Assessing Measurement (Guest
Editor's Introduction)," IEEE Software, 25-26,
March/April, 1997
(Pfl97a) S. L. Pfleeger, R. Jeffery, B. Curtis and B.
Kitchenham, "Status Report on Software Measurement,"
IEEE Software, 33-43, March/April, 1997
(Put97) L. H. Putman and W. Myers, "Industrial Strength
Software - Effective Management Using Measurement,"
Los Alamitos, CA, 1997
(Rob99) P. N. Robillard, "The Role of Knowledge in
Software Development," Communications of the ACM, vol.
42, iss. 1, 87-92, 1999
(Rod97) A. G. Rodrigues and T. M. Williams, "System
Dynamics in Software Project Management: Towards the
Development of a Formal Integrated Framework,"
European Journal of Information Systems, vol. 6, 51-66,
1997
(Rop97) J. Ropponen and K. Lyytinen, "Can Software Risk
Management Improve System Development: An
Exploratory Study," European Journal of Information
Systems, vol. 6, 41-50, 1997
(Sch99) C. Schmidt, P. Dart, L. Johnston, L. Sterling and P.
Thorne, "Disincentives for Communicating Risk: A Risk
Paradox," Information and Software Technology, vol. 41,
403-411, 1999
(Sco92) R. L. v. Scoy, "Software Development Risk:
Opportunity, Not Problem," Software Engineering Institute,
Carnegie Mellon University CMU/SEI-92-TR-30, 1992
(Sla98) S. A. Slaughter, D. E. Harter and M. S. Krishnan,
"Evaluating the Cost of Software Quality,"
Communications of the ACM, vol. 41, iss. 8, 67-73, 1998
(Sol98) R. v. Solingen, R. Berghout and F. v. Latum,
"Interrupts: just a minute never is," IEEE Software, 97-103,
September/October, 1998
(Whi95) N. Whitten, Managing Software Development
Projects: Formulas for Success: Wiley, 1995.
(Wil99) B. Wiley, Essential System Requirements: A
Practical Guide to Event-Driven Methods: Addison-
Wesley, 1999.
(Zel98) M. V. Zelkowitz and D. R. Wallace, "Experimental
Models for Validating Technology," Computer, vol. 31, iss.
5, 23-31, 1998

© IEEE – 2004 Version 8–13

APPENDIX B. LIST OF STANDARDS

(IEEE610.12-90) IEEE Std 610.12-1990 (R2002), IEEE
Standard Glossary of Software Engineering Terminology:
IEEE, 1990.
(IEEE12207.0-96) IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of Int.
Std. ISO/IEC 12207:95, Standard for Information

Technology-Software Life Cycle Processes, vol. IEEE,
1996.
(ISO15939-02) ISO/IEC 15939:2002, Software
Engineering-Software Measurement Process: ISO and IEC,
2002.
 (PMI00) Project Management Institute Standards
Committee, A guide to the project management body of
knowledge (PMBOK): Project Management Institute, 2000.

 8–14 © IEEE – 2004 Version

© IEEE – 2004 Version 9–1

CHAPTER 9

SOFTWARE ENGINEERING PROCESS

ACRONYMS

CMMi Capability Maturity Model Integration
EF Experience Factory
FP Function Point
HRM Human Resources Management
IDEAL Initiating-Diagnosing-Establishing-

Acting-Leaning (model)
OMG Object Management Group
QIP Quality Improvement Paradigm
SCAMPI CMM Based Appraisal for Process Im-

provement using the CMMi
SCE Software Capability Evaluation
SEPG Software Engineering Process Group

INTRODUCTION
The Software Engineering Process KA can be examined on
two levels. The first level encompasses the technical and
managerial activities within the software life cycle proc-
esses that are performed during software acquisition, de-
velopment, maintenance, and retirement. The second is the
meta-level, which is concerned with the definition, imple-
mentation, assessment, measurement, management, change,
and improvement of the software life cycle processes them-
selves. The first level is covered by the other KAs in the
Guide. This KA is concerned with the second.

The term “software engineering process” can be interpreted
in different ways, and this may cause confusion.
 One meaning, where the word the is used, as in the

software engineering process, could imply that there is
only one right way of performing software engineering
tasks. This meaning is avoided in the Guide, because
no such process exists. Standards such as IEEE12207
speak of software engineering processes, meaning that
there are many processes involved, such as Develop-
ment Process or Configuration Management Process.

 A second meaning refers to the general discussion of
processes related to software engineering. This is the
meaning intended in the title of this KA, and the one
most often intended in the KA description.

 Finally, a third meaning could signify the actual set of
activities performed within an organization, which
could be viewed as one process, especially from within

the organization. This meaning is used in the KA in a
very few instances.

This KA applies to any part of the management of software
life cycle processes where procedural or technological
change is being introduced for process or product im-
provement.

Software engineering process is relevant not only to large
organizations. On the contrary, process-related activities
can, and have been, performed successfully by small or-
ganizations, teams, and individuals.

The objective of managing software life cycle processes is
to implement new or better processes in actual practices, be
they individual, project, or organizational.

This KA does not explicitly address human resources man-
agement (HRM), for example, as embodied in the People
CMM (Cur02) and systems engineering processes
[ISO1528-028; IEEE 1220-98].

It should also be recognized that many software engineer-
ing process issues are closely related to other disciplines,
such as management, albeit sometimes using a different
terminology.

BREAKDOWN OF TOPICS FOR SOFTWARE
ENGINEERING PROCESS
Figure 1 shows the breakdown of topics in this KA.

1. Process Implementation and Change
This sub-area focuses on organizational change. It de-
scribes the infrastructure, activities, models, and practical
considerations for process implementation and change.

Described here is the situation in which processes are de-
ployed for the first time (for example, introducing an in-
spection process within a project or a method covering the
complete life cycle), and where current processes are
changed (for example, introducing a tool, or optimizing a
procedure). This can also be termed process evolution. In
both instances, existing practices have to be modified. If the
modifications are extensive, then changes in the organiza-
tional culture may also be necessary.

 9–2 © IEEE – 2004 Version

Figure 1. Breakdown of topics for the Software Engineering Process KA

1.1. Process infrastructure
 [IEEE12207.0-96; ISO15504-98; SEL96]

This topic includes the knowledge related to the software
engineering process infrastructure.

To establish software life cycle processes, it is necessary to
have an appropriate infrastructure in place, meaning that
the resources must be available (competent staff, tools, and
funding) and the responsibilities assigned. When these
tasks have been completed, it is an indication of manage-
ment’s commitment to, and ownership of, the software en-
gineering process effort. Various committees may have to

be established, such as a steering committee to oversee the
software engineering process effort.

A description of an infrastructure for process improvement
in general is provided in [McF96]. Two main types of in-
frastructure are used in practice: the Software Engineering
Process Group and the Experience Factory.

1.1.1. Software Engineering Process Group (SEPG)
The SEPG is intended to be the central focus of software
engineering process improvement, and it has a number of
responsibilities in terms of initiating and sustaining it.
These are described in [Fow90].

Software
Engineering Process

Process
Implementation

and Change
Process

Definition
Process

Assessment

Process
Infrastructure

Software Process
Management
Cycle

Models for Process
Implementation and
Change

Practical
Considerations

Software Life Cycle
Models

Software Life
Cycle Processes

Notations for
Process
Definitions

Process Adaptation

Automation

Process Assessment
Models

Process
Assessment
Methods

Process and
Product

Measurement

Process Measurement

Software Products
Measurement

Quality of
Measurement Results

Software
Information Models

Process
Measurement
Techniques

© IEEE – 2004 Version 9–3

1.1.2. Experience Factory (EF)
The concept of the EF separates the project organization
(the software development organization, for example) from
the improvement organization. The project organization
focuses on the development and maintenance of software,
while the EF is concerned with software engineering proc-
ess improvement.
The EF is intended to institutionalize the collective learning
of an organization by developing, updating, and delivering
to the project organization experience packages (for exam-
ple, guides, models, and training courses), also referred to
as process assets. The project organization offers the EF
their products, the plans used in their development, and the
data gathered during development and operation. Examples
of experience packages are presented in [Bas92].
1.2. Software process management cycle
 [Bas92; Fow90; IEEE12207.0-96; ISO15504-98;
Mcf96; SEL96]

The management of software processes consists of four
activities sequenced in an iterative cycle allowing for con-
tinuous feedback and improvement of the software process:

 The Establish Process Infrastructure activity consists
of establishing commitment to process implementation
and change (including obtaining management buy-in),
and putting in place an appropriate infrastructure (re-
sources and responsibilities) to make it happen.

 The goal of the Planning activity is to understand the
current business objectives and process needs of the
individual, project, or organization, to identify its
strengths and weaknesses, and to make a plan for proc-
ess implementation and change.

 The goal of Process Implementation and Change is to
execute the plan, deploy new processes (which may
involve, for example, the deployment of tools and
training of staff), and/or change existing processes.

 Process Evaluation is concerned with finding out how
well the implementation and change went, whether or
not the expected benefits materialized. The results are
then used as input for subsequent cycles.

1.3. Models for process implementation and change
Two general models that have emerged for driving process
implementation and change are the Quality Improvement
Paradigm (QIP) [SEL96] and the IDEAL model [McF96].
The two paradigms are compared in [SEL96]. Evaluation of
process implementation and change outcomes can be quali-
tative or quantitative.

1.4. Practical considerations
Process implementation and change constitute an instance
of organizational change. Most successful organizational
change efforts treat the change as a project in its own right,
with appropriate plans, monitoring, and review.

Guidelines about process implementation and change
within software engineering organizations, including action
planning, training, management sponsorship and commit-
ment, and the selection of pilot projects, and which cover
both processes and tools, are given in [Moi98; San98;
Sti99]. Empirical studies on success factors for process
change are reported in (ElE99a).

The role of change agents in this activity is discussed in
(Hut94). Process implementation and change can also be
seen as an instance of consulting (either internal or exter-
nal).

One can also view organizational change from the perspec-
tive of technology transfer (Rog83). Software engineering
articles which discuss technology transfer and the charac-
teristics of recipients of new technology (which could in-
clude process-related technologies) are (Pfl99; Rag89).

There are two ways of approaching the evaluation of proc-
ess implementation and change, either in terms of changes
to the process itself or in terms of changes to the process
outcomes (for example, measuring the return on investment
from making the change). A pragmatic look at what can be
achieved from such evaluation studies is given in (Her98).

Overviews of how to evaluate process implementation and
change, and examples of studies that do so, can be found in
[Gol99], (Kit98; Kra99; McG94).

2. Process Definition
A process definition can be a procedure, a policy, or a stan-
dard. Software life cycle processes are defined for a num-
ber of reasons, including increasing the quality of the prod-
uct, facilitating human understanding and communication,
supporting process improvement, supporting process man-
agement, providing automated process guidance, and pro-
viding automated execution support. The types of process
definitions required will depend, at least partially, on the
reason for the definition.

It should also be noted that the context of the project and
organization will determine the type of process definition
that is most useful. Important variables to consider include
the nature of the work (for example, maintenance or devel-
opment), the application domain, the life cycle model, and
the maturity of the organization.

2.1. Software life cycle models
 [Pfl01:c2; IEEE12207.0-96]

Software life cycle models serve as a high-level definition
of the phases that occur during development. They are not
aimed at providing detailed definitions, but at highlighting
the key activities and their interdependencies. Examples of
software life cycle models are the waterfall model, the
throwaway prototyping model, evolutionary development,
incremental/iterative delivery, spiral model, reusable soft-
ware model, and automated software synthesis. Compari-

 9–4 © IEEE – 2004 Version

sons of these models are provided in [Com97], (Dav88),
and a method for selecting among many of them in (Ale91).

2.2. Software life cycle processes
Definitions of software life cycle processes tend to be more
detailed than software life cycle models. However, software
life cycle processes do not attempt to order their processes
in time. This means that, in principle, the software life cy-
cle processes can be arranged to fit any of the software life
cycle models. The main reference in this area is IEEE/EIA
12207.0: Information Technology – Software Life Cycle
Processes [IEEE12207.0-96].

The IEEE 1074:1997 standard on developing life cycle
processes also provides a list of processes and activities for
software development and maintenance [IEEE1074-97], as
well as a list of life cycle activities which can be mapped
into processes and organized in the same way as any of the
software life cycle models. In addition, it identifies and
links other IEEE software standards to these activities. In
principle, IEEE Std 1074 can be used to build processes
conforming to any of the life cycle models. Standards
which focus on maintenance processes are: IEEE Std 1219-
1998 and ISO 14764: 1998 [IEEE1219-98].

Other important standards providing process definitions
include:

 IEEE Std 1540: Software Risk Management
(IEEE1540-01)

 IEEE Std 1517: Software Reuse Processes (IEEE1517-
99)

 ISO/IEC 15939: Software Measurement Process
[ISO15939-02]. See also the Software Engineering
Management KA for a detailed description of this
process.

In some situations, software engineering processes must be
defined taking into account the organizational processes for
quality management. ISO 9001 [ISO9001-00] provides
requirements for quality management processes, and
ISO/IEC 90003 interprets those requirements for organiza-
tions developing software (ISO9003-04).

Some software life cycle processes emphasize rapid deliv-
ery and strong user participation, namely agile methods
such as Extreme Programming [Bec99]. A form of the se-
lection problem concerns the choice along the agile plan-
driven method axis. A risk-based approach to making that
decision is described in (Boe03a).

2.3. Notations for Process Definitions
Processes can be defined at different levels of abstraction
(for example, generic definitions vs. adapted definitions,
descriptive vs. prescriptive vs. proscriptive) [Pfl01]. Vari-
ous elements of a process can be defined, for example, ac-
tivities, products (artifacts), and resources. Detailed frame-
works which structure the types of information required to
define processes are described in (Mad94).

There are a number of notations being used to define proc-
esses (SPC92). A key difference between them is in the
type of information the frameworks mentioned above de-
fine, capture, and use. The software engineer should be
aware of the following approaches: data flow diagrams, in
terms of process purpose and outcomes [ISO15504-98], as
a list of processes decomposed into constituent activities
and tasks defined in natural language [IEEE12207.0-96],
Statecharts (Har98), ETVX (Rad85), Actor-Dependency
modeling (Yu94), SADT notation (Mcg93), Petri nets
(Ban95); IDEF0 (IEEE1320.1-98), and rule-based (Bar95).
More recently, a process modeling standard has been pub-
lished by the OMG which is intended to harmonize model-
ing notations. This is termed the SPEM (Software Process
Engineering Meta-Model) specification .[OMG02]

2.4. Process adaptation
 [IEEE12207.0-96; ISO15504-98; Joh99]
It is important to note that predefined processes–even stan-
dardized ones–must be adapted to local needs, for example,
organizational context, project size, regulatory require-
ments, industry practices, and corporate cultures. Some
standards, such as IEEE/EIA 12207, contain mechanisms
and recommendations for accomplishing the adaptation.

2.5. Automation
 [Pfl01:c2]

Automated tools either support the execution of the process
definitions or they provide guidance to humans performing
the defined processes. In cases where process analysis is
performed, some tools allow different types of simulations
(for example, discrete event simulation).

In addition, there are tools which support each of the above
process definition notations. Moreover, these tools can exe-
cute the process definitions to provide automated support to
the actual processes, or to fully automate them in some
instances. An overview of process-modeling tools can be
found in [Fin94] and of process-centered environments in
(Gar96). Work on applying the Internet to the provision of
real-time process guidance is described in (Kel98).

3. Process Assessment
Process assessment is carried out using both an assessment
model and an assessment method. In some instances, the
term “appraisal” is used instead of assessment, and the term
“capability evaluation” is used when the appraisal is for the
purpose of awarding a contract.

3.1. Process assessment models
An assessment model captures what is recognized as good
practices. These practices may pertain to technical software
engineering activities only, or may also refer to, for exam-
ple, management, systems engineering, and human re-
sources management activities as well.

ISO/IEC 15504 [ISO15504-98] defines an exemplar as-
sessment model and conformance requirements on other

© IEEE – 2004 Version 9–5

assessment models. Specific assessment models available
and in use are Sw-CMM (SEI95), CMMi [SEI01], and
Bootstrap [Sti99]. Many other capability and maturity
models have been defined, for example, for design, docu-
mentation, and formal methods, to name a few. ISO 9001 is
another common assessment model which has been applied
by software organizations (ISO9001-00).

A maturity model for systems engineering has also been
developed, which would be useful where a project or or-
ganization is involved in the development and maintenance
of systems, including software (EIA/IS731-99).

The applicability of assessment models to small organiza-
tions is addressed in [Joh99; San98].

There are two general architectures for an assessment
model that make different assumptions about the order in
which processes must be assessed: continuous and staged
(Pau94). They are very different, and should be evaluated
by the organization considering them to determine which
would be the most pertinent to their needs and objectives.

3.2. Process assessment methods
 [Gol99]

In order to perform an assessment, a specific assessment
method needs to be followed to produce a quantitative
score which characterizes the capability of the process (or
maturity of the organization).

The CBA-IPI assessment method, for example, focused on
process improvement (Dun96) and the SCE method fo-
cused on evaluating the capability of suppliers (Bar95).
Both of these were developed for the SW-CMM. Require-
ments on both types of methods which reflect what are be-
lieved to be good assessment practices are provided in
[ISO15504-98], (Mas95). The SCAMPI methods are
geared towards CMMi assessments [SEI01]. The activi-
ties performed during an assessment, the distribution of
effort on these activities, as well as the atmosphere during
an assessment are different when they are for improvement
than when they are for a contract award.

There have been criticisms of process assessment models
and methods, for example (Fay97; Gra98). Most of these
criticisms have been concerned with the empirical evidence
supporting the use of assessment models and methods.
However, since the publication of these articles, there has
been some systematic evidence supporting the efficacy of
process assessments. (Cla97; Ele00; Ele00a; Kri99)

4. Process and Product Measurement
While the application of measurement to software engineer-
ing can be complex, particularly in terms of modeling and
analysis methods, there are several aspects of software en-
gineering measurement which are fundamental and which
underlie many of the more advanced measurement and
analysis processes. Furthermore, achievement of process

and product improvement efforts can only be assessed if a
set of baseline measures has been established.

Measurement can be performed to support the initiation of
process implementation and change or to evaluate the con-
sequences of process implementation and change, or it can
be performed on the product itself.

Key terms on software measures and measurement methods
have been defined in ISO/IEC 15939 on the basis of the
ISO international vocabulary of metrology. ISO/IEC 15359
also provides a standard process for measuring both process
and product characteristics. [VIM93]

Nevertheless, readers will encounter terminological differ-
ences in the literature; for example, the term “metric” is
sometimes used in place of “measure”.

4.1. Process measurement
 [ISO15539-02]
The term “process measurement” as used here means that
quantitative information about the process is collected, ana-
lyzed, and interpreted. Measurement is used to identify the
strengths and weaknesses of processes, and to evaluate
processes after they have been implemented and/or
changed.

Process measurement may serve other purposes as well. For
example, process measurement is useful for managing a
software engineering project. Here, the focus is on process
measurement for the purpose of process implementation
and change.

The path diagram in Figure 2 illustrates an important as-
sumption made in most software engineering projects,
which is that usually the process has an impact on project
outcomes. The context affects the relationship between the
process and process outcomes. This means that this proc-
ess-to-process outcome relationship depends on the context.

Not every process will have a positive impact on all out-
comes. For example, the introduction of software inspec-
tions may reduce testing effort and cost, but may increase
elapsed time if each inspection introduces long delays due
to the scheduling of large inspection meetings. (Vot93)
Therefore, it is preferable to use multiple process outcome
measures which are important to the organization’s busi-
ness.

While some effort can be made to assess the utilization of
tools and hardware, the primary resource that needs to be
managed in software engineering is personnel. As a result,
the main measures of interest are those related to the pro-
ductivity of teams or processes (for example, using a meas-
ure of function points produced per unit of person-effort)
and their associated levels of experience in software engi-
neering in general, and perhaps in particular technologies.
[Fen98: c3, c11; Som05: c25]

Process outcomes could, for example, be product quality
(faults per KLOC (Kilo Lines of Code) or per Function

 9–6 © IEEE – 2004 Version

Point (FP)), maintainability (the effort to make a certain
type of change), productivity (LOC (Lines of Code) or
Function Points per person-month), time-to-market, or cus-
tomer satisfaction (as measured through a customer sur-
vey). This relationship depends on the particular context
(for example, size of the organization or size of the pro-
ject).

In general, we are most concerned about process outcomes.
However, in order to achieve the process outcomes that we
desire (for example, better quality, better maintainability,
greater customer satisfaction), we have to implement the
appropriate process.

Of course, it is not only the process that has an impact on
outcomes. Other factors, such as the capability of the staff
and the tools that are used, play an important role. When
evaluating the impact of a process change, for example, it is
important to factor out these other influences. Furthermore,
the extent to which the process is institutionalized (that is,
process fidelity) is important, as it may explain why “good”
processes do not always give the desired outcomes in a
given situation.

Process Process
Outcomes

Context

Figure 2 Path diagram showing the relationship between
process and outcomes (results).
4.2. Software product measurement
 [ISO9126-01]
Software product measurement includes, notably, the
measurement of product size, product structure, and prod-
uct quality.

4.2.1. Size measurement
Software product size is most often assessed by measures
of length (for example, lines of source code in a module,
pages in a software requirements specification document),
or functionality (for example, function points in a specifica-
tion). The principles of functional size measurement are
provided in IEEE Std. 14143.1. International standards for
functional size measurement methods include ISO/IEC
19761, 20926 and 20968 [IEEE14143.1-00; ISO19761-03;
ISO20926-03; ISO20968-02].

4.2.2. Structure measurement
A diverse range of measures of software product structure
may be applied to both high- and low-level design and code
artifacts to reflect control flow (for example the cyclomatic
number, code knots), data flow (for example, measures of
slicing), nesting (for example, the nesting polynomial
measure, the BAND measure), control structures (for ex-
ample, the vector measure, the NPATH measure), and
modular structure and interaction (for example, information
flow, tree-based measures, coupling and cohesion). [Fen98:
c8; Pre04: c15]
4.2.3. Quality measurement
As a multi-dimensional attribute, quality measurement is
less straightforward to define than those above. Further-
more, some of the dimensions of quality are likely to re-
quire measurement in qualitative rather than quantitative
form. A more detailed discussion of software quality meas-
urement is provided in the Software Quality KA, topic 4.4.
ISO models of software product quality and of related
measurements are described in ISO9126, parts 1 to 4
[ISO9126-01]. [Fen98: c9,c10; Pre04: c15; Som05: c24]
4.3. Quality of measurement results
The quality of the measurement results (accuracy, repro-
ducibility, repeatability, convertibility, random measure-
ment errors) is essential for the measurement programs to
provide effective and bounded results. Key characteristics
of measurement results and related quality of measuring
instruments have been defined in the ISO International vo-
cabulary on metrology. [VIM93]

The theory of measurement establishes the foundation on
which meaningful measurements can be made. The theory
of measurement and scale types is discussed in [Kan02].
Measurement is defined in the theory as “the assignment of
numbers to objects in a systematic way to represent proper-
ties of the object.”

An appreciation of software measurement scales and the
implications of each scale type in relation to the subsequent
selection of data analysis methods is especially important.

© IEEE – 2004 Version 9–7

4.4. Software information models
As the data are collected and the measurement repository is
populated, we become able to build models using both data
and knowledge.

These models exist for the purposes of analysis, classifica-
tion, and prediction. Such models need to be evaluated to
ensure that their levels of accuracy are sufficient and that
their limitations are known and understood. The refinement
of models, which takes place both during and after projects
are completed, is another important activity.

4.4.1. Model building
Model building includes both calibration and evaluation of
the model. The goal-driven approach to measurement in-
forms the model building process to the extent that models
are constructed to answer relevant questions and achieve
software improvement goals. This process is also influ-
enced by the implied limitations of particular measurement
scales in relation to the choice of analysis method. The
models are calibrated (by using particularly relevant obser-
vations, for example, recent projects, projects using similar
technology) and their effectiveness is evaluated (for exam-
ple, by testing their performance on holdout samples).
[Fen98: c4,c6,c13;Pfl01: c3,c11,c12; Som05: c25]
4.4.2. Model implementation
Model implementation includes both interpretation and
refinement of models–the calibrated models are applied to
the process, their outcomes are interpreted and evaluated in
the context of the process/project, and the models are then
refined where appropriate. [Fen98: c6; Pfl01: c3,c11,c12;
Pre04: c22; Som05: c25]
4.5. Process measurement techniques
Measurement techniques may be used to analyze software
engineering processes and to identify strengths and weak-
nesses. This can be performed to initiate process implemen-
tation and change, or to evaluate the consequences of proc-
ess implementation and change.

The quality of measurement results, such as accuracy, re-
peatability, and reproducibility, are issues in the measure-
ment of software engineering processes, since there are
both instrument-based and judgmental measurements, as,
for example, when assessors assign scores to a particular
process. A discussion and method for achieving quality of
measurement are presented in [Gol99].

Process measurement techniques have been classified into
two general types: analytic and benchmarking. The two
types of techniques can be used together since they are
based on different types of information. (Car91)

4.5.1. Analytical techniques
The analytical techniques are characterized as relying on
“quantitative evidence to determine where improvements
are needed and whether an improvement initiative has been
successful.” The analytical type is exemplified by the Qual-
ity Improvement Paradigm (QIP) consisting of a cycle of
understanding, assessing, and packaging [SEL96]. The
techniques presented next are intended as other examples of
analytical techniques, and reflect what is done in practice.
[Fen98; Mus99], (Lyu96; Wei93, Zel98) Whether or not a
specific organization uses all these techniques will depend,
at least partially, on its maturity.

• Experimental Studies: Experimentation involves
setting up controlled or quasi experiments in the
organization to evaluate processes. (McG94) Usually, a
new process is compared with the current process to
determine whether or not the former has better process
outcomes.

Another type of experimental study is process
simulation. This type of study can be used to analyze
process behavior, explore process improvement
potentials, predict process outcomes if the current
process is changed in a certain way, and control
process execution. Initial data about the performance
of the current process need to be collected, however, as
a basis for the simulation.

• Process Definition Review is a means by which a
process definition (either a descriptive or a prescriptive
one, or both) is reviewed, and deficiencies and
potential process improvements identified. Typical
examples of this are presented in (Ban95; Kel98). An
easy operational way to analyze a process is to
compare it to an existing standard (national,
international, or professional body), such as IEEE/EIA
12207.0[IEEE12207.0-96]. With this approach,
quantitative data are not collected on the process, or, if
they are, they play a supportive role. The individuals
performing the analysis of the process definition use
their knowledge and capabilities to decide what
process changes would potentially lead to desirable
process outcomes. Observational studies can also
provide useful feedback for identifying process
improvements. (Agr99)

• Orthogonal Defect Classification is a technique
which can be used to link faults found with potential
causes. It relies on a mapping between fault types and
fault triggers. (Chi92; Chi96) The IEEE Standard on
the classification of faults (or anomalies) may be useful
in this context (IEEE Standard for the Classification of
Software Anomalies (IEEE1044-93).

Root Cause Analysis is another common analytical
technique which is used in practice. This involves
tracing back from detected problems (for example,
faults) to identify the process causes, with the aim of

 9–8 © IEEE – 2004 Version

changing the process to avoid these problems in the
future. Examples for different types of processes are
described in (Col93; Ele97; Nak91).
The Orthogonal Defect Classification technique de-
scribed above can be used to find catagories in which
many problems exist, at which point they can be
analyzed. Orthogonal Defect Classification is thus a
technique used to make a quantitative selection for
where to apply Root Cause Analysis.

• Statistical Process Control is an effective way to
identify stability, or the lack of it, in the process
through the use of control charts and their
interpretations. A good introduction to SPC in the
context of software engineering is presented in (Flo99).

• The Personal Software Process defines a series of
improvements to an individual’s development practices

in a specified order [Hum95]. It is ‘bottom-up’ in the
sense that it stipulates personal data collection and
improvements based on the data interpretations.

4.5.2. Benchmarking techniques
The second type of technique, benchmarking, “depends on
identifying an ‘excellent’ organization in a field and docu-
menting its practices and tools.” Benchmarking assumes
that if a less-proficient organization adopts the practices of
the excellent organization, it will also become excellent.
Benchmarking involves assessing the maturity of an or-
ganization or the capability of its processes. It is exempli-
fied by the software process assessment work. A general
introductory overview of process assessments and their
application is provided in (Zah98).

© IEEE – 2004 Version 9–9

MATRIX OF TOPICS VS. REFERENCE MATERIAL

[A
br

96
]

[B
as

92
]

[B
ec

99
]

[B
oe

03
]

[C
om

97
]

[F
en

98
]

[F
in

94
]

[F
ow

90
]

[G
ol

99
]

[J
oh

99
]

[M
cF

96
]

[M
oi

98
]

[M
us

99
]

[O
M

G
02

]

[P
fl0

1]

[P
re

04
]

[S
an

98
]

[S
E

I0
1]

[S
E

L
96

]

[S
om

05
]

[S
ti9

9]

1. Process Implementation and
Change

1.1 Process Infrastructure * * * *
1.2 Software Process Management
 Cycle * * * *

1.3 Models for Process
 Implementation and Change * *

1.4 Practical Considerations * * * *
2. Process Definition
2.1Software Life Cycle Models * c2
2.2 Software Life Cycle Processes * *
2.3 Notations for Process Definitions * c2
2.4 Process Adaptation *
2.5 Automation * c2
3. Process Assessment
3.1 Process Assessment Models * * * *
3.2 Process Assessment Methods * *

4. Measurement

4.1 Process Measurement
c3,c
11 c25

4.2 Software Products Measurement
c8-
c10 c15 c24

4.3 Quality of Measurement Results * c2 c11
4.4 Software Information Models

Model building
c4,c
6,c
13

c3,c11
,c12 c25

Model Implementation c6
c3,c11
,c12 c22 * c25

4.5 Process Measurement
 Techniques * * *

 9–10 © IEEE – 2004 Version

IS
O

 9
00

1

IS
O

 9
00

0-
3

IS
O

 9
12

6

IS
O

 1
47

64

IS
O

 1
55

04

IS
O

 1
52

88

IS
O

 1
59

39

IS
O

 1
97

61

IS
O

 2
09

26

IS
O

 2
09

68

IS
O

 V
IM

IE
E

E
 1

04
4

IE
E

E
 1

06
1

IE
E

E
 1

07
4

IE
E

E
 1

21
9

IE
E

E
 1

51
7

IE
E

E
 1

54
0

IE
E

E
 1

22
07

IE
E

E
 1

41
43

.1

1. Process Implementation and
Change

1.1 Process Infrastructure * *

1.2 Software Process Management
 Cycle

 * *

1.3 Models for Process
 Implementation and Change

1.4 Practical Considerations

2. Process Definition

2.1 Life Cycle Models

2.2 Software Life Cycle Processes * * * * * * * * *

2.3 Notations for Process Definitions *

2.4 Process Adaptation *

2.5 Automation

3. Process Assessment

3.1 Process Assessment Models * *

3.2 Process Assessment Methods *

4. Measurement

4.1 Process Measurement * *

4.2 Software Products Measurement * * * * *

4.3 Quality of Measurement Results *

4.4 Software Information Models

Model building

Model Implementation

4.5 Process Measurement
Techniques

 * *

© IEEE – 2004 Version 9–11

RECOMMENDED REFERENCES
[Abr96] A. Abran and P. N. Robillard, "Function Points
Analysis: An Empirical Study of its Measurement Proc-
esses," IEEE Transactions on Software Engineering, vol.
22, 895-909, 1996
[Bas92] V. Basili, G. Caldiera, F. McGarry, R. Pajerski, G.
Page and S. Waligora, "The Software Engineering Labora-
tory - An Operational Software Experience Factory," pre-
sented at Proceedings of the International Conference on
Software Engineering, 1992
[Bec99] K. Beck, Extreme Programming Explained: Em-
brace Change: Addison-Wesley, 1999.
[Boe03] B. Boehm and R. Turner, "Using Risk to Balance
Agile and Plan-Driven Methods," Computer, 57-66, June,
2003
[Com97] E. Comer, "Alternative Software Life Cycle Mo-
dels," presented at Software Engineering, 1997
[ElE99] K. El-Emam and N. Madhavji, Elements of Soft-
ware Process Assessment and Improvement: IEEE CS
Press, 1999.
[Fen98] N. E. Fenton and S. L. Pfleeger, Software Metrics:
A Rigorous & Practical Approach, Second ed: International
Thomson Computer Press, 1998.
[Fin94] A. Finkelstein, J. Kramer and B. Nuseibeh, "Soft-
ware Process Modeling and Technology," Research Studies
Press Ltd., 1994
[Fow90] P. Fowler and S. Rifkin, "Software Engineering
Process Group Guide," Software Engineering Institute,
Technical Report CMU/SEI-90-TR-24, 1990, available at
http://www.sei.cmu.edu/pub/documents/90.reports/pdf/tr24.
90.pdf
[Gol99] D. Goldenson, K. El-Emam, J. Herbsleb and C.
Deephouse, "Empirical Studies of Software Process As-
sessment Methods," presented at Elements of Software
Process Assessment and Improvement, 1999
[IEEE1074-97] IEEE Std 1074-1997, IEEE Standard for
Developing Software Life Cycle Processes: IEEE, 1997.
[IEEE12207.0-96] IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of Int.
Std. ISO/IEC 12207:95, Standard for Information Technol-
ogy-Software Life Cycle Processes, vol. IEEE, 1996.
[VIM93] ISO VIM, International Vocabulary of Basic and
General Terms in Metrology. Geneva, Switzerland: ISO,
1993.
[ISO9126-01] ISO/IEC 9126-1:2001, Software Engineer-
ing-Product Quality-Part 1: Quality Model: ISO and IEC,
2001.

[ISO15504-98] ISO/IEC TR 15504:1998, Information
Technology - Software Process Assessment (parts 1-9): ISO
and IEC, 1998.
[ISO15939-02] ISO/IEC 15939:2002, Software Engineer-
ing-Software Measurement Process: ISO and IEC, 2002.
[Joh99] D. Johnson and J. Brodman, "Tailoring the CMM
for Small Businesses, Small Organizations, and Small Pro-
jects," presented at Elements of Software Process Assess-
ment and Improvement,, 1999
[McF96] B. McFeeley, "IDEAL: A User's Guide for Soft-
ware Process Improvement," Software Engineering Insti-
tute CMU/SEI-96-HB-001, 1996, available at
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/hb0
01.96.pdf
[Moi98] D. Moitra, "Managing Change for Software Proc-
ess Improvement Initiatives: A Practical Experience-Based
Approach," Software Process - Improvement and Practice,
vol. 4, iss. 4, 199-207, 1998
[Mus99] J. Musa, Software Reliability Engineering: More
Reliable Software, Faster Development and Testing:
McGraw Hill, 1999.
[OMG02] Object Management Group, "Software Process
Engineering Metamodel Specification," 2002, available at
http://www.omg.org/docs/formal/02-11-14.pdf
[Pfl01] S. L. Pfleeger, Software Engineering: Theory and
Practice, Second ed: Prentice-Hall, 2001.
[Pre04] R. S. Pressman, Software Engineering: A Practi-
tioner's Approach, Sixth ed: McGraw-Hill, 2004.
[San98] M. Sanders, "The SPIRE Handbook: Better, Faster,
Cheaper Software Development in Small Organisations,"
European Comission, 1998
[SEI01] Software Engineering Institute, "Capability Matur-
ity Model Integration, v1.1," 2001, available at
http://www.sei.cmu.edu/cmmi/cmmi.html
[SEL96] Software Engineering Laboratory, "Software Pro-
cess Improvement Guidebook," NASA/GSFC, Technical
Report SEL-95-102, April, 1996, available at
http://sel.gsfc.nasa.gov/website/documents/online-doc/95-
102.pdf
[Som05] I. Sommerville, Software Engineering, Seventh
ed: Addison-Wesley, 2005.
[Sti99] H. Stienen, "Software Process Assessment and Im-
provement: 5 Years of Experiences with Bootstrap," in
Elements of Software Process Assessment and Improve-
ment, K. El-Emam and N. Madhavji, Eds.: IEEE CS Press,
1999.

 9–12 © IEEE – 2004 Version

Appendix A. List of Further Readings
(Agr99) W. Agresti, "The Role of Design and Analysis in
Process Improvement," presented at Elements of Software
Process Assessment and Improvement, 1999
(Ale91) L. Alexander and A. Davis, "Criteria for Selecting
Software Process Models," presented at Proceedings of
COMPSAC'91, 1991
(Ban95) S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi and
G. Picco, "Modeling and Improving an Industrial Software
Process," IEEE Transactions on Software Engineering, vol.
21, iss. 5, 440-454, 1995
(Bar95) N. Barghouti, D. Rosenblum, D. Belanger and C.
Alliegro, "Two Case Studies in Modeling Real, Corporate
Processes," Software Process - Improvement and Practice,
vol. Pilot Issue, 17-32, 1995
(Boe03a) B. Boehm and R. Turner, Balancing Agility and
Discipline: A Guide for the Perplexed: Addison-Wesley,
2003.
(Bur99) I. Burnstein, A. Homyen, T. Suwanassart, G. Sax-
ena and R. Grom, "A Testing Maturity Model for Software
Test Process Assessment and Improvement," Software
Quality Professional, vol. 1, iss. 4, 8-21, 1999
(Chi92) R. Chillarege, I. Bhandhari, J. Chaar, M. Halliday,
D. Moebus, B. Ray and M. Wong, "Orthogonal Defect
Classification - A Concept for In-Process Measurement,"
IEEE Transactions on Software Engineering, vol. 18, iss.
11, 943-956, 1992
(Chi96) R. Chillarege, "Orthogonal Defect Classification,"
in Handbook of Software Reliability Engineering, M. Lyu,
Ed.: IEEE CS Press, 1996.
(Col93) J. Collofello and B. Gosalia, "An Application of
Causal Analysis to the Software Production Process," Soft-
ware Practice and Experience, vol. 23, iss. 10, 1095-1105,
1993
(Cur02) B. Curtis, W. Hefley and S. Miller, "The People
Capability Maturity Model: Guidelines for Improving the
Workforce,", Addison-Wesley, 2002.
(Dav88) A. Davis, E. Bersoff and E. Comer, "A Strategy
for Comparing Alternative Software Development Life
Cycle Models," IEEE Transactions on Software Engineer-
ing, vol. 14, iss. 10, 1453-1461, 1988
(Dun96) D. Dunnaway and S. Masters, "CMM-Based Ap-
praisal for Internal Process Improvement (CBA IPI): Me-
thod Description," Software Engineering Institute
CMU/SEI-96-TR-007, 1996, available at
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/tr00
7.96.pdf
(EIA/IS731-99) EIA, "EIA/IS 731 Systems Engineering
Capability Model," 1999, available at
http://www.geia.org/eoc/G47/index.html
(ElE-97) K. El-Emam, D. Holtje and N. Madhavji, "Causal

Analysis of the Requirements Change Process for a Large
System," presented at Proceedings of the International Con-
ference on Software Maintenance, 1997
(ElE-99a) K. El-Emam, B. Smith and P. Fusaro, "Success
Factors and Barriers in Software Process Improvement: An
Empirical Study," in Better Software Practice for Business
Benefit: Principles and Experiences, R. Messnarz and C.
Tully, Eds.: IEEE CS Press, 1999.
(ElE-00a) K. El-Emam and A. Birk, "Validating the
ISO/IEC 15504 Measures of Software Development Proc-
ess Capability," Journal of Systems and Software, vol. 51,
iss. 2, 119-149, 2000
(ElE-00b) K. El-Emam and A. Birk, "Validating the
ISO/IEC 15504 Measures of Software Requirements Ana-
lysis Process Capability," IEEE Transactions on Software
Engineering, vol. 26, iss. 6, 541-566, June, 2000
(Fay97) M. Fayad and M. Laitinen, "Process Assessment:
Considered Wasteful," Communications of the ACM, vol.
40, iss. 11, November, 1997
(Flo99) W. Florac and A. Carleton, Measuring the Software
Process: Statistical Process Control for Software Process
Improvement: Addison Wesley, 1999.
(Gar96) P. Garg and M. Jazayeri, "Process-Centered Soft-
ware Engineering Environments: A Grand Tour," in Soft-
ware Process, A. Fuggetta and A. Wolf, Eds.: John Wiley
& Sons, 1996.
(Gra97) R. Grady, Successful Software Process Improve-
ment: Prentice Hall, 1997.
(Gra88) E. Gray and W. Smith, "On the Limitations of
Software Process Assessment and the Recognition of a Re-
quired Re-Orientation for Global Process Improvement,"
Software Quality Journal, vol. 7, 21-34, 1998
(Har98) D. Harel and M. Politi, Modeling Reactive Systems
with Statecharts: The Statemate Approach: McGraw-Hill,
1998.
(Her98) J. Herbsleb, "Hard Problems and Hard Science: On
the Practical Limits of Experimentation," IEEE TCSE Soft-
ware Process Newsletter, vol. 11, 18-21, 1998, available at
http://www.seg.iit.nrc.ca/SPN
(Hum95) W. Humphrey, A Discipline for Software Engi-
neering: Addison Wesley, 1995.
(Hum99) W. Humphrey, An Introduction to the Team Soft-
ware Process: Addison-Wesley, 1999.
(Hut94) D. Hutton, The Change Agent's Handbook: A Sur-
vival Guide for Quality Improvement Champions: Irwin,
1994.
(Kan02) S. H. Kan, Metrics and Models in Software Qual-
ity Engineering, Second ed: Addison-Wesley, 2002.
(Kel98) M. Kellner, U. Becker-Kornstaedt, W. Riddle, J.
Tomal and M. Verlage, "Process Guides: Effective Guid-
ance for Process Participants," presented at Proceedings of
the 5th International Conference on the Software Process,

© IEEE – 2004 Version 9–13

1998
(Kit98) B. Kitchenham, "Selecting Projects for Technology
Evaluation," IEEE TCSE Software Process Newsletter, iss.
11, 3-6, 1998, available at http://www.seg.iit.nrc.ca/SPN
(Kra99) H. Krasner, "The Payoff for Software Process Im-
provement: What it is and How to Get it," presented at
Elements of Software Process Assessment and Improve-
ment, 1999
(Kri99) M. S. Krishnan and M. Kellner, "Measuring Proc-
ess Consistency: Implications for Reducing Software De-
fects," IEEE Transactions on Software Engineering, vol.
25, iss. 6, 800-815, November/December, 1999
(Lyu96) M. R. Lyu, Handbook of Software Reliability En-
gineering: Mc-Graw-Hill/IEEE, 1996.
(Mad94) N. Madhavji, D. Hoeltje, W. Hong and T. Bruck-
haus, "Elicit: A Method for Eliciting Process Models," pre-
sented at Proceedings of the Third International Conference
on the Software Process, 1994
(Mas95) S. Masters and C. Bothwell, "CMM Appraisal
Framework - Version 1.0," Software Engineering Institute
CMU/SEI-TR-95-001, 1995, available at
http://www.sei.cmu.edu/pub/documents/95.reports/pdf/tr00
1.95.pdf
(McG94) F. McGarry, R. Pajerski, G. Page, S. Waligora, V.
Basili and M. Zelkowitz, "Software Process Improvement
in the NASA Software Engineering Laboratory," Software
Engineering Institute CMU/SEI-94-TR-22, 1994, available
at
http://www.sei.cmu.edu/pub/documents/94.reports/pdf/tr22.
94.pdf
(McG01) J. McGarry, D. Card, C. Jones, B. Layman,
E.Clark, J. Dean and F. Hall, Practical Software Measure-
ment: Objective Information for Decision Makers: Addi-
son-Wesley, 2001.
(Mcg93) C. McGowan and S. Bohner, "Model Based Proc-
ess Assessments," presented at Proceedings of the Interna-
tional Conference on Software Engineering, 1993
(Nak91) T. Nakajo and H. Kume, "A Case History Analysis
of Software Error Cause-Effect Relationship," IEEE Trans-
actions on Software Engineering, vol. 17, iss. 8, 1991
(Pau94) M. Paulk and M. Konrad, "Measuring Process Ca-
pability Versus Organizational Process Maturity," pre-
sented at Proceedings of the 4th International Conference
on Software Quality, 1994
(Pfl99) S. L. Pfleeger, "Understanding and Improving
Technology Transfer in Software Engineering," Journal of

Systems and Software, vol. 47, 111-124, 1999
(Pfl01) S. L. Pfleeger, Software Engineering: Theory and
Practice, Second ed: Prentice-Hall, Inc., 2001.
(Rad85) R. Radice, N. Roth, A. O. H. Jr. and W. Ciarfella,
"A Programming Process Architecture," IBM Systems
Journal, vol. 24, iss. 2, 79-90, 1985
(Rag89) S. Raghavan and D. Chand, "Diffusing Software-
Engineering Methods," IEEE Software, 81-90, July, 1989
(Rog83) E. Rogers, Diffusion of Innovations: Free Press,
1983.
(Sch99) E. Schein, Process Consultation Revisited: Build-
ing the Helping Relationship: Addison-Wesley, 1999.
(SEI95) Software Engineering Institute, The Capability
Maturity Model: Guidelines for Improving the Software
Process: Addison-Wesley, 1995.
(SEL96) Software Engineering Laboratory, "Software Pro-
cess Improvement Guidebook," Software Engineering La-
boratory: NASA/GSFC, Technical Report SEL-95-102,
April, 1996, available at
http://sel.gsfc.nasa.gov/website/documents/online-doc/95-
102.pdf
(SPC92) Software Productivity Consortium, "Process Defi-
nition and Modeling Guidebook," Software Productivity
Consortium, SPC-92041-CMC, 1992
(Som97) I. Sommerville and P. Sawyer, Requirements en-
gineering: A Good Practice Guide: John Wiley and Sons,
1997.
(Vot93) L. Votta, "Does Every Inspection Need a Meeting
?," ACM Software Engineering Notes, vol. 18, iss. 5, 107-
114, 1993
(Wei93) G. M. Weinberg, "Quality Software Manage-
ment," First-Order Measurement (Ch. 8, Measuring Cost
and Value), vol. 2, 1993
(Yu94) E. Yu and J. Mylopolous, "Understanding 'Why' in
Software Process Modeling, Analysis, and Design," pre-
sented at Proceedings of the 16th International Conference
on Software Engineering, 1994
(Zah98) S. Zahran, Software Process Improvement: Practi-
cal Guidelines for Business Success: Addison Wesley,
1998.
(Zel98) M. V. Zelkowitz and D. R. Wallace, "Experimental
Models for Validating Technology," Computer, vol. 31, iss.
5, 23-31, 1998

 9–14 © IEEE – 2004 Version

Appendix B. List of Standards

 (IEEE1044-93) IEEE Std 1044-1993 (R2002), IEEE Stan-
dard for the Classification of Software Anomalies: IEEE,
1993.
(IEEE1061-98) IEEE Std 1061-1998, IEEE Standard for a
Software Quality Metrics Methodology: IEEE Computer,
1998.
(IEEE1074-97) IEEE Std 1074-1997, IEEE Standard for
Developing Software Life Cycle Processes: IEEE, 1997.
(IEEE1219-98) IEEE Std 1219-1998, IEEE Standard for
Software Maintenance: IEEE, 1998.
(IEEE1220-98) IEEE Std 1220-1998, IEEE Standard for
the Application and Management of the Systems Engineer-
ing Process: IEEE, 1998.
(IEEE1517-99) IEEE Std 1517-1999, IEEE Standard for
Information Technology-Software Life Cycle Processes-
Reuse Processes: IEEE, 1999.
(IEEE1540-01) IEEE Std 1540-2001//ISO/IEC16085:2003,
IEEE Standard for Software Life Cycle Processes-Risk Ma-
nagement: IEEE, 2001.
(IEEE12207.0-96) IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of Int.
Std. ISO/IEC 12207:95, Standard for Information Technol-
ogy-Software Life Cycle Processes, vol. IEEE, 1996.
(IEEE12207.1-96) IEEE/EIA 12207.1-1996, Industry Im-
plementation of Int. Std. ISO/IEC 12207:95, Standard for
Information Technology-Software Life Cycle Processes -
Life cycle data: IEEE, 1996.
(IEEE12207.2-97) IEEE/EIA 12207.2-1997, Industry Im-
plementation of Int. Std. ISO/IEC 12207:95, Standard for
Information Technology-Software Life Cycle Processes -
Implementation. Considerations: IEEE, 1997.

(IEEE14143.1-00) IEEE Std 14143.1-
2000//ISO/IEC14143-1:1998, Information Technology-
Software Measurement-Functional Size Measurement-Part
1: Definitions of Concepts: IEEE, 2000.
(ISO9001-00) ISO 9001:2000, Quality Management Sys-
tems-Requirements: ISO, 1994.
(ISO9126-01) ISO/IEC 9126-1:2001, Software Engineer-
ing-Product Quality-Part 1: Quality Model: ISO and IEC,
2001.
(ISO14674-99) ISO/IEC 14674:1999, Information Tech-
nology - Software Maintenance: ISO and IEC, 1999.
(ISO15288-02) ISO/IEC 15288:2002, Systems Engineer-
ing-System Life cycle process: ISO and IEC, 2002.
(ISO15504-98) ISO/IEC TR 15504:1998, Information
Technology - Software Process Assessment (parts 1-9): ISO
and IEC, 1998.
(ISO15939-02) ISO/IEC 15939:2002, Software Engineer-
ing-Software Measurement Process: ISO and IEC, 2002.
(ISO19761-03) ISO/IEC 19761:2003, Software Engineer-
ing-Cosmic FPP-A functional Size Measurement Method:
ISO and IEC, 2003.
(ISO20926-03) ISO/IEC 20926:2003, Software Engineer-
ing-IFPUG 4.1 Unadjusted functional Size measurement
method-Counting practices manual: ISO and IEC, 2003.
(ISO20968-02) ISO/IEC 20968:2002, Software Engineer-
ing-MK II Function Point Analysis- Counting Practices
Manual: ISO and IEC, 2002.
(ISO90003-04) ISO/IEC 90003:2004, Software and Sys-
tems Engineering-Guidelines for the Application of
ISO9001:2000 to Computer Software: ISO and IEC, 2004.
(VIM93) ISO VIM, International Vocabulary of Basic and
General Terms in Metrology. Geneva, Switzerland: ISO,
1993.

© IEEE – 2004 Version 10–1

CHAPTER 10

SOFTWARE ENGINEERING TOOLS AND METHODS

ACRONYM

CASE Computer Assisted
Software Engineering

INTRODUCTION

Software development tools are the computer-based tools
that are intended to assist the software life cycle processes.
Tools allow repetitive, well-defined actions to be
automated, reducing the cognitive load on the software
engineer who is then free to concentrate on the creative
aspects of the process. Tools are often designed to support
particular software engineering methods, reducing any
administrative load associated with applying the method
manually. Like software engineering methods, they are
intended to make software engineering more systematic,
and they vary in scope from supporting individual tasks to
encompassing the complete life cycle.
Software engineering methods impose structure on the
software engineering activity with the goal of making the
activity systematic and ultimately more likely to be
successful. Methods usually provide a notation and
vocabulary, procedures for performing identifiable tasks,
and guidelines for checking both the process and the
product. They vary widely in scope, from a single life cycle
phase to the complete life cycle. The emphasis in this KA is
on software engineering methods encompassing multiple
life cycle phases, since phase-specific methods are covered
by other KAs.
While there are detailed manuals on specific tools and
numerous research papers on innovative tools, generic
technical writings on software engineering tools are
relatively scarce.. One difficulty is the high rate of change
in software tools in general. Specific details alter regularly,
making it difficult to provide concrete, up-to-date
examples.
The Software Engineering Tools and Methods KA covers
the complete life cycle processes, and is therefore related to
every KA in the Guide.

Software Engineering Tools and Methods

Software Engineering
Tools

Software Engineering
Methods

Software Requirements
Tools

Heuristic Methods

Software Design Tools
Software Construction

Tools

Requirements modeling
Requirements traceability

Program editors
Compilers & code generators

Interpreters
Debuggers

Software Testing Tools
Test generators

Test execution frameworks
Test evaluation

Test management
Performance analysis

Software Maintenance
Tools

Comprehension
Reengineering

Software Engineering
Process Tools
Process modeling

Process management
Integrated CASE environments

Process-centered software
engineering environments

Review and audit
Software Quality Tools

Static analysis

Software Configuration
Management Tools

Defect, enhancement, issue
and problem tracking
Version managment
Release and build

Software Engineering
Management Tools

Project planning and tracking
Risk management

Measurement

Formal Methods

Tool evaluation

Structured methods

Data-oriented methods

Object-oriented methods

Specification languages &
notations

Refinement

Verification/proving properties

Prototyping Methods

Styles
Prototyping target

Evaluation techniques

Miscellaneous Tools
Issues

Tool integration techniques
Meta tools

Figure 1 Breakdown of topics in the Software Engineering
Tools and Methods KA

 10–2 © IEEE – 2004 Version

BREAKDOWN OF TOPICS FOR SOFTWARE ENGINEERING
TOOLS AND METHODS

1. Software EngineeringTools

The first five topics in the Software Engineering Tools sub-
area correspond to the first five KAs of the Guide
(Software Requirements, Software Design, Software
Construction, Software Testing, and Software
Maintenance). The next four topics correspond to the
remaining KAs (Software Configuration Management,
Software Engineering Management, Software Engineering
Process, and Software Quality). An additional topic is
provided, Miscellaneous, addressing areas such as tool
integration techniques which are potentially applicable to
all classes of tools.

1.1. Software Requirements Tools
 [Dor97, Dor02]
Tools for dealing with software requirements have been
classified into two categories: modeling and traceability
tools.
 Requirements modeling tools. These tools are used for

eliciting, analyzing, specifying, and validating software
requirements

 Requirement traceability tools. [Dor02] These tools
are becoming increasingly important as the complexity
of software grows. Since they are also relevant in other
life cycle processes, they are presented separately from
the requirements modeling tools.

1.2. Software Design Tools
 [Dor02]
This topic covers tools for creating and checking software
designs. There are a variety of such tools, with much of this
variety being a consequence of the diversity of software
design notations and methods. In spite of this variety, no
compelling divisions for this topic have been found.

1.3. Software Construction Tools
 [Dor02, Rei96]
This topic covers software construction tools. These tools
are used to produce and translate program representation
(for instance, source code) which is sufficiently detailed
and explicit to enable machine execution.
 Program editors. These tools are used for the creation

and modification of programs, and possibly the
documents associated with them. They can be general
purpose text or document editors, or they can be
specialized for a target language.

 Compilers and code generators. Traditionally,
compilers have been non-interactive translators of
source code, but there has been a trend to integrate
compilers and program editors to provide integrated

programming environments. This topic also covers
pre-processors, linker/loaders, and code generators.

 Interpreters. These tools provide software execution
through emulation. They can support software
construction activities by providing a more controllable
and observable environment for program execution.

 Debuggers. These tools are considered a separate
category since they support the software construction
process, but they are different from program editors
and compilers.

1.4. Software Testing Tools

 [Dor02, Pfl01, Rei96]

 Test generators. These tools assist in the development
of test cases.

 Test execution frameworks. These tools enable the
execution of test cases in a controlled environment
where the behavior of the object under test is observed.

 Test evaluation tools. These tools support the
assessment of the results of test execution, helping to
determine whether or not the observed behavior
conforms to the expected behavior.

 Test management tools. These tools provide support
for all aspects of the software testing process.

 Performance analysis tools. [Rei96] These tools are
used for measuring and analyzing software
performance, which is a specialized form of testing
where the goal is to assess performance behavior rather
than functional behavior (correctness).

1.5. Software Maintenance Tools

 [Dor02, Pfl01]

This topic encompasses tools which are particularly
important in software maintenance where existing software
is being modified. Two categories are identified:
comprehension tools and reengineering tools.
 Comprehension tools. [Re196] These tools assist in

the human comprehension of programs. Examples
include visualization tools such as animators and
program slicers.

 Reengineering tools. In the Software Maintenance KA,
reengineering is defined as the examination and
alteration of the subject software to reconstitute it in a
new form, and includes the subsequent implementation
of the new form. Reengineering tools support that
activity.

Reverse engineering tools assist the process by working
backwards from an existing product to create artifacts such
as specification and design descriptions, which then can be
transformed to generate a new product from an old one.

1.6. Software Configuration Management Tools

 [Dor02, Rei96, Som05]

© IEEE – 2004 Version 10–3

Tools for configuration management have been divided into
three categories: tracking, version management, and
release tools.
 Defect, enhancement, issue, and problem-tracking

tools. These tools are used in connection with the
problem-tracking issues associated with a particular
software product.

 Version management tools. These tools are involved
in the management of multiple versions of a product.

 Release and build tools. These tools are used to
manage the tasks of software release and build. The
category includes installation tools which have become
widely used for configuring the installation of software
products.

Additional information is given in the Software
Configuration Management KA, topic 2.3 Planning for
SCM.

1.7. Software Engineering Management Tools
 [Dor02]
Software engineering management tools are subdivided
into three categories: project planning and tracking, risk
management, and measurement.
 Project planning and tracking tools. These tools are

used in software project effort measurement and cost
estimation, as well as project scheduling.

 Risk management tools. These tools are used in
identifying, estimating, and monitoring risks.

 Measurement tools. The measurement tools assist in
performing the activities related to the software
measurement program.

1.8. Software Engineering Process Tools

 [Dor02, Som05]

Software engineering process tools are divided into:
modeling tools, management tools, and software
development environments.

 Process modeling tools. [Pfl01] These tools are used
to model and investigate software engineering
processes.

 Process management tools. These tools provide
support for software engineering management.

 Integrated CASE environments. [Rei96, Som05]
(ECMA55-93, ECMA69-94, IEEE1209-92,
IEEE1348-95, Mul96) Integrated computer-aided
software engineering tools or environments covering
multiple phases of the software engineering life cycle
belong in this sub-topic. Such tools perform multiple
functions and hence potentially interact with the
software life cycle process being executed.

 Process-centered software engineering environments.
[Rei96] (Gar96) These environments explicitly

incorporate information on the software life cycle
processes, and guide and monitor the user according to
the defined process.

1.9. Software Quality Tools

 [Dor02]

Quality tools are divided into two categories: inspection
and analysis tools.

 Review and audit tools. These tools are used to support
reviews and audits.

 Static analysis tools. [Cla96, Pfl01, Rei96] These tools
are used to analyze software artifacts, such as syntactic
and semantic analyzers, as well as data, control flow,
and dependency analyzers. Such tools are intended for
checking software artifacts for conformance or for
verifying desired properties.

1.10. Miscellaneous tool issues

 [Dor02]
This topic covers issues applicable to all classes of tools.
Three categories have been identified: tool integration
techniques, meta-tools, and tool evaluation.
 Tool integration techniques. [Pfl01, Rei96, Som01]

(Bro94) Tool integration is important for making
individual tools cooperate. This category potentially
overlaps with the integrated CASE environments
category where integration techniques are applied,
however it was felt that it is sufficiently distinct to
merit a category of its own. Typical kinds of tool
integration are platform, presentation, process, data,
and control.

 Meta tools. Meta-tools generate other tools; compiler-
compilers are the classic example.

 Tool evaluation. [Pfl01] (IEEE1209-92, IEEE1348-95,
Mos92, Val97) Because of the continuous evolution of
software engineering tools, tool evaluation is an
essential topic.

2. Software Engineering Methods

The Software Engineering Methods sub-area is divided into
three topics: heuristic methods dealing with informal
approaches, formal methods dealing with mathematically
based approaches, and prototyping methods dealing with
software engineering approaches based on various forms of
prototyping. The first three topics are not disjoint; rather
they represent distinct concerns. For example, an object-
oriented method may incorporate formal techniques and
rely on prototyping for verification and validation. Like
software engineering tools, methodologies continuously
evolve. Consequently, the KA description avoids as far as
possible naming particular methodologies.

 10–4 © IEEE – 2004 Version

2.1. Heuristic methods
 [Was96]
This topic contains four categories: structured, data-
oriented, object-oriented, and domain-specific. The
domain-specific category includes specialized methods for
developing systems which involve real-time, safety, or
security aspects.
 Structured methods. [Dor02, Pfl01, Pre04, Som05] The

system is built from a functional viewpoint, starting
with a high-level view and progressively refining this
into a more detailed design.

 Data-oriented methods. [Dor02, Pre04] Here, the
starting points are the data structures that a program
manipulates, rather than the function it performs.

 Object-oriented methods. [Dor02, Pfl01, Pre04,
Som05] The system is viewed as a collection of
objects rather than functions.

2.2. Formal methods

 [Dor02, Pre04, Som05]

This subsection deals with mathematically based software
engineering methods, and is subdivided according to the
various aspects of formal methods.
 Specification languages and notations. [Cla96, Pfl01,

Pre01] This topic concerns the specification notation
or language used. Specification languages can be

classified as model-oriented, property-oriented, or
behavior-oriented.

 Refinement. [Pre04] This topic deals with how the
method refines (or transforms) the specification into a
form which is closer to the desired final form of an
executable program.

 Verification/proving properties. [Cla96, Pfl01,
Som05] This topic covers the verification properties
that are specific to the formal approach, including both
theorem proving and model checking.

2.3. Prototyping methods

 [Pre04, Som05, Was96]
This subsection covers methods involving software
prototyping, and is subdivided into prototyping styles,
targets, and evaluation techniques.
 Prototyping styles. [Dor02, Pfl01, Pre04] (Pom96)

The prototyping styles topic identifies the various
approaches: throwaway, evolutionary, and executable
specification.

 Prototyping target. [Dor97] (Pom96) Examples of the
targets of a prototyping method may be requirements,
architectural design, or the user interface.

 Prototyping evaluation techniques. This topic covers
the ways in which the results of a prototype exercise
are used.

© IEEE – 2004 Version 10–5

MATRIX OF TOPICS VS. REFERENCE MATERIAL

[Cla96]
[Dor02]
{Dor97}

[Pfl01]
{PFL98}

[Pre04] [Rei96] [Som05] [Was96]

1. Software Tools

1.1 Software Requirements Tools {c4s1} ,v2c8s4

Requirement modeling tools

Requirements traceability tools v1c4s2

1.2 Software Design Tools v2c8s4

1.3 Software Construction Tools v2c8s4 c112s2

Program editors

Compilers and code generators

Interpreters

Debuggers

1.4 Software Testing Tools v2c8s4 C8s7,c9s7 c112s3

Test generators

Test execution frameworks

Test evaluation tools

Test management tools

Performance analysis tools c112s5

1.5 Software Maintenance Tools v2c8s4 c11s5

Comprehension tools c112s5

Reengineering tools

1.6 Software Configuration Management Tools v2c8s4 c11s5 c112s3 c29

Defect, enhancement, issue and problem-tracking
tools

Version management tools

 Release and built tools

 10–6 © IEEE – 2004 Version

[Cla96]

[Dor02]
{Dor97}

[Pfl01]
{PFL98}

[Pre04] [Rei96] [Som05] [Was96]

1.7 Software Engineering Management Tools v2c8s4

Project planning and tracking tools

Risk management tools

Measurement tools

1.8 Software Engineering Process Tools v2c8s4

Process modeling tools c2s3, 2s4

Process management tools

Integrated CASE environments c112s3, c112s4 c3

Process-centered software engineering environments c112s5

1.9 Software Quality Tools v2c8s4

Review and audit tools

Static analysis tools * C8s7 c112s5

1.10 Miscellaneous Tool Issues v2c8s4

Tool integration techniques c1s8 c112s4 *

Meta tools

Tool evaluation C9s10

2. Development Methods

2.1 Heuristic Methods *

Structured methods v1c5s1, v1c6s3 c4s5 c7-c9 c15

Data-oriented methods v1c5s1, v1c6s3 c7-c9

Object-oriented methods v1c6s2, v1c6s3 c4s4, c6, c8s5 c7-c9 c12

2.2 Formal Methods v1c6s5 c28 c9

Specification languages and notation * c4s5

Refinement

Verification/proving properties * c5s7, c8s3

2.3 Prototyping Methods c8 *

Styles v1c4s4 c4s6, c5s6

Prototyping target v1c4s4

Evaluation techniques

© IEEE – 2004 Version 10–7

RECOMMENDED REFERENCES FOR SOFTWARE
ENGINEERING TOOLS AND METHODS

[Cla96] E. M. Clarke, J. M. Wing and al, "Formal Methods:
State of the Art and Future Directions," ACM Computer
Surveys, vol. 28, iss. 4, 626-643, 1996
[Dor97] M. Dorfman and R. H. Thayer, Eds., "Software
Engineering." IEEE Computer Society Press, 1997.
[Dor02] M. Dorfman and R. H. Thayer, Eds., "Software
Engineering, Vol. 1 & vol.2." IEEE Computer Society
Press, 2002.
[Pfl01] S. L. Pfleeger, Software Engineering: Theory and

Practice, Second ed: Prentice-Hall, Inc., 2001.
[Pre04] R. S. Pressman, Software Engineering: A
Practitioner's Approach, Sixth ed: McGraw-Hill, 2004.
[Rei96] S. P. Reiss, Software Tools and Environments in
The Computer Science and Engineering Handbook: CRC
Press, 1996.
[Som05] I. Sommerville, Software Engineering, Seventh
ed: Addison-Wesley, 2005.
[Was96] A. I. Wasserman, "Toward a Discipline of
Software Engineering," IEEE Software, vol. 13, iss. 6, 23-
31, November, 1996

 10–8 © IEEE – 2004 Version

APPENDIX A. LIST OF FURTHER READINGS

(Ber93) E. V. Berard, Essays on Object-Oriented Software
Engineering: Prentice-Hall, 1993.
(Bis92) W. Bischofberger and G. Pomberger, Prototyping-
Oriented Software Development: Concepts and Tools:
Springer-Verlag, 1992.
(Bro94) A. W. Brown and al, Principles of CASE Tool
Integration: Oxford University Press, 1994.
(Car95) D. J. Carney and A. W. Brown, "On the Necessary
Conditions for the Composition of Integrated Software
Engineering Environments," presented at Advances in
Computers, 1995
(Col94) D. Coleman, P. Arnold, S. Godoff, C. Dollin, H.
Gilchrist, F. Hayes and P. Jeremaes, Object-Oriented
Development: The Fusion Method: Prentice Hall, 1994.
(Cra95) D. Craigen, S. Gerhart and T. Ralston, "Formal
Methods Reality Check: Industrial Usage," IEEE
Transactions on Software Engineering, vol. 21, iss. 2, 90-
98, February, 1995
(Fin00) A. Finkelstein, Ed., "The Future of Software
Engineering." ACM, 2000.
(Gar96) P. K. Garg and M. Jazayeri, Process-Centered
Software Engineering Environments: IEEE Computer
Society, 1996.
(Har00) W. Harrison, H.Ossher and P. Tarr, "Software
Engineering Tools and Environments: A Roadmap," 2000
(Jar98) S. Jarzabek and R. Huang, "The Case for User-
Centered CASE Tools," Communications of the ACM, vol.
41, iss. 8, 93-99, August, 1998
(Kit95) B. Kitchenham, L. Pickard and S. L. Pfleeger,
"Case Studies for Method and Tool Evaluation," IEEE
Software, vol. 12, iss. 4, 52-62, July, 1995
(Lam00) A. v. Lamsweerde, "Formal Specification: A
Roadmap," in The Future of Software Engineering, A.
Finkelstein, Ed.: ACM, 2000, 149-159.
(Mey97) B. Meyer, Object-Oriented Software
Construction, Second ed: Prentice-Hall, 1997.

(Moo98) J. W. Moore, Software Engineering Standards, A
User's Roadmap. Los Alamitos, CA: IEEE Computer
Society, 1998.
(Mos92) V. Mosley, "How to Assess Tools Efficiently and
Quantitatively," IEEE Software, vol. 9, iss. 3, 29-32, May,
1992
(Mül96) H. A. Muller, R. J. Norman and J. Slonim, Eds.,
"Computer Aided Software Engineering." A special issue
of Automated Software Engineering, 3(3/4), Kluwer, 1996.
(Mül00) H. Müller and al, "Reverse Engineering: A
Roadmap," in The Future of Software Engineering, A.
Finkelstein, Ed.: ACM, 2000, 49-60.
(Pom96) G. Pomberger and G. Blaschek, Object-
Orientation and Prototyping in Software Engineering:
Prentice Hall, 1996.
(Pos96) R. M. Poston, Automating Specification-based
Software Testing: IEEE, 1996.
(Ric92) C. Rich and R. C. Waters, "Knowledge Intensive
Software Engineering Tools," IEEE Transactions on
Knowledge and Data Engineering, vol. 4, iss. 5, 424-430,
October, 1992
(Son92) X. Song and L. J. Osterweil, "Towards Objective,
Systematic Design-Method Comparisons," IEEE Software,
vol. 9, iss. 3, 43-53, May, 1992
(Tuc96) A. B. Tucker, The Computer Science and
Engineering Handbook: CRC Press, 1996.
(Val97) L. A. Valaer and R. C. B. II, "Choosing a User
Interface Development Tool," IEEE Software, vol. 14, iss.
4, 29-39, 1997
(Vin90) W. G. Vincenti, What Engineers Know and How
They Know It - Analytical Studies form Aeronautical
History. Baltimore and London: John Hopkins University
Press, 1990.
(Wie98) R. Wieringa, "A Survey of Structured and Object-
Oriented Software Specification Methods and Techniques,"
ACM Computing Surveys, vol. 30, iss. 4, 459-527, 1998

© IEEE – 2004 Version 10–9

APPENDIX B. LIST OF STANDARDS

(ECMA55-93) ECMA, TR/55 Reference Model for
Frameworks of Software Engineering Environments, Third
ed, 1993.
(ECMA69-94) ECMA, TR/69 Reference Model for Project
Support Environments, 1994.
(IEEE1175.1-02) IEEE Std 1175.1-2002, IEEE Guide for
CASE Tool Interconnections-Classification and
Description: IEEE, 2002.
(IEEE1209-92) IEEE Std 1209-1992, Recommended

Practice for the Evaluation and Selection of CASE Tools,
(ISO/IEC 14102, 1995), 1992.
(IEEE1348-95) IEEE Std 1348-1995, Recommended
Practice for the Adoption of CASE Tools, (ISO/IEC
14471), 1995.
(IEEE12207.0-96) IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of Int.
Std. ISO/IEC 12207:95, Standard for Information
Technology-Software Life Cycle Processes, vol. IEEE,
1996.

 10–10 © IEEE – 2004 Version

© IEEE – 2004 Version 11-1

CHAPTER 11

SOFTWARE QUALITY

ACRONYMS

CMMi Capability Maturity Model Integrated
COTS Commercial Off-the-shelf Software
PDCA Plan, Do, Check, Act
SQA Software Quality Assurance
SQM Software Quality Management
TQM Total Quality Management
V&V Verification and Validation

INTRODUCTION

What is software quality, and why is it so important that it
be pervasive in the Swebok Guide? Over the years, authors
and organizations have defined the term “quality”
differently. To Phil Crosby (Cro79), it was “conformance to
user requirements.” Watts Humphrey (Hum89) refers to it as
“achieving excellent levels of fitness for use”, while IBM
coined the phrase "“market-driven quality”, which is based on
achieving total customer satisfaction. The Baldrige criteria
for organizational quality (NIST03) use a similar phrase,
“customer-driven quality”, and include customer satisfaction
as a major consideration. More recently, quality has been
defined in (ISO9001-00) as “the degree to which a set of
inherent characteristics fulfils requirements.”
This chapter deals with software quality considerations
which transcend the life cycle processes. Software quality
is a ubiquitous concern in software engineering, and so it is
also considered in many of the KAs. In summary, the
SWEBOK Guide describes a number of ways of achieving
software quality. In particular, this KA will cover static
techniques, those which do not require the execution of the
software being evaluated, while the dynamic techniques are
covered in the Software Testing KA.

BREAKDOWN OF SOFTWARE QUALITY TOPICS

1. Software Quality Fundamentals

Agreement on quality requirements, as well as clear
communication to the software engineer on what
constitutes quality, require that the many aspects of quality
be formally defined and discussed.
A software engineer should understand the underlying
meanings of quality concepts and characteristics and their
value to the software under development or to maintenance.

The important concept is that the software requirements
define the required quality characteristics of the software,
and influence the measurement methods and acceptance
criteria for assessing these characteristics.
1.1.Software Engineering Culture and Ethics
Software engineers are expected to share a commitment to
software quality as part of their culture. A healthy software
engineering culture is described in [Wie96].
Ethics can play a significant role in software quality, the
culture, and the attitudes of software engineers. The IEEE
Computer Society and the ACM [IEEE99] have developed
a code of ethics and professional practice based on eight
principles, to help software engineers reinforce attitudes
related to quality and to the independence of their work.
1.2.Value and Costs of Quality
 [Boe78; NIST03; Pre04; Wei93]
The notion of “quality” is not as simple as it may seem.
For any engineered product, there are many desired
qualities relevant to a particular perspective of the product,
to be discussed and determined at the time that the product
requirements are set down. Quality characteristics may be
required or not, or may be required to a greater or lesser
degree, and tradeoffs may be made among them. [Pfl01]
The cost of quality can be differentiated into prevention
cost, appraisal cost, internal failure cost, and external
failure cost. [Hou99]
A motivation behind a software project is the desire to
create software that has value, and this value may or may
not be quantified as a cost. The customer will have some
maximum cost in mind, in return for which it is expected
that the basic purpose of the software will be fulfilled. The
customer may also have some expectation as to the quality
of the software. Sometimes customers may not have
thought through the quality issues or their related costs. Is
the characteristic merely decorative, or is it essential to the
software? If the answer lies somewhere in between, as is
almost always the case, it is a matter of making the
customer a part of the decision process and fully aware of
both costs and benefits. Ideally, most of these decisions will
be made in the software requirements process (see the
Software Requirements KA), but these issues may arise
throughout the software life cycle. There is no definite rule
as to how these decisions should be made, but the software
engineer should be able to present quality alternatives and
their costs. A discussion concerning cost and the value of
quality requirements can be found in [Jon96:c5;
Wei96:c11].

 11–2 © IEEE – 2004 Version

Software Engineering
Culture and Ethics

Value and Costs
of Quality

Quality Improvement

Verification and
Validation

Software Quality
Assurance

Software Quality

Software Quality
Fundamentals

Software Quality
Management

Processes

Practical
Considerations

Models and
Quality
Characteristics

Reviews and
Audits

Application Quality
Requirements

Defect
Characterization

Software Quality
Measurement

Software Quality
Management
Techniques

Figure 1 Breakdown of topics for the Software Quality KA

1.3.Models and quality characteristics
 [Dac01; Kia95; Lap91; Lew92; Mus99; NIST; Pre01;
 Rak97; Sei02; Wal96]
Terminology for software quality characteristics differs
from one taxonomy (or model of software quality) to
another, each model perhaps having a different number of
hierarchical levels and a different total number of
characteristics. Various authors have produced models of
software quality characteristics or attributes which can be
useful for discussing, planning, and rating the quality of
software products. [Boe78; McC77] ISO/IEC has defined
three related models of software product quality (internal
quality, external quality, and quality in use) (ISO9126-01)
and a set of related parts (ISO14598-98).

1.3.1. Software engineering process quality

Software quality management and software engineering
process quality have a direct bearing on the quality of the
software product.

Models and criteria which evaluate the capabilities of
software organizations are primarily project organization
and management considerations, and, as such, are covered
in the Software Engineering Management and Software
Engineering Process KAs.
Of course, it is not possible to completely distinguish the
quality of the process from the quality of the product.
Process quality, discussed in the Software Engineering
Process KA of this Guide, influences the quality
characteristics of software products, which in turn affect
quality-in-use as perceived by the customer.
Two important quality standards are TicKIT [Llo03], and
one which has an impact on software quality, the ISO9001
standard [ISO9001-00], along with its guidelines for
application to software [ISO90003-04].
Another industry standard on software quality is CMMi
[SEI02], also discussed in the Software Engineering
Process KA. CMMi intends to provide guidance for
improving processes. Specific process areas related to
quality management are: a) process and product quality
assurance, b) process verification, and c) process

© IEEE – 2004 Version 11-3

validation. CMMi classifies reviews and audits as
methods of verification, and not as specific processes like
(IEEE12207.0-96).

There was initially some debate over whether ISO9001 or
CMMi should be used by software engineers to ensure
quality. This debate is widely published, and, as a result,
the position has been taken that the two are
complementary, and that having ISO9001 certification
can help greatly in achieving the higher maturity levels of
the CMMi. [Dac01]

1.3.2. Software product quality

The software engineer needs, first of all, to determine the
real purpose of the software. In this regard, it is of prime
importance to keep in mind that the customer’s
requirements come first, and that they include quality
requirements, not just functional requirements. Thus, the
software engineer has a responsibility to elicit quality
requirements which may not be explicit at the outset, and
to discuss their importance as well as the level of
difficulty in attaining them. All processes associated with
software quality (for example, building, checking, and
improving quality) will be designed with these
requirements in mind, and they carry additional costs.
Standard (ISO9126-01) defines, for two of its three
models of quality, the related quality characteristics and
sub-characteristics, and measures which are useful for
assessing software product quality. (Sur03)
The meaning of the term “product” is extended to include
any artifact which is the output of any process used to
build the final software product. Examples of a product
include, but are not limited to, an entire system
requirements specification, a software requirements
specification for a software component of a system, a
design module, code, test documentation, or reports
produced as a result of quality analysis tasks. While most
treatments of quality are described in terms of the final
software and system performance, sound engineering
practice requires that intermediate products relevant to
quality be evaluated throughout the software engineering
process.
1.4.Quality improvement
 [NIST03; Pre04; Wei96]
The quality of software products can be improved through
an iterative process of continuous improvement which
requires management control, coordination, and feedback
from many concurrent processes: (1) the software life
cycle processes, (2) the process of error/defect detection,
removal, and prevention, and (3) the quality improvement
process. (Kin92)
The theory and concepts behind quality improvement,
such as building in quality through the prevention and
early detection of errors, continuous improvement, and
customer focus, are pertinent to software engineering.
These concepts are based on the work of experts in quality

who have stated that the quality of a product is directly
linked to the quality of the process used to create it.
(Cro79, Dem86, Jur89)
Approaches such as the Total Quality Management
(TQM) process of Plan, Do, Check, and Act (PDCA) are
tools by which quality objectives can be met.
Management sponsorship supports process and product
evaluations and the resulting findings. Then, an
improvement program is developed identifying detailed
actions and improvement projects to be addressed in a
feasible time frame. Management support implies that
each improvement project has enough resources to
achieve the goal defined for it. Management sponsorship
must be solicited frequently by implementing proactive
communication activities. The involvement of work
groups, as well as middle-management support and
resources allocated at project level, are discussed in the
Software Engineering Process KA.

2. Software Quality Management Processes

Software quality management (SQM) applies to all
perspectives of software processes, products, and
resources. It defines processes, process owners, and
requirements for those processes, measurements of the
process and its outputs, and feedback channels. (Art93)
Software quality management processes consist of many
activities. Some may find defects directly, while others
indicate where further examination may be valuable. The
latter are also referred to as direct-defect-finding
activities. Many activities often serve as both.
Planning for software quality involves:
(1) defining the required product in terms of its quality
characteristics (described in more detail in, for instance,
the Software Engineering Management KA)
(2) planning the processes to achieve the required product
(described in, for instance, the Software Design and the
Software Construction KAs).
These aspects differ from, for instance, the planning SQM
processes themselves, which assess planned quality
characteristics versus actual implementation of those
plans. How well software products will, or do, satisfy
customer and stakeholder requirements, provide value to
the customers and other stakeholders, and provide the
software quality needed to meet software requirements.
SQM can be used to evaluate the intermediate products as
well as the final product.
Some of the specific SQM processes are defined in
standard (IEEE12207.0-96):
 Quality assurance process
 Verification process
 Validation process
 Review process
 Audit process

 11–4 © IEEE – 2004 Version

These processes encourage quality and also find possible
problems. But they differ somewhat in their emphasis.
SQM processes help ensure better software quality in a
given project. They also provide, as a by-product, general
information to management, including an indication of the
quality of the entire software engineering process. The
Software Engineering Process and Software Engineering
Management KAs discuss quality programs for the
organization developing the software. SQM can provide
relevant feedback for these areas.
SQM processes consist of tasks and techniques to indicate
how software plans (for example, management,
development, configuration management) are being
implemented and how well the intermediate and final
products are meeting their specified requirements. Results
from these tasks are assembled in reports for management
before corrective action is taken. The management of an
SQM process is tasked with ensuring that the results of
these reports are accurate.
As described in this KA, SQM processes are closely
related; they can overlap and are sometimes even
combined. They seem largely reactive in nature because
they address the processes as practiced and the products
as produced; but they have a major role at the planning
stage in being proactive in terms of the processes and
procedures needed to attain the quality characteristics and
degree of quality needed by the stakeholders in the
software.
Risk management can also play an important role in
delivering quality software. Incorporating disciplined risk
analysis and management techniques into the software life
cycle processes can increase the potential for producing a
quality product (Cha89). Refer to the Software
Engineering Management KA for related material on risk
management.
2.1.Software Quality Assurance
[Ack02; Ebe94; Fre98; Gra92; Hor03; Pfl01; Pre04;
Rak97; Sch99; Som05; Voa99; Wal89; Wal96]
SQA processes provide assurance that the software
products and processes in the project life cycle conform to
their specified requirements by planning, enacting, and
performing a set of activities to provide adequate
confidence that quality is being built into the software.
This means ensuring that the problem is clearly and
adequately stated and that the solution’s requirements are
properly defined and expressed. SQA seeks to maintain
the quality throughout the development and maintenance
of the product by the execution of a variety of activities at
each stage which can result in early identification of
problems, an almost inevitable feature of any complex
activity. The role of SQA with respect to process is to
ensure that planned processes are appropriate and later
implemented according to plan, and that relevant
measurement processes are provided to the appropriate
organization.

The SQA plan defines the means that will be used to
ensure that software developed for a specific product
satisfies the user’s requirements and is of the highest
quality possible within project constraints. In order to do
so, it must first ensure that the quality target is clearly
defined and understood. It must consider management,
development, and maintenance plans for the software.
Refer to standard (IEEE730-98) for details.
The specific quality activities and tasks are laid out, with
their costs and resource requirements, their overall
management objectives, and their schedule in relation to
those objectives in the software engineering management,
development, or maintenance plans. The SQA plan should
be consistent with the software configuration management
plan (refer to the Software Configuration Management
KA). The SQA plan identifies documents, standards,
practices, and conventions governing the project and how
they will be checked and monitored to ensure adequacy
and compliance. The SQA plan also identifies measures,
statistical techniques, procedures for problem reporting
and corrective action, resources such as tools, techniques,
and methodologies, security for physical media, training,
and SQA reporting and documentation. Moreover, the
SQA plan addresses the software quality assurance
activities of any other type of activity described in the
software plans, such as procurement of supplier software
to the project or commercial off-the-shelf software
(COTS), installation, and service after delivery of the
software. It can also contain acceptance criteria, as well as
reporting and management activities which are critical to
software quality.
2.2.Verification & Validation
[Fre98; Hor03; Pfl01; Pre04; Som05; Wal89; Wal96]
For purposes of brevity, Verification and Validation
(V&V) are treated as a single topic in this Guide, rather
than as two separate topics as in the standard
(IEEE12207.0-96). “Software V&V is a disciplined
approach to assessing software products throughout the
product life-cycle. A V&V effort strives to ensure that
quality is built into the software and that the software
satisfies user requirements” (IEEE1059-93).
V&V addresses software product quality directly, and
uses testing techniques which can locate defects so that
they can be addressed. It also assesses the intermediate
products, however, and, in this capacity, the intermediate
steps of the software life cycle processes.
The V&V process determines whether or not products of
a given development or maintenance activity conform to
the requirement of that activity, and whether or not the
final software product fulfills its intended purpose and
meets user requirements. Verification is an attempt to
ensure that the product is built correctly, in the sense that
the output products of an activity meet the specifications
imposed on them in previous activities. Validation is an
attempt to ensure that the right product is built, that is, the

© IEEE – 2004 Version 11-5

product fulfills its specific intended purpose. Both the
verification process and the validation process begin early
in the development or maintenance phase. They provide
an examination of key product features in relation both to
the product’s immediate predecessor and to the
specifications it must meet.
The purpose of planning V&V is to ensure that each
resource, role, and responsibility is clearly assigned. The
resulting V&V plan documents and describes the various
resources and their roles and activities, as well as the
techniques and tools to be used. An understanding of the
different purposes of each V&V activity will help in the
careful planning of the techniques and resources needed to
fulfill their purposes. Standards (IEEE1012-98:s7,
IEEE1059-93: Appendix A) specify what ordinarily goes
into a V&V plan.
The plan also addresses the management, communication,
policies, and procedures of the V&V activities and their
interaction, as well as defect reporting and documentation
requirements.
2.3.Reviews and Audits
For purposes of brevity, reviews and audits are treated as
a single topic in this Guide, rather than as two separate
topics as in (IEEE12207.0-96). The review and audit
process is broadly defined in (IEEE12207.0-96) and in
more detail in (IEEE1028-97). Five types of reviews or
audits are presented in the IEEE1028-97 standard:
 Management reviews
 Technical reviews
 Inspections
 Walk-throughs
 Audits

2.3.1. Management Reviews
“The purpose of a management review is to monitor
progress, determine the status of plans and schedules,
confirm requirements and their system allocation, or
evaluate the effectiveness of management approaches
used to achieve fitness for purpose” [IEEE1028-97]. They
support decisions about changes and corrective actions
that are required during a software project. Management
reviews determine the adequacy of plans, schedules, and
requirements, and monitor their progress or
inconsistencies. These reviews may be performed on
products such as audit reports, progress reports, V&V
reports, and plans of many types, including risk
management, project management, software configuration
management, software safety, and risk assessment, among
others. Refer to the Software Engineering Management
and to the Software Configuration Management KAs for
related material.

2.3.2. Technical Reviews

 [Fre98; Hor03; Lew92; Pfl01; Pre04;

 Som05; Voa99; Wal89; Wal96]

“The purpose of a technical review is to evaluate a
software product to determine its suitability for its
intended use. The objective is to identify discrepancies
from approved specifications and standards. The results
should provide management with evidence confirming (or
not) that the product meets the specifications and adheres
to standards, and that changes are controlled. ”
(IEEE1028-97).
Specific roles must be established in a technical review: a
decision-maker, a review leader, a recorder, and technical
staff to support the review activities. A technical review
requires that mandatory inputs be in place in order to
proceed:
 Statement of objectives
 A specific software product
 The specific project management plan
 The issues list associated with this product
 The technical review procedure

The team follows the review procedure. A technically
qualified individual presents an overview of the product,
and the examination is conducted during one or more
meetings. The technical review is completed once all the
activities listed in the examination have been completed.

2.3.3. Inspections

 [Ack02; Fre98; Gil93; Rad02; Rak97]

“The purpose of an inspection is to detect and identify
software product anomalies” (IEEE1028-97). Two
important differentiators of inspections as opposed to
reviews are:

1. An individual holding a management position
over any member of the inspection team shall not
participate in the inspection.

2. An inspection is to be led by an impartial

facilitator who is trained in inspection
techniques.

Software inspections always involve the author of an
intermediate or final product, while other reviews might
not. Inspections also include an inspection leader, a
recorder, a reader, and a few (2 to 5) inspectors. The
members of an inspection team may possess different
expertise, such as domain expertise, design method
expertise, or language expertise. Inspections are usually
conducted on one relatively small section of the product at
a time. Each team member must examine the software
product and other review inputs prior to the review

 11–6 © IEEE – 2004 Version

meeting, perhaps by applying an analytical technique
(refer to section 3.3.3) to a small section of the product, or
to the entire product with a focus only on one aspect, for
example, interfaces. Any anomaly found is documented
and sent to the inspection leader. During the inspection,
the inspection leader conducts the session and verifies that
everyone has prepared for the inspection. A checklist,
with anomalies and questions germane to the issues of
interest, is a common tool used in inspections. The
resulting list often classifies the anomalies (refer to
IEEE1044-93 for details) and is reviewed for
completeness and accuracy by the team. The inspection
exit decision must correspond to one of the following
three criteria:

1. Accept with no, or at most minor, reworking
2. Accept with rework verification
3. Reinspect

Inspection meetings typically last a few hours, whereas
technical reviews and audits are usually broader in scope
and take longer.

2.3.4. Walk-throughs

 [Fre98; Hor03; Pfl01; Pre04; Som05;

 Wal89; Wal96]

“The purpose of a walk-through is to evaluate a software
product. A walk-through may be conducted for the
purpose of educating an audience regarding a software
product. ” (IEEE1028-97). The major objectives are to
[IEEE1028-97]:
 find anomalies
 improve the software product
 consider alternative implementations
 evaluate conformance to standards and specifications

The walk-through is similar to an inspection, but is
typically conducted less formally. The walk-through is
primarily organized by the software engineer to give his
teammates the opportunity to review his work, as an
assurance technique.

2.3.5. Audits

 [Fre98; Hor03; Pfl01; Pre01; Som05;

 Voa99; Wal89; Wal96]

“The purpose of a software audit is to provide an
independent evaluation of the conformance of software
products and processes to applicable regulations,
standards, guidelines, plans, and procedures” [IEEE1028-
97]. The audit is a formally organized activity, with
participants having specific roles, such as lead auditor,
another auditor, a recorder, or an initiator, and includes a
representative of the audited organization. The audit will

identify instances of non-conformance and produce a
report requiring the team to take corrective action.
While there may be many formal names for reviews and
audits, such as those identified in the standard
(IEEE1028-97), the important point is that they can occur
on almost any product at any stage of the development or
maintenance process.

3. Practical Considerations

3.1.Software Quality Requirements
 [Hor03; Lew92; Rak97; Sch99; Wal89; Wal96]

3.1.1. Influence factors

Various factors influence planning, management, and
selection of SQM activities and techniques, including:
 The domain of the system in which the software will

reside (safety-critical, mission-critical, business-
critical)

 System and software requirements
 The commercial (external) or standard (internal)

components to be used in the system
 The specific software engineering standards

applicable
 The methods and software tools to be used for

development and maintenance, and for quality
evaluation and improvement

 The budget, staff, project organization, plans, and
scheduling of all the processes

 The intended users and use of the system
 The integrity level of the system

Information on these factors influences how the SQM
processes are organized and documented, how specific
SQM activities are selected, and what resources are
needed and which will impose bounds on the efforts.

3.1.2. Dependability

In cases where system failure may have extremely severe
consequences, overall dependability (hardware, software,
and human) is the main quality requirement over and
above basic functionality. Software dependability includes
such characteristics as fault tolerance, safety, security, and
usability. Reliability is also a criterion which can be
defined in terms of dependability (ISO9126).
The body of literature for systems must be highly
dependable (“high confidence” or “high integrity
systems”). Terminology for traditional mechanical and
electrical systems which may not include software has
been imported for discussing threats or hazards, risks,
system integrity, and related concepts, and may be found
in the references cited for this section.

© IEEE – 2004 Version 11-7

3.1.3. Integrity levels of software

The integrity level is determined based on the possible
consequences of failure of the software and the
probability of failure. For software in which safety or
security is important, techniques such as hazard analysis
for safety or threat analysis for security may be used to
develop a planning activity which would identify where
potential trouble spots lie. The failure history of similar
software may also help in identifying which techniques
will be most useful in detecting faults and assessing
quality. Integrity levels (for example, gradation of
integrity) are proposed in (IEEE1012-98).
3.2.Defect Characterization
 [Fri95; Hor03; Lew92; Rub94; Wak99; Wal89]
SQM processes find defects. Characterizing those defects
leads to an understanding of the product, facilitates
corrections to the process or the product, and informs
project management or the customer of the status of the
process or product. Many defect (fault) taxonomies exist,
and, while attempts have been made to gain consensus on
a fault and failure taxonomy, the literature indicates that
there are quite a few in use. [Bei90, Chi96, Gra92],
(IEEE1044-93) Defect (anomaly) characterization is also
used in audits and reviews, with the review leader often
presenting a list of anomalies provided by team members
for consideration at a review meeting.
As new design methods and languages evolve, along with
advances in overall software technologies, new classes of
defects appear, and a great deal of effort is required to
interpret previously defined classes. When tracking
defects, the software engineer is interested not only in the
number of defects, but also the types. Information alone,
without some classification, is not really of any use in
identifying the underlying causes of the defects since
specific types of problems need to be grouped together in
order for determinations to be made about them. The point
is to establish a defect taxonomy that is meaningful to the
organization and to the software engineers.
SQM discovers information at all stages of software
development and maintenance. Typically, where the word
“defect” is used, it refers to a “fault” as defined below.
However, different cultures and standards may use
somewhat different meanings for these terms, which has
led to attempts to define them. Partial definitions taken
from standard (IEEE610.12-90) are:
 Error: “A difference…between a computed result

and the correct result”
 Fault: “An incorrect step, process, or data definition

in a computer program”
 Failure: “The [incorrect] result of a fault”
 Mistake: “A human action that produces an incorrect

result”

Failures found in testing as a result of software faults are
included as defects in the discussion in this section.
Reliability models are built from failure data collected
during software testing or from software in service, and
thus can be used to predict future failures and to assist in
decisions on when to stop testing. [Mus89]
One probable action resulting from SQM findings is to
remove the defects from the product under examination.
Other actions enable the achievement of full value from
the findings of SQM activities. These actions include
analyzing and summarizing the findings, and the use of
measurement techniques to improve the product and the
process, as well as to track the defects and their removal.
Process improvement is primarily discussed in the
Software Engineering Process KA, with the SQM process
being a source of information.
Data on the inadequacies and defects found during the
implementation of SQM techniques may be lost unless
they are recorded. For some techniques (for example,
technical reviews, audits, inspections), recorders are
present to set down such information, along with issues
and decisions. When automated tools are used, the tool
output may provide the defect information. Data about
defects may be collected and recorded on an SCR
(software change request) form and may subsequently be
entered into some type of database, either manually or
automatically, from an analysis tool. Reports about
defects are provided to the management of the
organization.
3.3.Software Quality Management Techniques
 [Bas94; Bei90; Con86; Chi96; Fen97; Fri95; Lev95;
 Mus89; Pen93; Sch99; Wak99; Wei93; Zel98]
SQM techniques can be categorized in many ways: static,
people-intensive, analytical, dynamic.

3.3.1. Static techniques

Static techniques involve examination of the project
documentation and software, and other information about
the software products, without executing them. These
techniques may include people-intensive activities (as de-
fined in 3.3.2) or analytical activities (as defined in 3.3.3)
conducted by individuals, with or without the assistance
of automated tools.

3.3.2. People-intensive techniques

The setting for people-intensive techniques, including
reviews and audits, may vary from a formal meeting to an
informal gathering or a desk-check situation, but (usually,
at least) two or more people are involved. Preparation
ahead of time may be necessary. Resources other than the
items under examination may include checklists and
results from analytical techniques and testing. These
activities are discussed in (IEEE1028-97) on reviews and
audits. [Fre98, Hor03] and [Jon96, Rak97]

 11–8 © IEEE – 2004 Version

3.3.3. Analytical techniques

A software engineer generally applies analytical
techniques. Sometimes several software engineers use the
same technique, but each applies it to different parts of the
product. Some techniques are tool-driven; others are
manual. Some may find defects directly, but they are
typically used to support other techniques. Some also
include various assessments as part of overall quality
analysis. Examples of such techniques include complexity
analysis, control flow analysis, and algorithmic analysis.
Each type of analysis has a specific purpose, and not all
types are applied to every project. An example of a
support technique is complexity analysis, which is useful
for determining whether or not the design or
implementation is too complex to develop correctly, to
test, or to maintain. The results of a complexity analysis
may also be used in developing test cases. Defect-finding
techniques, such as control flow analysis, may also be
used to support another activity. For software with many
algorithms, algorithmic analysis is important, especially
when an incorrect algorithm could cause a catastrophic
result. There are too many analytical techniques to list
them all here. The list and references provided may offer
insights into the selection of a technique, as well as
suggestions for further reading.
Other, more formal, types of analytical techniques are
known as formal methods. They are used to verify
software requirements and designs. Proof of correctness
applies to critical parts of software. They have mostly
been used in the verification of crucial parts of critical
systems, such as specific security and safety requirements.
(Nas97)

3.3.4. Dynamic techniques

Different kinds of dynamic techniques are performed
throughout the development and maintenance of software.
Generally, these are testing techniques, but techniques
such as simulation, model checking, and symbolic
execution may be considered dynamic. Code reading is
considered a static technique, but experienced software
engineers may execute the code as they read through it. In
this sense, code reading may also qualify as a dynamic
technique. This discrepancy in categorizing indicates that
people with different roles in the organization may
consider and apply these techniques differently.
Some testing may thus be performed in the development
process, SQA process, or V&V process, again depending
on project organization. Because SQM plans address
testing, this section includes some comments on testing.
The Software Testing KA provides discussion and
technical references to theory, techniques for testing, and
automation.

3.3.5. Testing

The assurance processes described in SQA and V&V
examine every output relative to the software requirement

specification to ensure the output’s traceability,
consistency, completeness, correctness, and performance.
This confirmation also includes the outputs of the
development and maintenance processes, collecting,
analyzing, and measuring the results. SQA ensures that
appropriate types of tests are planned, developed, and
implemented, and V&V develops test plans, strategies,
cases, and procedures.
Testing is discussed in detail in the Software Testing KA.
Two types of testing may fall under the headings SQA
and V&V, because of their responsibility for the quality of
the materials used in the project:
 Evaluation and test of tools to be used on the project

(IEEE1462-98)
 Conformance test (or review of conformance test) of

components and COTS products to be used in the
product; there now exists a standard for software
packages (IEEE1465-98)

Sometimes an independent V&V organization may be
asked to monitor the test process, and sometimes to
witness the actual execution to ensure that it is conducted
in accordance with specified procedures. Again, V&V
may be called upon to evaluate the testing itself: adequacy
of plans and procedures, and adequacy and accuracy of
results.
Another type of testing that may fall under the heading of
V&V organization is third-party testing. The third party is
not the developer, nor is in any way associated with the
development of the product. Instead, the third party is an
independent facility, usually accredited by some body of
authority. Their purpose is to test a product for
conformance to a specific set of requirements.
3.4.Software Quality Measurement
 [Gra92]
The models of software product quality often include
measures to determine the degree of each quality
characteristic attained by the product.
If they are selected properly, measures can support
software quality (among other aspects of the software life
cycle processes) in multiple ways. They can help in the
management decision-making process. They can find
problematic areas and bottlenecks in the software process;
and they can help the software engineers assess the
quality of their work for SQA purposes and for longer-
term process quality improvement.
With the increasing sophistication of software, questions
of quality go beyond whether or not the software works to
how well it achieves measurable quality goals.
There are a few more topics where measurement supports
SQM directly. These include assistance in deciding when
to stop testing. For this, reliability models and
benchmarks, both using fault and failure data, are useful.

© IEEE – 2004 Version 11-9

The cost of SQM processes is an issue which is almost
always raised in deciding how a project should be
organized. Often, generic models of cost are used, which
are based on when a defect is found and how much effort
it takes to fix the defect relative to finding the defect
earlier in the development process. Project data may give
a better picture of cost. Discussion on this topic can be
found in [Rak97: pp. 39-50]. Related information can be
found in the Software Engineering Process and Software
Engineering Management KAs.
Finally, the SQM reports themselves provide valuable
information not only on these processes, but also on how
all the software life cycle processes can be improved.
Discussions on these topics are found in [McC04] and
(IEEE1012-98).
While the measures for quality characteristics and product
features may be useful in themselves (for example, the
number of defective requirements or the proportion of
defective requirements), mathematical and graphical
techniques can be applied to aid in the interpretation of
the measures. These fit into the following categories and
are discussed in [Fen97, Jon96, Kan02, Lyu96, Mus99].
 Statistically-based (for example, Pareto analysis, run

charts, scatter plots, normal distribution)
 Statistical tests (for example, the binomial test, chi-

squared test)
 Trend analysis
 Prediction (for example, reliability models)

The statistically based techniques and tests often provide a
snapshot of the more troublesome areas of the software
product under examination. The resulting charts and
graphs are visualization aids which the decision-makers
can use to focus resources where they appear most
needed. Results from trend analysis may indicate that a

schedule has not been respected, such as in testing, or that
certain classes of faults will become more intense unless
some corrective action is taken in development. The
predictive techniques assist in planning test time and in
predicting failure. More discussion on measurement in
general appears in the Software Engineering Process and
Software Engineering Management KAs. More specific
information on testing measurement is presented in the
Software Testing KA.
References [Fen97, Jon96, Kan02, Pfl01] provide
discussion on defect analysis, which consists of measuring
defect occurrences and then applying statistical methods
to understanding the types of defects that occur most
frequently, that is, answering questions in order to assess
their density. They also aid in understanding the trends
and how well detection techniques are working, and how
well the development and maintenance processes are
progressing. Measurement of test coverage helps to
estimate how much test effort remains to be done, and to
predict possible remaining defects. From these
measurement methods, defect profiles can be developed
for a specific application domain. Then, for the next
software system within that organization, the profiles can
be used to guide the SQM processes, that is, to expend the
effort where the problems are most likely to occur.
Similarly, benchmarks, or defect counts typical of that
domain, may serve as one aid in determining when the
product is ready for delivery.
Discussion on using data from SQM to improve
development and maintenance processes appears in the
Software Engineering Management and the Software
Engineering Process KAs.

 11–10 © IEEE – 2004 Version

MATRIX OF TOPICS VS. REFERENCE MATERIAL

[B
oe

78
]

[D
ac

01
]

[H
ou

99
]

[I
E

E
E

99
] [I

SO
90

0
1-

00
]

[I
SO

90
0

03
-0

4]

[J
on

96
]

[K
ia

95
]

[L
ap

91
]

[L
ew

92
]

[L
lo

03
]

[M
cC

77
]

[M
us

99
]

[N
IS

T
03

]

[P
fl0

1]

[P
re

04
]

[R
ak

97
]

[S
ei

02
]

[W
al

96
]

[W
ei

93
]

[W
ei

96
]

1. Software Quality
Fundamental

1.1 Software Engineering
Culture and Ethics * *

1.2 Value and Cost of Quality * * * * * * * *
1.3 Models and Quality

Characteristics * * * * * * * * * * * * * * *

1.4 Software Quality
Improvement * * *

[A
ck

02
]

[E
be

94
]

[F
re

98
]

[G
il9

3]

[G
ra

92
]

[H
or

03
]

[L
ew

92
]

[P
fl0

1]

[P
re

04
]

[R
ad

02
]

[R
ak

97
]

[S
ch

99
]

[S
om

05
]

[V
oa

99
]

[W
al

89
]

[W
al

96
]

2. Software Quality
Management
Processes

2.1 Software Quality
Assurance * * * * * * * * * * * * *

2.2 Verification and
Validation * * * * * * *

2.3 Reviews and Audits * * * * * * * * * * * * *

[B
as

84
]

[B
ei

90
]

[C
on

86
]

[C
hi

96
]

[F
en

97
]

[F
re

98
]

[F
ri

95
]

[G
ra

92
]

[H
or

03
]

[J
on

96
]

[K
an

02
]

[L
ev

95
]

[L
ew

92
]

[L
yu

96
]

[M
cC

04
]

[M
us

89
]

[M
us

99
]

[P
en

93
]

[P
fl0

1]

[R
ak

97
]

[R
ub

94
]

[S
ch

99
]

[W
ak

99
]

[W
al

89
]

[W
al

96
]

[W
ei

93
]

[Z
el

98
]

3. Software Quality
Practical
Considerations

3.1 Software Quality
Requirements * * * * * *

3.2 Defect
Characterization * * * * * * * * * *

3.3 SQM Techniques * * * * * * * * * * * * * * * * *
3.4 Software Quality

Measurement * * * * * * * * *

© IEEE – 2004 Version 11-11

RECOMMENDED REFERENCES FOR SOFTWARE QUALITY

[Ack02] F. A. Ackerman, "Software Inspections and the
Cost Effective Production of Reliable Software," in
Software Engineering, Volume 2, The Supporting
Processes ; Richard H. Thayer and Mark Christensen
editors, Wiley-IEEE Computer Society Press, 2002.
[Bas84] V. R. Basili and D.M.Weiss, "A Methodology for
Collecting Valid Software Engineering Data," IEEE
Transactions on Software Engineering, vol. SE-10, iss. 6,
728-738, November, 1984
[Bei90] B. Beizer, Software Testing Techniques:
International Thomson Press, 1990.
[Boe78] B. W. Boehm and al, "Characteristics of Software
Quality," TRW series on Software Technologies, vol. 1,
1978
[Chi96] R. Chillarege, "Orthogonal Defect Classification,"
in Handbook of Software Reliability Engineering, M. Lyu,
Ed.: IEEE CS Press, 1996.
[Con86] S. D. Conte, H. E. Dunsmore and V. Y. Shen,
Software Engineering Metrics and Models: The Benjamin /
Cummings Publishing Company, Inc., 1986.
[Dac01] G. Dache, "IT Companies will gain competitive
advantage by integrating CMM with ISO9001," Quality
System Update, vol. 11, iss. 11, November, 2001
[Ebe94] R. G. Ebenau and S. Strauss, Software Inspection
Process: McGraw-Hill, 1994.
[Fen98] N. E. Fenton and S. L. Pfleeger, Software Metrics:
A Rigorous & Practical Approach, Second ed: International
Thomson Computer Press, 1998.
[Fre98] D. P. Freedman and G. M. Weinberg, Handbook of
Walkthroughs, Inspections, and Technical Reviews: Little,
Brown and Company, 1998.
[Fri95] M. A. Friedman and J. M. Voas, Software
Assessment: Reliability, Safety Testability: John Wiley &
Sons, Inc., 1995.[Gil93] T. Gilb, D. Graham, Software
Inspections, Addison, Reading, MA, 1993.
[Gra92] R. B. Grady, Practical Software Metrics for
project Management and Process Management: Prentice
Hall, Englewood Cliffs, NJ 07632, 1992.
[Hor03] J. W. Horch, Practical Guide to Software Quality
Management: Artech-House Publishers, 2003.
[Hou99] D. Houston, "Software Quality Professional,"
ASQC, vol. 1, iss. 2, 1999
[IEEE-CS-99] IEEE-CS-1999, "Software Engineering
Code of Ethics and Professional Practice," IEEE-CS/ACM,
1999, available at
http://www.computer.org/certification/ethics.htm
[ISO9001-00] ISO 9001:2000, Quality Management

Systems-Requirements: ISO, 2000.
[ISO90003-04] ISO/IEC 90003:2004, Software and
Systems Engineering-Guidelines for the Application of
ISO9001:2000 to Computer Software: ISO and IEC, 2004.
[Jon96] C. Jones and J. Capers, Applied Software
Measurement: Assuring Productivity and Quality, Second
ed: McGraw-Hill, 1996.
[Kan02] S. H. Kan, Metrics and Models in Software
Quality Engineering, Second ed: Addison-Wesley, 2002.
[Kia95] D. Kiang, "Harmonization of International
Software Standards on Integrity and Dependability," in
Proc. IEEE International Software Engineering Standards
Symposium, Los Alamitos, CA, 1995
[Lap91] J. C. Laprie, Dependability: Basic Concepts and
Terminology in English, French, German, Italian and
Japanese, IFIP WG 10.4. New York: Springer-Verlag,
1991.
[Lev95] N. G. Leveson, Safeware: System Safety and
Computers: Massachusetts: Addison-Wesley, 1995.
[Lew92] R. O. Lewis, Independent Verification and
Validation: A Life Cycle Engineering Process for Quality
Software: John Wiley & Sons, Inc., 1992.
[Llo03] Lloyd's Register, "TickIT Guide," iss. 5, 2003,
available at http://www.tickit.org
[Lyu96] M. R. Lyu, Handbook of Software Reliability
Engineering: Mc-Graw-Hill/IEEE, 1996.
[Mcc77] J. A. McCall, "Factors in Software Quality -
General Electric," n77C1502, June, 1977
[McC04] S. McConnell, Code Complete: A Practical
Handbook of Software Construction, Microsoft Press, 2nd
edition, 2004.
[Mus89] J. D. Musa and A. F. Ackerman, "Quantifying
Software Validation: When to stop testing?," IEEE
Software, vol. 6, iss. 3, 19-27, May, 1989
[Mus99] J. Musa, Software Reliability Engineering: More
Reliable Software, Faster Development and Testing:
McGraw Hill, 1999.
[NIST03] National Institute of Standards and Technology,
"Balridge National Quality Program," available at
http://www.quality.nist.gov
[Pen93] W. W. Peng and D. R. Wallace, "Software Error
Analysis," National Institute of Standards and Technology,
Gaithersburg, NIST SP 500-209 MD 20899, December,
1993, available at http://hissa.nist.gov/SWERROR/
[Pfl01] S. L. Pfleeger, Software Engineering: Theory and
Practice, Second ed: Prentice-Hall, Inc., 2001.
[Pre04] R. S. Pressman, Software Engineering: A
Practitioner's Approach, Sixth ed: McGraw-Hill, 2004.
[Rad02] R. Radice High Quality Low Cost Software

 11–12 © IEEE – 2004 Version

Inspections, Paradoxicon, 2002, pp. 479.
[Rak97] S. R. Rakitin, Software Verification and
Validation: A Practitioner's Guide: Artech House, Inc.,
1997.
[Rub94] J. Rubin, Handbook of Usability Testing: How to
Plan, Design, and Conduct Effective Tests: John Wiley &
Sons, 1994.
[Sch99] G. C. Schulmeyer and J. I. McManus, Handbook of
Software Quality Assurance, Third ed: Prentice Hall, 1999.
[SEI02] Software Engineering Institute, "Capability
Maturity Model Integration for Software Engineering
(CMMI)," Software Engineering Institute, Carnegie Mellon
University CMU/SEI-2002-TR-028, ESC-TR-2002-028,
2002
[Som05] I. Sommerville, Software Engineering, Seventh
ed: Addison-Wesley, 2005.
[Voa99] J. Voas, "Certifying Software For High Assurance
Environments," IEEE Software, vol. 16, iss. 4, 48-54, July-
August, 1999
[Wak99] S. Wakid, D. R. Kuhn and D. R. Wallace,

"Toward Credible IT Testing and Certification," IEEE
Software, 39-47, July-August, 1999
[Wal89] D. R. Wallace and R. U. Fujii, "Software
Verification and Validation: An Overview," IEEE
Software, vol. 6, iss. 3, 10-17, May, 1989
[Wal96] D. R. Wallace, L. Ippolito and B. Cuthill,
"Reference Information for the Software Verification and
Validation Process," NIST SP 500-234, Gaithersburg,
NIST MD 20899, April, 1996, available at
http://hissa.nist.gov/VV234/
[Wei93] G. M. Weinberg, "Quality Software Management:
First-Order Measurement," vol. 2: Dorset House, 1993, Ch.
8, Measuring Cost and Value.
[Wie96] K. Wiegers, Creating a Software Engineering
Culture: Dorset House, 1996.
[Zel98] M. V. Zelkowitz and D. R. Wallace, "Experimental
Models for Validating Technology," Computer, vol. 31, iss.
5, 23-31, 1998

© IEEE – 2004 Version 11-13

APPENDIX A. LIST OF FURTHER READINGS

(Abr96) A. Abran and P. N. Robillard, "Function Points
Analysis: An Empirical Study of its Measurement
Processes," presented at IEEE Transactions on Software
Engineering, 1996
(Art93) L. J. Arthur, Improving Software Quality: An
Insider's Guide to TQM: John Wiley & Sons, 1993.
(Bev97) N. Bevan, "Quality and Usability: A New
Framework," in Achieving Software Product Quality, E. v.
Veenendaal and J. McMullan, Eds. Uitgeverij Tutein
Nolthenius, Holland, 1997.
(Cha89) R. N. Charette, Software Engineering Risk
Analysis and Management: McGraw-Hill, 1989.
(Cro79) P. B. Crosby, Quality is free: McGraw-Hill, 1979.
(Dem86) W. E. Deming, Out of the Crisis: MIT Press,
1986.
(Dod00) Department of Defense and US Army, "Practical
Software and Systems Measurement: A Foundation for
Objective Project Management, Version 4.0b," October,
2000, available at http://www.psmsc.com
(Hum89) W. Humphrey, "Managing the Software Process,"
Massachusetts: Addison Wesley, 1989, Chap. 8, 10, 16.
(Hya96) L. E. Hyatt and L. Rosenberg, "A Software
Quality Model and Metrics for Identifying Project Risks
and Assessing Software Quality," presented at 8th Annual
Software Technology Conference, Utah, 1996
(Inc94) D. Ince, ISO 9001 and Software Quality Assurance.

London: McGraw-Hill, 1994.
(Jur89) J. M. Juran, Juran on Leadership for Quality. New-
York: The Free Press, 1989.
(Kin92) M. R. Kindl, "Software Quality and Testing: What
DoD Can Learn from Commercial Practices," U.S. Army
Institute for Research in Management Information,
Communications and Computer Sciences, Georgia Institute
of Technology, Atlanta, Georgia August, 1992
(NAS97) NASA, "Formal Methods Specification and
Analysis Guidebook for the Verification of Software and
Computer Systems, Volume II: A Practitioner's
Companion," 1997, available at
http://eis.jpl.nasa.gov/quality/Formal_Methods/
(Pal97) J. D. Palmer, "Traceability," in Software
Engineering, M. Dorfman and R. Thayer, Eds., 1997, 266-
276.
(Ros98) L. Rosenberg, "Applying and Interpreting Object-
Oriented Metrics," presented at Software Tech. Conf.,
1998, available at
http://satc.gsfc.nasa.gov/support/index.html
(Sur03) W. Suryn, A. Abran and A. April, "ISO/IEC
SQuaRE. The second generation of standards for software
product quality," presented at IASTED2003, Marina del
Rey, California, 2003
(Vin90) W. G. Vincenti, What Engineers Know and How
They Know It - Analytical Studies form Aeronautical
History. Baltimore and London: John Hopkins University
Press, 1990.

 11–14 © IEEE – 2004 Version

APPENDIX B. LIST OF STANDARDS

(FIPS140.1-94) FIPS 140-1, Security Requirements for
Cryptographic Modules, 1994.
(IEC61508-98) IEC 61508, "Functional Safety - Safety -
related Systems Parts 1,2,3," Institution of Electrical
Engineers, 1998
(IEEE610.12-90) IEEE Std 610.12-1990 (R2002), IEEE
Standard Glossary of Software Engineering Terminology:
IEEE, 1990.
(IEEE730-02) IEEE Std 730-2002, IEEE Standard for
Software Quality Assurance Plans: IEEE, 2002.
(IEEE982.1-88) IEEE Std 982.1-1988, IEEE Standard
Dictionary of Measures to Produce Reliable Software,
1988.
(IEEE1008-87) IEEE Std 1008-1987 (R2003), IEEE
Standard for Software Unit Testing: IEEE, 1987.
(IEEE1012-98) IEEE Std 1012-1998, Software Verification
and Validation: IEEE, 1998.
(IEEE1028-97) IEEE Std 1028-1997 (R2002), IEEE
Standard for Software Reviews: IEEE, 1997.
(IEEE1044-93) IEEE Std 1044-1993 (R2002), IEEE
Standard for the Classification of Software Anomalies:
IEEE, 1993.
(IEEE1059-93) IEEE Std 1059-1993, IEEE Guide for
Software Verification and Validation Plans: IEEE, 1993.
(IEEE1061-98) IEEE Std 1061-1998, IEEE Standard for a
Software Quality Metrics Methodology: IEEE, 1998.
(IEEE1228-94) IEEE Std 1228-1994, Software Safety
Plans: IEEE, 1994.

(IEEE1462-98) IEEE Std 1462-1998//ISO/IEC14102,
Information Technology - Guideline for the Evaluation and
Selection of CASE tools.
(IEEE1465-98) IEEE Std 1465-1998//ISO/IEC12119:1994,
IEEE Standard Adoption of International Standard
IDO/IEC12119:1994(E), Information Technology-Software
packages-Quality requirements and testing: IEEE, 1998.
(IEEE12207.0-96) IEEE/EIA 12207.0-
1996//ISO/IEC12207:1995, Industry Implementation of Int.
Std. ISO/IEC 12207:95, Standard for Information
Technology-Software Life Cycle Processes, vol. IEEE,
1996.
(ISO9001-00) ISO 9001:2000, Quality Management
Systems-Requirements: ISO, 2000.
(ISO9126-01) ISO/IEC 9126-1:2001, Software
Engineering-Product Quality-Part 1: Quality Model: ISO
and IEC, 2001.
(ISO14598-98) ISO/IEC 14598:1998, Software Product
Evaluation: ISO and IEC, 1998.
(ISO15026-98) ISO/IEC 15026:1998, Information
technology -- System and software integrity levels: ISO and
IEC, 1998.
(ISO15504-98) ISO/IEC TR 15504-1998, Information
Technology - Software Process Assessment (parts 1-9): ISO
and IEC, 1998.
(ISO15939-00) ISO/IEC 15939:2000, Information
Technology - Software Measurement Process: ISO and
IEC, 2000.
(ISO90003-04) ISO/IEC 90003:2004, Software and
Systems Engineering-Guidelines for the Application of
ISO9001:2000 to Computer Software: ISO and IEC, 2004.

© IEEE –2004 Version 12-1

CHAPTER 12

RELATED DISCIPLINES OF
SOFTWARE ENGINEERING

INTRODUCTION

In order to circumscribe software engineering, it is necessary to identify the disciplines with which software engineering
shares a common boundary. This chapter identifies, in alphabetical order, these Related Disciplines. Of course, the Related
Disciplines also share many common boundaries between themselves.
This chapter identifies for each Related Discipline and using a consensus-based recognized source as found:

 an informative definition (when feasible);
 a list of knowledge areas.

Figure 1 gives a graphical representation of these Related Disciplines

Systems
Engineering

Software
Ergonomics

Computer
Science

Quality
Management

Project
ManagementMathematicsManagementComputer

Engineering

Related Disciplines of
Software Engineering

Figure 1 Related Disciplines of Software Engineering

LIST OF RELATED DISCIPLINES AND THEIR KNOWLEDGE AREAS

Computer Engineering

The draft report of the volume on computer engineering of
the Computing Curricula 2001 project (CC2001)1 states
that “computer engineering embodies the science and
technology of design, construction, implementation and
maintenance of software and hardware components of
modern computing systems and computer-controlled
equipment.”
This report identifies the following Knowledge Areas
(known as areas in the report) for computer engineering:

 Algorithms and Complexity
 Computer Architecture and Organization
 Computer Systems Engineering
 Circuits and Systems
 Digital Logic
 Discrete Structures

1 http://www.eng.auburn.edu/ece/CCCE/Iron_Man_Draft_October_2003.pdf

 Digital Signal Processing
 Distributed Systems
 Electronics
 Embedded Systems
 Human-Computer Interaction
 Information Management
 Intelligent Systems
 Computer Networks
 Operating Systems
 Programming Fundamentals
 Probability and Statistics
 Social and Professional Issues
 Software Engineering
 Test and Verification
 VLSI/ASIC Design

 12-2 © IEEE –2004 Version

Computer Science

The final report of the volume on computer science of the
Computing Curricula 2001 project (CC2001)2 identifies the
following list of knowledge areas (identified as areas in the
report) for computer science:

• Discrete Structures
• Programming Fundamentals
• Algorithms and Complexity
• Architecture and Organization
• Operating Systems
• Net-Centric Computing
• Programming Languages
• Human-Computer Interaction
• Graphics and Visual Computing
• Intelligent Systems
• Information Management
• Social and Professional Issues
• Software Engineering
• Computational Science and Numerical Methods

Management

The European MBA Guidelines defined by the European
association of national accreditation bodies (EQUAL)3
states that MBA should notably include coverage of and
instruction in:

- accounting
- finance
- marketing and sales
- operations management
- information systems management
- law
- human resource management
- economics
- quantitative analysis
- business policy and strategy

Mathematics

Two sources are selected to identify the list of knowledge
areas for mathematics. The report titled “Accreditation
Criteria and Procedures”4 of the Canadian Engineering
Accreditation Board identifies that appropriate elements of

2 http://www.computer.org/education/cc2001/final/cc2001.pdf
3 http://www.efmd.be/
4 http://www.ccpe.ca/e/files/report_ceab.pdf

the following areas should be present in an undergraduate
engineering curriculum:

 Linear algebra;
 Differential and integral calculus;
 Differential equations;
 Probability;
 Statistics;
 Numerical analysis;
 Discrete mathematics.

A more focused list of mathematical topics (called units
and topics in the report) that underpin software engineering
can be found in the draft report of the volume on software
engineering of the Computing Curricula 2001 project
(CC2001)5.

Project Management

Project management is defined in the 2000 Edition of “A
Guide to the Project Management Body of Knowledge”
(PMBOK®6 Guide) published by the Project Management
Institute and adopted as IEEE Std 1490-2003, as “the
application of knowledge, skills, tools, and techniques to
project activities to meet project requirements”.
The Knowledge Areas identified in the PMBOK Guide for
project management are:

 Project Integration Management
 Project Scope Management
 Project Time Management
 Project Cost Management
 Project Quality Management
 Project Human Resource Management
 Project Communications Management
 Project Risk Management
 Project Procurement Management

Quality Management

Quality management is defined in ISO 9000-2000 as
“coordinated activities to direct and control an organization
with regard to quality.” The three selected reference on
quality management are:

- ISO 9000:2000 Quality management systems --
Fundamentals and vocabulary;

- ISO 9001:2000 Quality management systems –
Requirements;

- ISO 9004:2000 Quality management systems --
Guidelines for performance improvements;

5 http://sites.computer.org/ccse/volume/FirstDraft.pdf
6 PMBOK is a registered trademark in the United States and other nations.

© IEEE –2004 Version 12-3

The American Society for Quality identifies the following
Knowledge Areas (first-level breakdown topics in their
outline) in their Body of Knowledge for certification as a
Quality Engineer7:

- Management and leadership in quality engineering
- Quality systems development, implementation and

verification
- Planning, controlling, and assuring product and

process quality;
- Reliability and risk management;
- Problem solving and quality improvement;
- Quantitative methods;

Software Ergonomics

The field of ergonomics is defined by ISO Technical
Committee 159 on Ergonomics as “Ergonomics or (human
factors) is the scientific discipline concerned with the
understanding of the interactions among human and other
elements of a system, and the profession that applies
theory, principles, data and methods to design in order to
optimize human well-being and overall system
performance.”8

A list Knowledge Areas for ergonomics9 as it applies to
software is proposed below:
Cognition
Cognitive AI I: Reasoning
Machine Learning and Grammar Induction
Formal Methods in Cognitive Science: Language
Formal Methods in Cognitive Science: Reasoning
Formal Methods in Cognitive Science:

Cognitive Architecture
Cognitive AI II: Learning
Foundations of Cognitive Science
Information Extraction from Speech and Text
Lexical Processing
Computational Language Acquisition
The Nature of HCI

7 http://www.asq.org/cert/types/cqe/bok.html
8
http://isotc.iso.ch/livelink/livelink.exe/fetch/2000/2122/687806/ISO_TC_159__
Ergonomics_.pdf?nodeid=1162319&vernum=0
9 This list was compiled for the 2001 edition of the SWEBOK Guide from the
list of courses offered at the John Hopkins University Department of Cognitive
Sciences and from the ACM SIGCHI Curricula for Human-Computer
Interaction9.
The list was then refined by three experts in the field: two from Université du
Québec à Montréal and W. W. McMillan, from Eastern Michigan University.
They were asked to indicate which of these topics should be known by a
software engineer. The topics that were rejected by two of the three respondents
were removed from the original list.

(Meta-)Models of HCI
Use and Context of Computers

Human Social Organization and Work
Application Areas
Human-Machine Fit and Adaptation

Human Characteristics
Human Information Processing
Language, Communication, Interaction
Ergonomics

Computer System and Interface Architecture
Input and Output Devices
Dialogue Techniques
Dialogue Genre
Computer Graphics

Dialogue Architecture
Development Process

Design Approaches
Implementation Techniques
Evaluation Techniques
Example Systems and Case Studies

A more focused list of topics on human computer interface
design (called units and topics in the report) for software
engineering curriculum purposes can be found in the draft
report of the volume on software engineering of the
Computing Curricula 2001 project (CC2001)10.

Systems Engineering

The International Council on Systems Engineering
(INCOSE)11 states that “Systems Engineering is an
interdisciplinary approach and means to enable the
realization of successful systems. It focuses on defining
customer needs and required functionality early in the
development cycle, documenting requirements, then
proceeding with design synthesis and system validation
while considering the complete problem: operations
performance, test, manufacturing, cost and schedule,
training and support and disposal.

Systems Engineering integrates all the disciplines and
specialty groups into a team effort forming a structured
development process that proceeds from concept to
production to operation. Systems Engineering considers
both the business and the technical needs of all customers
with the goal of providing a quality product that meets the
user needs.

10 http://sites.computer.org/ccse/volume/FirstDraft.pdf
11 www.incose.org

 12-4 © IEEE –2004 Version

The International Council on Systems Engineering
(INCOSE, www.incose.org) is working on a Guide to the
Systems Engineering Body of Knowledge. Preliminary
versions include the following first level competency areas:
1.Business Processes and Operational Assessment (BPOA)
2. System / Solution / Test Architecture (SSTA)
3. Life Cycle Cost & Cost Benefit Analysis (LCC & CBA)
4. Serviceability / Logistics (S/L)
5. Modeling, Simulation, & Analysis (MS&A)
6. Management: Risk, Configuration, Baseline (Mgt)

© IEEE – 2004 Version A–1

APPENDIX A
KNOWLEDGE AREA DESCRIPTION SPECIFICATIONS

FOR THE IRONMAN VERSION
OF THE GUIDE TO THE SOFTWARE ENGINEERING

BODY OF KNOWLEDGE
INTRODUCTION
This document presents version 1.9 of the specifications
provided by the Editorial Team to the Knowledge Area
Specialist regarding the Knowledge Area Descriptions of
the Guide to the Software Engineering Body of Knowledge
(Ironman Version).
This document begins by presenting specifications on the
contents of the Knowledge Area Description. Criteria and
requirements are defined for proposed breakdowns of
topics, for the rationale underlying these breakdowns and
the succinct description of topics, for selecting reference
materials, and for identifying relevant Knowledge Areas of
Related Disciplines. Important input documents are also
identified and their role within the project is explained.
Non-content issues such as submission format and style
guidelines are also discussed.

CONTENT GUIDELINES
The following guidelines are presented in a schematic form
in the figure found below. While all components are part of
the Knowledge Area Description, it must be made very
clear that some components are essential, while other are
not. The breakdown(s) of topics, the selected reference
material and the matrix of reference material versus topics
are essential. Without them there is no Knowledge Area
Description. The other components could be produced by
other means if, for whatever reason, the Editorial Team
cannot provide them within the given timeframe and should
not be viewed as major stumbling blocks.

CRITERIA AND REQUIREMENTS FOR PROPOSING
THE BREAKDOWN(S) OF TOPICS WITHIN A
KNOWLEDGE AREA
The following requirements and criteria should be used
when proposing a breakdown of topics within a given
Knowledge Area:
a) Knowledge Area Specialists are expected to propose

one or possibly two complementary breakdowns that
are specific to their Knowledge Area. The topics
found in all breakdowns within a given Knowledge
Area must be identical.

b) These breakdowns of topics are expected to be
“reasonable”, not “perfect”. The Guide to the

Software Engineering Body of Knowledge is
definitely viewed as a multi-phase effort and many
iterations within each phase as well as multiple phases
will be necessary to continuously improve these
breakdowns.

c) The proposed breakdown of topics within a
Knowledge Area must decompose the subset of the
Software Engineering Body of Knowledge that is
“generally accepted”. See section 2.6 below for a
more detailed discussion on this.

d) The proposed breakdown of topics within a
Knowledge Area must not presume specific
application domains, business needs, sizes of
organizations, organizational structures, management
philosophies, software life cycle models, software
technologies or software development methods.

e) The proposed breakdown of topics must, as much as
possible, be compatible with the various schools of
thought within software engineering.

f) The proposed breakdown of topics within Knowledge
Areas must be compatible with the breakdown of
software engineering generally found in industry and
in the software engineering literature and standards.

g) The proposed breakdown of topics is expected to be
as inclusive as possible. It is deemed better to suggest
too many topics and have them be abandoned later
than the reverse.

h) The Knowledge Area Associate Editors are expected
to adopt the position that even though the following
“themes” are common across all Knowledge Areas,
they are also an integral part of all Knowledge Areas
and therefore must be incorporated into the proposed
breakdown of topics of each Knowledge Area. These
common themes are quality (in general) and
measurement.

 Please note that the issue of how to properly handle
these “cross-running” or “orthogonal topics” and
whether or not they should be handled in a different
manner has not been completely resolved yet.

i) The proposed breakdowns should be at most two or
three levels deep. Even though no upper or lower
limit is imposed on the number of topics within each
Knowledge Area, Knowledge Area Associate Editors
are expected to propose a reasonable and manageable

 A–2 © IEEE – 2004 Version

number of topics per Knowledge Area. Emphasis
should also be put on the selection of the topics
themselves rather than on their organization in an
appropriate hierarchy.

j) Proposed topic names must be significant enough to
be meaningful even when cited outside the Guide to
the Software Engineering Body of Knowledge.

k) The description of a Knowledge Area will include a
chart (in tree form) describing the knowledge
breakdown.

CRITERIA AND REQUIREMENTS FOR DESCRIBING
TOPICS
a) Topics need only to be sufficiently described so the

reader can select the appropriate reference material
according to his/her needs.

CRITERIA AND REQUIREMENTS FOR SELECTING
REFERENCE MATERIAL
a) Specific reference material must be identified for each

topic. Each reference material can of course cover
multiple topics.

b) Proposed Reference Material can be book chapters,
refereed journal papers, refereed conference papers or
refereed technical or industrial reports or any other
type of recognized artifact such as web documents.
They must be generally available and must not be
confidential in nature. Reference should be as precise
as possible by identifying what specific chapter or
section is relevant.

c) Proposed Reference Material must be in English.
d) A reasonable amount of reference material must be

selected for each Knowledge Area. The following
guidelines should be used in determining how much is
reasonable:

 If the reference material were written in a coherent
manner that followed the proposed breakdown of
topics and in a uniform style (for example in a new
book based on the proposed Knowledge Area
description), an average target for the number of
pages would be 500. However, this target may not be
attainable when selecting existing reference material
due to differences in style, and overlap and
redundancy between the selected reference material.

 The amount of reference material would be
reasonable if it consisted of the study material on this
Knowledge Area of a software engineering licensing
exam that a graduate would pass after completing four
years of work experience.

 The Guide to the Software Engineering Body of
Knowledge is intended by definition to be selective in
its choice of topics and associated reference material
The list of reference material for each Knowledge

Area should be viewed and will be presented as an
“informed and reasonable selection” rather than as a
definitive list.

 Additional reference material can be included in a
“Further Readings” list. These further readings still
must be related to the topics in the breakdown. They
must also discuss generally accepted knowledge.
There should not be a matrix between the reference
material listed in Further Readings and the individual
topics.

e) If deemed feasible and cost-effective by the IEEE
Computer Society, selected reference material will be
published on the Guide to the Software Engineering
Body of Knowledge web site. To facilitate this task,
preference should be given to reference material for
which the copyrights already belong to the IEEE
Computer Society. This should however not be seen
as a constraint or an obligation.

f) A matrix of reference material versus topics must be
provided.

CRITERIA AND REQUIREMENTS FOR
IDENTIFYING KNOWLEDGE AREAS OF THE
RELATED DISCIPLINES
a) Knowledge Area Associate Editors are expected to

identify in a separate section which Knowledge Areas
of the Related Disciplines are sufficiently relevant to
the Software Engineering Knowledge Area that has
been assigned to them be expected knowledge by a
graduate plus four years of experience.

This information will be particularly useful to and will
engage much dialogue between the Guide to the Software
Engineering Body of Knowledge initiative and our sister
initiatives responsible for defining a common software
engineering curricula and standard performance norms for
software engineers.
The list of Knowledge Areas of Related Disciplines can be
found in the Proposed Baseline List of Related Disciplines.
If deemed necessary and if accompanied by a justification,
Knowledge Area Specialists can also propose additional
Related Disciplines not already included or identified in the
Proposed Baseline List of Related Disciplines. (Please note
that a classification of the topics from the Related
Disciplines has been produced but will be published on the
web site at a latter date in a separate working document.
Please contact the editorial team for more information).

COMMON TABLE OF CONTENTS
Knowledge Area descriptions should use the following

table of contents:
 Introduction
 Breakdown of topics of the Knowledge Area (for

clarity purposes, we believe this section should be

© IEEE – 2004 Version A–3

placed in front and not in an appendix at the end of
the document. Also, it should be accompanied by a
figure describing the breakdown)

 Matrix of topics vs. Reference material
 Recommended references for the Knowledge Area

being described (please do not mix them with
references used to write the Knowledge Area
description)

 List of Further Readings

WHAT DO WE MEAN BY “GENERALLY ACCEPTED
KNOWLEDGE”?
The software engineering body of knowledge is an all-
inclusive term that describes the sum of knowledge within
the profession of software engineering. However, the
Guide to the Software Engineering Body of Knowledge
seeks to identify and describe that subset of the body of
knowledge that is generally accepted or, in other words, the
core body of knowledge. To better illustrate what
“generally accepted knowledge” is relative to other types of
knowledge, Figure 1 proposes a draft three-category
schema for classifying knowledge.
The Project Management Institute in its Guide to the
Project Management Body of Knowledge1 defines
“generally accepted” knowledge for project management in
the following manner:
‘“Generally accepted” means that the knowledge and
practices described are applicable to most projects most of
the time, and that there is widespread consensus about their
value and usefulness. “Generally accepted” does not mean
that the knowledge and practices described are or should be
applied uniformly on all projects; the project management
team is always responsible for determining what is
appropriate for any given project.’
The Guide to the Project Management Body of Knowledge
is now an IEEE Standard.
At the Mont-Tremblant kick off meeting in 1998, the
Industrial Advisory Board better defined “generally
accepted” as knowledge to be included in the study
material of a software engineering licensing exam that a
graduate would pass after completing four years of work
experience. These two definitions should be seen as
complementary.
Knowledge Area Associate Editors are also expected to be
somewhat forward looking in their interpretation by taking
into consideration not only what is “generally accepted”
today and but what they expect will be “generally
accepted” in a 3 to 5 years timeframe.

1 See [1] “A Guide to the Project Management Body of

Knowledge,” Project Management Institute, Newton Square,
PA 1996, 2000. Can be downloaded from www.pmi.org

Generally Accepted
Established traditional practices

recommended by many organizations

Sp
ec

ia
liz

ed

Pr
ac

tic
es

 u
se

d
on

ly
 fo

r c
er

ta
in

 ty
pe

s
of

 so
ftw

ar
e

Advanced and Research
Innovative practices tested and used

only by some organizations and
concepts still being developed and

tested in research organizations

Figure 1 Categories of knowledge

LENGTH OF KNOWLEDGE AREA DESCRIPTION
Knowledge Area Descriptions are currently expected to be
roughly in the 10 pages range using the format of the
International Conference on Software Engineering format
as defined below. This includes text, references, appendices
and tables etc. This, of course, does not include the
reference materials themselves. This limit should, however,
not be seen as a constraint or an obligation.

ROLE OF EDITORIAL TEAM
Alain Abran and James W. Moore are the Executive
Editors and are responsible for maintaining good relations
with the IEEE CS, the Industrial Advisory Board, the
Executive Change Control Board and the Panel of Experts
as well as for the overall strategy, approach, organization
and funding of the project.
Pierre Bourque and Robert Dupuis are the Editors and are
responsible for the coordination, operation and logistics of
this project. More specifically, the Editors are responsible
for developing the project plan, the Knowledge Area
description specification and for coordinating Knowledge
Area Associate Editors and their contribution, for
recruiting the reviewers and the review captains as well as
coordinating the various review cycles.
The Editors are therefore responsible for the coherence of
the entire Guide and for identifying and establishing links
between the Knowledge Areas. The Editors and the
Knowledge Area Associate Editors will negotiate the
resolution of gaps and overlaps between Knowledge Areas.

IMPORTANT RELATED DOCUMENTS (IN
ALPHABETICAL ORDER OF FIRST AUTHOR)
1. P. Bourque, R. Dupuis, A. Abran, J. W. Moore, L.

Tripp, D. Frailey, A Baseline List of Knowledge
Areas for the Stone Man Version of the Guide to the

 A–4 © IEEE – 2004 Version

Software Engineering Body of Knowledge,
Université du Québec à Montréal, Montréal, February
1999.

Based on the Straw Man version, on the discussions held
and the expectations stated at the kick off meeting of the
Industrial Advisory Board, on other body of knowledge
proposals, and on criteria defined in this document, this
document proposes a baseline list of ten Knowledge Areas
for the Trial Version of the Guide to the Software
Engineering Body of Knowledge. This baseline may of
course evolve as work progresses and issues are identified
during the course of the project.
This document is available at www.swebok.org.
2. P. Bourque, R. Dupuis, A. Abran, J. W. Moore, L.

Tripp. A Proposed Baseline List of Related
Disciplines for the Stone Man Version of the Guide to
the Software Engineering Body of Knowledge,
Université du Québec à Montréal, Montréal, February
1999.

Based on the Straw Man version, on the discussions held
and the expectations stated at the kick off meeting of the
Industrial Advisory Board and on subsequent work, this
document proposes a baseline list of Related Disciplines
and Knowledge Areas within these Related Disciplines.
This document has been submitted to and discussed with
the Industrial Advisory Board and a recognized list of
Knowledge Areas still has to be identified for certain
Related Disciplines. Knowledge Area Specialists will be
informed of the evolution of this document.
The current version is available at www.swebok.org
3. P. Bourque, R. Dupuis, A. Abran, J. W. Moore, L.

Tripp, K. Shyne, B. Pflug, M. Maya, and G.
Tremblay, Guide to the Software Engineering Body
of Knowledge - A Straw Man Version, Université du
Québec à Montréal, Montréal, Technical Report,
September 1998.

This report is the basis for the entire project. It defines
general project strategy, rationale and underlying principles
and proposes an initial list of Knowledge Areas and
Related Disciplines.
This report is available at www.swebok.org.
4. J. W. Moore, Software Engineering Standards, A

User’s Road Map. Los Alamitos: IEEE Computer
Society Press, 1998.

This book describes the scope, roles, uses, and
development trends of the most widely used software
engineering standards. It concentrates on important
software engineering activities — quality and project
management, system engineering, dependability, and
safety. The analysis and regrouping of the standard
collections exposes you to key relationships between
standards.

Even though the Guide to the Software Engineering Body
of Knowledge is not a software engineering standards
development project per se, special care will be taken
throughout the project regarding the compatibility of the
Guide with the current IEEE and ISO Software
Engineering Standards Collection.
5. IEEE Standard Glossary of Software Engineering

Terminology, IEEE, Piscataway, NJ std 610.12-1990,
1990.

The hierarchy of references for terminology is Merriam
Webster’s Collegiate Dictionary (10th Edition), IEEE
Standard 610.12 and new proposed definitions if required.
6. Information Technology – Software Life Cycle

Processes, International Standard, Technical ISO/IEC
12207:1995(E), 1995.

This standard is considered the key standard regarding the
definition of life cycle process and has been adopted by the
two main standardization bodies in software engineering:
ISO/IEC JTC1 SC7 and the IEEE Computer Society
Software Engineering Standards Committee. It also has
been designated as the pivotal standard around which the
Software Engineering Standards Committee (SESC) is
currently harmonizing its entire collection of standards.
This standard was a key input to the Straw Man version.
Even though we do not intend that the Guide to the
Software Engineering Body of Knowledge be fully 12207-
compliant, this standard remains a key input to the Stone
Man version and special care will be taken throughout the
project regarding the compatibility of the Guide with the
12207 standard.
7. Merriam Webster’s Collegiate Dictionary (10th

Edition).
See note for IEEE 610.12 Standard.

STYLE AND TECHNICAL GUIDELINES
Knowledge Area Descriptions should conform to the
International Conference on Software Engineering
Proceedings format (templates are available at
http://sunset.usc.edu/icse99/cfp /technical_papers.html).
Knowledge Area Descriptions are expected to follow the
IEEE Computer Society Style Guide. See
http://computer.org/author/style/cs-style.htm
Microsoft Word is the preferred submission format. Please
contact the Editorial Team if this is not feasible for you.

OTHER DETAILED GUIDELINES
When referencing the guide, we recommend that you use
the full title “Guide to the SWEBOK” instead of only
“SWEBOK.”
For the purpose of simplicity, we recommend that
Knowledge Area Associate Editors avoid footnotes.

© IEEE – 2004 Version A–5

Instead, they should try to include their content in the main
text.
We recommend using in the text explicit references to
standards, as opposed to simply inserting numbers
referencing items in the bibliography. We believe it would
allow to better expose the reader to the source and scope of
a standard.
The text accompanying figures and tables should be self-
explanatory or have enough related text. This would ensure
that the reader knows what the figures and tables mean.
Make sure you use current information about references
(versions, titles, etc.)
To make sure that some information contained in the Guide
to the SWEBOK does not become rapidly obsolete, please
avoid directly naming tools and products. Instead, try to
name their functions. The list of tools and products can
always be put in an appendix.
You are expected to spell out all acronyms used and to use
all appropriate copyrights, service marks, etc.
The Knowledge Area Descriptions should always be
written in third person.

EDITING
The Editorial Team and professional editors will edit
knowledge Area Descriptions. Editing includes copy

editing (grammar, punctuation, and capitalization), style
editing (conformance to the Computer Society magazines’
house style), and content editing (flow, meaning, clarity,
directness, and organization). The final editing will be a
collaborative process in which the Editorial Team and the
authors work together to achieve a concise, well worded,
and useful a Knowledge Area Description.

RELEASE OF COPYRIGHT
All intellectual properties associated with the Guide to the
Software Engineering Body of Knowledge will remain
with the IEEE Computer Society. Knowledge Area
Associate Editors were asked to sign a copyright release
form.
It is also understood that the Guide to the Software
Engineering Body of Knowledge will be put in the public
domain by the IEEE Computer Society, free of charge
through web technology, or by other means.
For more information, see http://computer.org/
copyright.htm

 A–6 © IEEE – 2004 Version

© IEEE – 2004 Version B-1

APPENDIX B
EVOLUTION OF THE GUIDE TO THE SOFTWARE ENGINEERING

BODY OF KNOWLEDGE
INTRODUCTION
Although the 2004 Guide to the Software Engineering Body
of Knowledge is a milestone in reaching a broad agreement
on the content of the software engineering discipline, it is
not the end of the process. The 2004 Guide is simply the
current edition of a guide that will continue evolving to meet
the needs of the software engineering community. Planning
for evolution is not yet complete, but a tentative outline of
the process is provided in this section. As of this writing, this
process has been endorsed by the project’s Industrial
Advisory Board and briefed to the Board of Governors of the
IEEE Computer Society, but is not yet either funded or
implemented.

STAKEHOLDERS
Widespread adoption of the SWEBOK Guide has produced a
substantial community of stakeholders in addition to the
Computer Society itself. There are a number of projects—
both inside and outside the Computer Society—that are
coordinating their content with the content of the SWEBOK
Guide. (More about that in a moment.) Several corporations,
including some of the members of the project’s Industrial
Advisory Board, have adopted the Guide for use in their
internal programs for education and training. In a broader
sense, the software engineering practitioner community,
professional development community, and education
community pay attention to the SWEBOK Guide to help
define the scope of their efforts. A notable stakeholder group
is the holders of the IEEE Computer Society’s
certification—Certified Software Development
Professional—because the scope of the CSDP examination
is largely aligned with the scope of the SWEBOK Guide.
The IEEE Computer Society and other organizations are
now conducting a number of projects that have a
dependency on the evolution of the SWEBOK Guide:
 The CSDP examination, initially developed in parallel

with the SWEBOK Guide, will evolve to a close match
to the Guide—both in scope1 and reference material.

 The Computer Society’s Distance Learning curriculum
for software engineers will have the same scope as the
SWEBOK Guide. An initial overview course is already
available.

 Although the goals of undergraduate education differ
somewhat from those of professional development, the

1 The CSDP adds one knowledge area, Business Practices
and Engineering Economics, to the ten knowledge areas
covered by the SWEBOK Guide.

joint ACM/IEEE-CS project to develop an
undergraduate software engineering curriculum, is
largely reconciled with the scope of the SWEBOK
Guide.

 The IEEE-CS Software Engineering Standards
Committee (SESC) has organized its collection by the
knowledge areas of the SWEBOK Guide, and the IEEE
Standards Association has already published a CD-
ROM collected edition of software engineering
standards that reflects that organization.

 ISO/IEC JTC/SC7, the international standards
organization for software and systems engineering, is
adopting the SWEBOK Guide as ISO/IEC Technical
Report 19759, and harmonizing its collection with that
of IEEE.

 The IEEE Computer Society Press, in cooperation with
SESC, is developing a book series based on software
engineering standards and the SWEBOK Guide.

 The Computer Society’s Software Engineering Portal,
currently in planning, will be organized by the
knowledge areas of the SWEBOK Guide.

 The Trial Use Version of the SWEBOK Guide was
translated into Japanese. It is anticipated that the 2004
Version will also be translated into Japanese, Chinese,
and possibly other languages.

THE EVOLUTION PROCESS
Obviously, a product with this much uptake must be evolved
in an open, consultative, deliberate and transparent fashion
so that other projects can successfully coordinate efforts.
The currently planned strategy is to evolve the SWEBOK
Guide using a “time-boxed” approach. The time-box
approach is selected because it allows the SWEBOK Guide
and coordinating projects to perform revision in anticipation
of a fixed date for convergence. The initial time-box is
currently planned to be four years in duration.
At the beginning of the time-box, in consultation with
coordinating projects, and overall plan for the four-year
revision would be determined. During the first year,
structural changes to the SWEBOK Guide (e.g. changes in
number or scope of knowledge areas) would be determined.
During the second and third years, the selection and
treatment of topics within the knowledge areas would be
revised. During the fourth year, the text of the knowledge
area descriptions would be revised and up-to-date references
would be selected.
The overall project would be managed by a Computer
Society committee of composed of volunteers and

 B-2 © IEEE – 2004 Version

representatives of coordinating projects. The committee
would be responsible to set overall plans, coordinate with
stakeholders, and recommend approval of the final revision.
The committee would be advised by a SWEBOK Advisory
Committee (SWAC) composed of organizational adopters of
the SWEBOK Guide. The SWAC would also be the focus
for obtaining corporate financial support for the evolution of
the SWEBOK Guide. Past corporate financial support has
allowed us to make the SWEBOK Guide available for free
on a web site. Future support will allow us to continue the
practice for future editions.
Notionally, each of the four years would include a cycle of
workshop, drafting, balloting, and ballot resolution. A yearly
cycle might involve the following activities:
 A workshop, organized as a part of a major conference,

would specify issues for treatment during the coming
year, prioritize the issues, recommend approaches for
dealing with them, and nominate drafters to implement
the approaches.

 Each drafter would write or modify a knowledge area
description using the approach recommended by the
workshop and available references. In the final year of
the cycle, drafters would recommend specific up-to-date
references for citation in the SWEBOK Guide. Drafters
would also be responsible for modifying their drafts in
response to comments from balloters.

 Each annual cycle would include balloting on the
revisions to the knowledge area descriptions. Balloters
would review the drafted knowledge area descriptions
and the recommended references, provide comments,
and vote approval on the revisions. Balloting would be
open to members of the Computer Society and other
qualified participants. (Non-members would have to pay
a fee to defray the expense of balloting.) Holders of the
CSDP would be particularly welcome as members of
the balloting group, or as volunteers in other roles.

 A Ballot Resolution Committee would be selected by
the Managing Committee to serve as intermediaries
between the drafters and the balloters. Its job is to
determine consensus for changes requested by the
balloting group and to ensure that the drafters
implement the needed changes. In some cases, the
Ballot Resolution Committee may phrase questions for
the balloting group and use their answers to guide the
revision of the draft. Each year’s goal is to achieve
consensus among the balloting group on the new and
revised draft knowledge areas and to gain a vote of
approval from the balloters. Although the SWEBOK
Guide would not be changed until the end of the time
box, the approved material from each year’s cycle will
be made freely available.

At the conclusion of the time-box, the completed product,
SWEBOK Guide 2008, would be reviewed and approved by
the Computer Society Board of Governors for publication. If
continuing corporate financial support can be obtained, the
product would be made freely available on a web site.

ANTICIPATED CHANGES
It is important to note that the SWEBOK Guide is inherently
a conservative document for several reasons. First, it limits
itself to knowledge characteristic of software engineering; so
information from related disciplines—even disciplines
applied by software engineers—is omitted. Second, it is
developed and approved by a consensus process; so it can
only record information for which broad agreement can be
obtained. Third, knowledge regarded as specialized to
specific domains is excluded. Finally and most importantly,
the Guide records only the knowledge which is “generally
accepted.” Even current and valid techniques may need
some time to gain general acceptance within the community.
This conservative approach is apparent in the current
SWEBOK Guide. After six years of work, it still has the
same ten knowledge areas. One might ask if that selection of
knowledge areas will ever be changed. The plan for
evolution includes some criteria for adding a knowledge area
or changing the scope of a knowledge area. In principle, the
candidate must be widely recognized inside and outside the
software engineering community as representing a distinct
area of knowledge and the generally accepted knowledge
within the proposed area must be sufficiently detailed and
complete to merit treatment similar to those currently in the
SWEBOK Guide. In operational terms, it must be possible to
cleanly decouple the proposed knowledge area from the
existing ones and that decoupling must add significant value
to the overall taxonomy of knowledge provided by the
Guide. However, simply being a “cross-cutting” topic is not
justification for separate treatment because separation, in
many cases, simply compounds the problem of topic
overlap. In general, growth in the total number of knowledge
areas is to be avoided when it complicates the efforts of
readers to find desired information.
Adding a topic to a knowledge area is easier. In principle, it
must be mature (or, at least, rapidly reaching maturity) and is
must be generally accepted2. Evidence for general
acceptance can be found in many places, including software
engineering curricula, software engineering standards, and
widely-used textbooks. Of course, topics must be suitable to
the SWEBOK Guide’s design point of a bachelor’s degree
plus four years of experience.3

2 For the definition of “generally accepted,” we use IEEE Std
1490-1998, Adoption of PMI Standard—A Guide to the
Project Management Body of Knowledge: “Generally
accepted means that the knowledge and practices described
are applicable to most projects most of the time, and that
there is widespread consensus about their value and
usefulness. It does not mean that the knowledge and
practices should be applied uniformly to all projects without
considering whether they are appropriate.”
3 Of course, this particular specification is stated in terms
relevant to the US. In other countries, it might be stated
differently.

© IEEE – 2004 Version B-3

That design point raises the issue of the volume of material
referenced by the SWEBOK Guide. The total amount of
material should be consistent with the design point of
bachelor’s degree plus four years of experience. Currently,
the editorial team estimates an appropriate amount to be
5000 pages of textbook material. During the evolution of the
Guide, it will be necessary to manage the lists of cited
material so that references are currently accessible, provide
appropriate coverage of the knowledge areas, and total to a
reasonable amount of material.

A final topic is the role to be played by users of the
SWEBOK Guide in its evolution. The Editorial Team
believes that continual public comment is the fuel that will
drive the evolution of the SWEBOK Guide. Public
comments will raise issues for treatment by the annual
workshop, hence setting the agenda for revision of the
SWEBOK Guide. We hope to provide a public, on-line
forum for comment by any member of the software
engineering community and to serve as a focal point for
adoption activities.

 B-4 © IEEE – 2004 Version

© IEEE – 2004 Version C-1

APPENDIX C
ALLOCATION OF IEEE AND ISO SOFTWARE ENGINEERING STANDARDS TO SWEBOK

KNOWLEDGE AREAS
This table lists software engineering standards produced by IEEE and ISO/IEC JTC1/SC7, as well as a few selected standards from other sources. For each standard, its
number and title is provided. In addition, the “Description” column provides material excerpted from the standard’s abstract or other introductory material. Each of the
standards is mapped to the Knowledge Areas of the SWEBOK Guide. In a few cases—like vocabulary standards—the standard applies equally to all KAs; in such cases,
an X appears in every column. In most cases, each standard has a forced allocation to a single primary knowledge area; this allocation is marked with a “P”. In many
cases, there are secondary allocations to other KAs; these are marked with an “S”. The list is ordered by standard number, regardless of its category (IEEE, ISO, etc).

Standard
Number Standard Name Description Software

Requirements
Software
Design

Software
Construction

Software
Testing

Software
Maintenance

Software
Configuration
Management

Software
Engineering
Management

Software
Engineering

Process

Software
Engineering

Tools and
Methods

Software
Quality

IEEE Std
610.12-
1990
(R2002)

IEEE Standard
Glossary of
Software
Engineering
Terminology

This standard is a glossary of software
engineering terminology.

X X X X X X X X X X

IEEE Std
730-2002

IEEE Standard
for Software
Quality
Assurance Plans

This standard specifies the format and content of
Software Quality Assurance plans. S S P

IEEE Std
828-1998

IEEE Standard
for Software
Configuration
Management
Plans

This standard specifies the content of a Software
Configuration Management plan along with
requirements for specific activities. P S

IEEE Std
829-1998

IEEE Standard
for Software
Test
Documentation

This standard describes the form and content of
a basic set of documentation for planning,
executing and reporting software testing. S P S

IEEE Std
830-1998

IEEE
Recommended
Practice for
Software
Requirements
Specifications

This document recommends the content and
characteristics of a Software Requirements
Specification. Sample outlines are provided. P

IEEE Std
982.1-1988

IEEE Standard
Dictionary of
Measures to
Produce
Reliable
Software

This standard provides a set of measures for
evaluating the reliability of a software product
and for obtaining early forecasts of the
reliability of a product under development. S S S S P

 C-2 © IEEE – 2004 Version

Standard
Number Standard Name Description Software

Requirements
Software
Design

Software
Construction

Software
Testing

Software
Maintenance

Software
Configuration
Management

Software
Engineering
Management

Software
Engineering

Process

Software
Engineering

Tools and
Methods

Software
Quality

IEEE Std
1008-1987
(R2003)

IEEE Standard
for Software
Unit Testing

This standard describes a sound approach to
software unit testing, and the concepts and
assumptions on which it is based. It also
provides guidance and resource information.

 S P S S

IEEE Std
1012-1998
and 1012a-
1998

IEEE Standard
for Software
Verification and
Validation

This standard describes software verification
and validation processes that are used to
determine if software products of an activity
meets the requirements of the activity and to
determine if software satisfies the user's needs
for the intended usage. The scope includes
analysis, evaluation, review, inspection,
assessment and testing of both products and
processes.

 P

IEEE Std
1016-1998

IEEE
Recommended
Practice for
Software Design
Descriptions

This document recommends content and
organization of a Software Design Description.

 P

IEEE Std
1028-1997
(R2002)

IEEE Standard
for Software
Reviews

This standard defines five types of software
reviews and procedures for their execution.
Review types include management reviews,
technical reviews, inspections, walk-throughs
and audits.

S S S S S P

IEEE Std
1044-1993
(R2002)

IEEE Standard
Classification
for Software
Anomalies

This standard provides a uniform approach to
the classification of anomalies found in software
and its documentation. It includes helpful lists of
anomaly classifications and related data.

 S S S P

IEEE Std
1045-1992
(R2002)

IEEE Standard
for Software
Productivity
Metrics

This standard provides a consistent terminology
for software productivity measures and defines a
consistent way to measure the elements that go
into computing software productivity.

 P S

IEEE Std
1058-1998

IEEE Standard
for Software
Project
Management
Plans

This standard describes the format and contents
of a software project management plan.

 P

© IEEE – 2004 Version C-3

Standard
Number Standard Name Description Software

Requirements
Software
Design

Software
Construction

Software
Testing

Software
Maintenance

Software
Configuration
Management

Software
Engineering
Management

Software
Engineering

Process

Software
Engineering

Tools and
Methods

Software
Quality

IEEE Std
1061-1998

IEEE Standard
for a Software
Quality Metrics
Methodology

This standard describes a methodology--
spanning the entire life cycle--for establishing
quality requirements and identifying,
implementing, and validating the corresponding
measures.

 S S S S P

IEEE Std
1062, 1998
Edition

IEEE
Recommended
Practice for
Software
Acquisition

This document recommends a set of useful
practices that can be selected and applied during
software acquisition. It is primarily suited to
acquisitions that include development or
modification rather than off-the-shelf purchase.

S P

IEEE Std
1063-2001

IEEE Standard
for Software
User
Documentation

This standard provides minimum requirements
for the structure, content and format of user
documentation--both printed and electronic. P S

IEEE Std
1074-1997

IEEE Standard
for Developing
Software Life
Cycle Processes

This standard describes an approach for the
definition of software life cycle processes. P

IEEE Std
1175.1-
2002

IEEE Guide for
CASE Tool
Interconnections
- Classification
and Description

This standard is the first of a planned series of
standards on the integration of CASE tools into
a productive software engineering environment.
This part describes fundamental concepts and
introduces the remaining (planned) parts.

 P

IEEE Std
1219-1998

IEEE Standard
for Software
Maintenance

This standard describes a process for software
maintenance and its management. P S

IEEE Std
1220-1998

IEEE Standard
for the
Application and
Management of
the Systems
Engineering
Process

This standard describes the systems engineering
activities and process required throughout a
system's life cycle to develop systems meeting
customer needs, requirements and constraints. P

IEEE Std
1228-1994

IEEE Standard
for Software
Safety Plans

This standard describes the minimum content of
a plan for the software aspects of development,
procurement, maintenance and retirement of a
safety-critical system.

S S S P

IEEE Std
1233, 1998
Edition

IEEE Guide for
Developing
System
Requirements
Specifications

This document provides guidance on the
development of a System Requirements
Specification, covering the identification,
organization, presentation, and modification of
requirements. It also provides guidance on the
characteristics and qualities of requirements.

P

 C-4 © IEEE – 2004 Version

Standard
Number Standard Name Description Software

Requirements
Software
Design

Software
Construction

Software
Testing

Software
Maintenance

Software
Configuration
Management

Software
Engineering
Management

Software
Engineering

Process

Software
Engineering

Tools and
Methods

Software
Quality

IEEE Std
1320.1-
1998

IEEE Standard
for Functional
Modeling
Language—
Syntax and
Semantics for
IDEF0

This standard defines the IDEF0 modeling
language used to represent decisions, actions,
and activities of an organization or system.
IDEF0 may be used to define requirements in
terms of functions to be performed by a desired
system.

S S S P

IEEE Std
1320.2-
1998

IEEE Standard
for Conceptual
Modeling--
Language
Syntax and
Semantics for
IDEF1X 97
(IDEFobject)

This standard defines two conceptual modeling
languages, collectively called IDEF1X97
(IDEFObject). The language support the
implementation of relational databases, object
databases, and object models. S S P

IEEE Std
1362-1998

IEEE Guide for
Information
Technology--
System
Definition--
Concept of
Operations
(ConOps)
Document

This document provides guidance on the format
and content of a Concept of Operations
(ConOps) document, describing characteristics
of a proposed system from the users' viewpoint.

P

IEEE Std
1420.1-
1995,
1420.1a-
1996, and
1420.1b-
1999
(R2002)

IEEE Standard
for Information
Technology—
Software
Reuse—Data
Model for Reuse
Library
Interoperability

This standard and its supplements describe
information that software reuse libraries should
be able to exchange in order to interchange
assets. P

IEEE Std
1462-1998
// ISO/IEC
14102:1995

IEEE Standard--
Adoption of
International
Standard
ISO/IEC 14102:
1995--
Information
Technology--
Guideline for the
Evaluation and
Selection of
CASE tools

This standard provides guidelines for the
evaluation and selection of CASE tools.

 P

© IEEE – 2004 Version C-5

Standard
Number Standard Name Description Software

Requirements
Software
Design

Software
Construction

Software
Testing

Software
Maintenance

Software
Configuration
Management

Software
Engineering
Management

Software
Engineering

Process

Software
Engineering

Tools and
Methods

Software
Quality

IEEE Std
1465-1998
// ISO/IEC
12119

IEEE Standard,
Adoption of
International
Standard
ISO/IEC
12119:1994(E),
Information
Technology--
Software
packages--
Quality
requirements
and testing

This standard describes quality requirements
specifically suitable for software packages and
guidance on testing the package against those
requirements.

S P

IEEE Std
1471-2000

IEEE
Recommended
Practice for
Architectural
Description of
Software
Intensive
Systems

This document recommends a conceptual
framework and content for the architectural
description of software-intensive systems.

S S P

IEEE Std
1490-1998

IEEE Guide--
Adoption of
PMI Standard--
A Guide to the
Project
Management
Body of
Knowledge

This document is the IEEE adoption of a Project
Management Body of Knowledge defined by the
Project Management Institute. It identifies and
described generally accepted knowledge
regarding project management. P

IEEE Std
1517-1999

IEEE Standard
for Information
Technology—
Software Life
Cycle
Processes—
Reuse Processes

This standard provides life cycle processes for
systematic software reuse. The processes are
suitable for use with IEEE/EIA 12207.

 S P

IEEE Std
1540-2001
// ISO/IEC
16085:2003

IEEE Standard
for Software
Life Cycle
Processes- Risk
Management

This standard provides a life cycle process for
software risk management. The process is
suitable for use with IEEE/EIA 12207. S P

 C-6 © IEEE – 2004 Version

Standard
Number Standard Name Description Software

Requirements
Software
Design

Software
Construction

Software
Testing

Software
Maintenance

Software
Configuration
Management

Software
Engineering
Management

Software
Engineering

Process

Software
Engineering

Tools and
Methods

Software
Quality

IEEE Std
2001-2002

IEEE
Recommended
Practice for the
Internet--Web
Site
Engineering,
Web Site
Management
and Web Site
Life Cycle

This document recommends practices for
engineering World Wide Web pages for use in
Intranet and Extranet environments.

 P

ISO
9001:2000

Quality
Management
Systems--
Requirements

This standard specifies the requirements for an
organizational quality management system
aiming to provide products meeting
requirements and enhance customer satisfaction.

 S P

ISO/IEC
9126-
1:2001

Software
Engineering--
Product Quality-
-Part 1: Quality
Model

This standard provides a model for software
product quality covering internal quality,
external quality, and quality in use. The model is
in the form of a taxonomy of defined
characteristics which software may exhibit.

P S S S

IEEE/EIA
12207.0-
1996 //
ISO/IEC
12207:1995

Industry
Implementation
of International
Standard
ISO/IEC
12207:1995,
Standard for
Information
Technology–
Software Life
Cycle Processes

This standard provides a framework of
processes used across the entire life cycle of
software.

X X X X X X X P X X

IEEE/EIA
12207.1-
1996

Industry
Implementation
of International
Standard
ISO/IEC
12207:1995,
Standard for
Information
Technology--
Software Life
Cycle Processes-
-Life Cycle Data

This document provides guidance on recording
data resulting from the life cycle processes of
IEEE/EIA 12207.0.

X X X X X X X P X X

© IEEE – 2004 Version C-7

Standard
Number Standard Name Description Software

Requirements
Software
Design

Software
Construction

Software
Testing

Software
Maintenance

Software
Configuration
Management

Software
Engineering
Management

Software
Engineering

Process

Software
Engineering

Tools and
Methods

Software
Quality

IEEE/EIA
12207.2-
1997

Industry
Implementation
of International
Standard
ISO/IEC
12207:1995,
Standard for
Information
Technology--
Software Life
Cycle Processes-
-Implementation
Considerations

This document provides additional guidance for
the implementation of the life cycle processes of
IEEE/EIA 12207.0.

X X X X X X X P X X

IEEE Std
14143.1-
2000 //
ISO/IEC
14143-
1:1998

IEEE Adoption
of ISO/IEC
14143-1:1998--
Information
Technology—
Software
Measurement—
Functional Size
Measurement—
Part 1:
Definition of
Concepts

This standard describes the fundamental
concepts of a class of measures collectively
known as functional size.

P S S S

ISO/IEC
TR
14471:1999

Information
technology--
Software
engineering--
Guidelines for
the adoption of
CASE tools

This document provides guidance in
establishing processes and activities that may be
applied in the adoption of CASE technology.

 P

ISO/IEC
14598 (Six
parts)

Information
technology--
Software
product
evaluation

The ISO/IEC 14598 series gives an overview of
software product evaluation processes and
provides guidance and requirements for
evaluation at the organizational or project level.
The standards provide methods for
measurement, assessment and evaluation.

 P

ISO/IEC
14764:1999

Information
Technology--
Software
Maintenance

This standard elaborates on the maintenance
process provided in ISO/IEC 12207. It provides
guidance in implementing the requirements of
that process.

 P

 C-8 © IEEE – 2004 Version

Standard
Number Standard Name Description Software

Requirements
Software
Design

Software
Construction

Software
Testing

Software
Maintenance

Software
Configuration
Management

Software
Engineering
Management

Software
Engineering

Process

Software
Engineering

Tools and
Methods

Software
Quality

ISO/IEC
15026:1998

Information
Technology--
System and
Software
Integrity Levels

This International Standard introduces the
concepts of software integrity levels and
software integrity requirements. It defines the
concepts associated with integrity levels, defines
the processes for determining integrity levels
and software integrity requirements, and places
requirements on each process.

S S P

ISO/IEC
TR
15271:1998

Information
technology--
Guide for
ISO/IEC 12207
(Software Life
Cycle Processes)

This document is a guide to the use of ISO/IEC
12207.

 P

ISO/IEC
15288:2002

Systems
Engineering--
System Life
Cycle Processes

This standard provides a framework of
processes used across the entire life cycle of
human-made systems. P

ISO/IEC
TR 15504
(9 parts)
and Draft
IS 15504 (5
parts)

Software
Engineering--
Process
Assessment

This technical report (now being revised as a
standard) provides requirements on methods for
performing process assessment as a basis for
process improvement or capability
determination.

 P

ISO/IEC
15939:2002

Software
Engineering--
Software
Measurement
Process

This standard provides a life cycle process for
software measurement. The process is suitable
for use with IEEE/EIA 12207. S P S

ISO/IEC
19761:2003

Software
engineering--
COSMIC-FFP--
A functional
size
measurement
method

This standard describes the COSMIC-FFP
Functional Size Measurement Method, a
functional size measurement method
conforming to the requirements of ISO/IEC
14143-1.

P S S S

ISO/IEC
20926:2003

Software
engineering -
IFPUG 4.1
Unadjusted
functional size
measurement
method -
Counting
practices manual

This standard describes IFPUG 4.1 Unadjusted
Function Point Counting, a functional size
measurement method conforming to the
requirements of ISO/IEC 14143-1.

P S S S

© IEEE – 2004 Version C-9

Standard
Number Standard Name Description Software

Requirements
Software
Design

Software
Construction

Software
Testing

Software
Maintenance

Software
Configuration
Management

Software
Engineering
Management

Software
Engineering

Process

Software
Engineering

Tools and
Methods

Software
Quality

ISO/IEC
20968:2002

Software
engineering--Mk
II Function
Point Analysis--
Counting
Practices
Manual

This standard describes Mk II Function Point
Analysis, a functional size measurement method
conforming to the requirements of ISO/IEC
14143-1. P S S S

ISO/IEC
90003

Software and
Systems
Engineering--
Guidelines for
the Application
of ISO
9001:2000 to
Computer
Software

This standard provides guidance for
organizations in the application of
ISO 9001:2000 to the acquisition, supply,
development, operation and maintenance of
computer software. S P

 C-10 © IEEE – 2004 Version

© IEEE – 2004 Version D-1

APPENDIX D
CLASSIFICATION OF TOPICS ACCORDING TO BLOOM’S TAXONOMY

INTRODUCTION

Bloom’s taxonomy1 is a well-known and widely used
classification of cognitive educational goals. In order to
help audiences who wish to use the Guide as a tool in
defining course material, university curricula, university
program accreditation criteria, job descriptions, role
descriptions within a software engineering process
definition, professional development paths and
professional training programs and other needs, Bloom’s
taxonomy levels for SWEBOK Guide topics are proposed
in this appendix for a software engineering graduate with
four years of experience. A software engineering graduate
with four years of experience is in essence the “target” of
the SWEBOK Guide as defined by what is meant by
generally accepted knowledge (See Introduction of the
SWEBOK Guide).
Since this Appendix only pertains to what can be
considered as “generally accepted” knowledge, it is very
important to remember that a software engineer must know
substantially more than this “category” of knowledge. In
addition to “generally accepted” knowledge, a software
engineering graduate with four years of knowledge must
possess some elements from the Related Disciplines as
well as certain elements of specialized knowledge,
advanced knowledge and possibly even research
knowledge (see Introduction of the SWEBOK Guide).
The following assumptions were made when specifying
the proposed taxonomy levels:
 The evaluations are proposed for a “generalist”

software engineer and not a software engineer
working in a specialized group such as a software
configuration management team, for instance.
Obviously, such a software engineer would require or
would attain much higher taxonomy levels in the
specialty area of their group;

 A software engineer with four years of experience is
still at the beginning of their career and would be
assigned relatively few management duties, or at least
not for major endeavors. “Management-related
topics” are therefore not given priority in the proposed
evaluations. For the same reason, taxonomy levels
tend to be lower for “early-life cycle topics” such as
those related to software requirements than for more
technically-oriented topics such as those within
software design, software construction or software
testing.

1 B. Bloom (Eds), Taxonomy of Educational Objectives:
The Classification of Educational Goals, Mackay, 1956.

 So the evaluations can be adapted for more senior

software engineers or software engineers specializing
in certain knowledge areas, no topic is given a
taxonomy level higher than Analysis. This is
consistent with the approach taken in the Software
Engineering Education Body of Knowledge (SEEK)
where no topic is assigned a taxonomy level higher
than Application2. The purpose of SEEK is to define a
software engineering education body of knowledge
appropriate for guiding the development of
undergraduate software engineering curricula.
Though distinct notably in terms of scope, SEEK and
the SWEBOK Guide are closely related3.

Bloom’s Taxonomy of the Cognitive Domain proposed in
1956 contains six levels. Table 14 presents these levels and
keywords often associated with each level.

2 See Joint Task Force on Computing Curricula – IEEE
Computer Society Association for Computing Machinery,
Computing Curricula – Software Engineering Volume –
Publid Draft 1 – Computing Curriculum Software
Engineering, 2003. http://sites.computer.org/ccse/
3 See P Bourque, F. Robert, J.-M. Lavoie, A. Lee, S.
Trudel, T. Lethbridge, “Guide to the Software Engineering
Body of Knowledge (SWEBOK) and the Software
Engineering Education Body of Knowledge (SEEK) – A
Preliminary Mapping”, in Proc. Tenth Intern. Workshop
Software Technology and Engineering Practice
Conference (STEP 2002), pp. 8-35, 2002)
4 Table taken from
http://www.nwlink.com/~donclark/hrd/bloom.html

 D-2 © IEEE – 2004 Version

Table 1 Bloom’s Taxonomy

Bloom’s Taxonomy Level Associated Keywords

Knowledge: Recall of data. Defines, describes, identifies, knows, labels, lists, matches, names,
outlines, recalls, recognizes, reproduces, selects, states.

Comprehension: Understand the meaning, translation,
interpolation, and interpretation of instructions and
problems. State a problem in one's own words.

Comprehends, converts, defends, distinguishes, estimates, explains,
extends, generalizes, gives examples, infers, interprets, paraphrases,
predicts, rewrites, summarizes, translates.

Application: Use a concept in a new situation or
unprompted use of an abstraction. Applies what was
learned in the classroom into novel situations in the
workplace.

Applies, changes, computes, constructs, demonstrates, discovers,
manipulates, modifies, operates, predicts, prepares, produces,
relates, shows, solves, uses.

Analysis: Separates material or concepts into
component parts so that its organizational structure may
be understood. Distinguishes between facts and
inferences.

Analyzes, breaks down, compares, contrasts, diagrams,
deconstructs, differentiates, discriminates, distinguishes, identifies,
illustrates, infers, outlines, relates, selects, separates.

Synthesis: Builds a structure or pattern from diverse
elements. Put parts together to form a whole, with
emphasis on creating a new meaning or structure

Categorizes, combines, compiles, composes, creates, devises,
designs, explains, generates, modifies, organizes, plans, rearranges,
reconstructs, relates, reorganizes, revises, rewrites, summarizes,
tells, writes.

Evaluation: Make judgments about the value of ideas
or materials.

Appraises, compares, concludes, contrasts, criticizes, critiques,
defends, describes, discriminates, evaluates, explains, interprets,
justifies, relates, summarizes, supports.

The breakdown of topics in the tables does not match
perfectly tha breakdown in the Knowledge Areas. The
evaluation for this Appendix was prepared while some
comments were still coming in.

Finally, please bear in mind that the evaluations of this
Appendix should definitely only be seen as a proposal to
be further developed and validated.

© IEEE – 2004 Version D-3

SOFTWARE REQUIREMENTS5

Breakdown of Topics

T
ax

on
om

y
L

ev
el

1. Software requirements fundamentals
Definition of software requirement C
Product and process requirements C
Functional and non-functional requirements C
Emergent properties C
Quantifiable requirements C
System requirements and software requirements C
2. Requirements process
Process models C
Process actors C
Process support and management C
Process quality and improvement C
3. Requirements elicitation
Requirements sources C
Elicitation techniques AP
4. Requirements analysis
Requirements classification AP
Conceptual modeling AN
Architectural design and requirements
allocation AN

Requirements negotiation AP
5. Requirements specification
System definition document C
System requirements specification C
Software requirements specification AP
6. Requirements validation
Requirements reviews AP
Prototyping AP
Model validation C
Acceptance tests AP
7. Practical Considerations
Iterative nature of requirements process C
Change management AP
Requirements attributes C
Requirements tracing AP
Measuring requirements AP

5 K: Knowledge, C: Comprehension, AP: Application, AN:
Analysis, E: Evaluation, S: Synthesis

SOFTWARE DESIGN

Breakdown of Topics

T
ax

on
om

y
L

ev
el

1. Software Design Fundamentals
General design concepts C
Context of software design C
Software design process C
Enabling techniques AN
2. Key issues in software design
Concurrency AP
Control and handling of events AP
Distribution of components AP
Error and exception handling and fault tolerance AP
Interaction and presentation AP
Data persistence AP
3. Software structure and architecture
Architectural structures and viewpoints AP
Architectural styles (macroarchictural patterns) AN
Design patterns (microarchitectural patterns) AN
Families of programs and frameworks C
4. Software design quality analysis and evaluation
Quality attributes C
Quality analysis and evaluation techniques AN
Measures C
5. Software design notations
Structural descriptions (static) AP
Behavioral descriptions (dynamic) AP
6. Software design strategies and methods
General strategies AN
Function-oriented (structured) design AP
Object-oriented design AN
Data-structure centered design C
Component-based design (CBD) C
Other methods C

 D-4 © IEEE – 2004 Version

SOFTWARE CONSTRUCTION

Breakdown of Topics

T
ax

on
om

y
L

ev
el

1. Software construction fundamentals
Minimizing complexity AN
Anticipating change AN
Constructing for verification AN
Standards in construction AP
2. Managing construction
Construction methods C
Construction planning AP
Construction measurement AP
3. Practical considerations
Construction design AN
Construction languages AP
Coding AN
Construction testing AP
Construction quality AN
Integration AP

SOFTWARE TESTING

Breakdown of Topics

T
ax

on
om

y
L

ev
el

1. Software testing fundamentals
Testing-related terminology C
Key issues AP
Relationships of testing to other activities C
2. Test levels
The target of the tests AP
Objectives of testing AP
3. Test techniques
Based on tester’s intuition and experience AP
Specification-based AP
Code-based AP
Fault-based AP
Usage-based AP
Based on nature of application AP
Selecting and combining techniques AP
4. Test related measures
Evaluation of the program under test AN
Evaluation of the tests performed AN
5. Test process
Management concerns C
Test activities AP

© IEEE – 2004 Version D-5

SOFTWARE MAINTENANCE

T
ax

on
om

y
L

ev
el

1. Software maintenance fundamentals

Definitions and terminology C
Nature of maintenance C
Need for maintenance C
Majority of maintenance costs C
Evolution of software C
Categories of maintenance AP

2. Key issues in software maintenance

Technical
 Limited Understanding C
 Testing AP
 Impact Analysis AN
 Maintainability AN

Management issues
 Alignment with organizational issues C
 Staffing C
 Process issues C
 Organizational C

Maintenance cost estimation
 Cost estimation AP
 Parametric models C
 Experience AP
Software maintenance measurement AP

3. Maintenance process

Maintenance process models C
Maintenance activities

 Unique Activities AP
 Supporting Activities AP

4. Techniques for maintenance

Program comprehension AN
Re-engineering C
Reverse engineering C

SOFTWARE CONFIGURATION MANAGEMENT

Breakdown of Topics

T
ax

on
om

y
L

ev
el

1. Management of the SCM Process
Organizational context for SCM C
Constraints and guidance for SCM C
Planning for SCM
 SCM organization and responsibilities AP

 SCM resources and schedules AP
 Tool selection and implementation AP
 Vendor/Subcontractor control C
 Interface control C
Software configuration management plan C
Surveillance of software configuration management
 SCM measures and measurement AP
 In-Process audits of SCM C
2. Software Configuration Identification
Identifying items to be controlled
 Software configuration AP
 Software configuration items AP
 Software configuration item relationships AP
 Software versions AP
 Baseline AP
 Acquiring software configuration items AP

Software library C
3. Software Configuration Control
Requesting, evaluating and approving software
changes

 Software configuration control board AP
 Software change request process AP

Implementing software changes AP
Deviations & waivers C
4. Software Configuration Status Accounting
Software configuration status information C
Software configuration status reporting AP
5. Software Configuration Auditing
Software functional configuration audit C
Software physical configuration audit C
In-Process audits of a software baseline C
6. Software Release Management and Delivery
Software building AP
Software release management C

 D-6 © IEEE – 2004 Version

SOFTWARE ENGINEERING MANAGEMENT

T
ax

on
om

y
L

ev
el

1. Initiation and scope definition

Determination and negotiation of
requirements AP

Feasibility analysis AP
Process for requirements
review/revision C

2. Software project planning

Process planning C
Determine deliverables AP
Effort, schedule and cost estimation AP
Resource allocation AP
Risk management AP
Quality management AP
Plan management C

3. Software project enactment

Implementation of plans AP
Supplier contract management C
Implementation of measurement process AP
Monitor process AN
Control process AP
Reporting AP

4. Review and evaluation

Determining satisfaction of
requirements AP

Reviewing and evaluating performance AP

5. Closure

Determining closure AP
Closure activities AP

6. Software Engineering Measurement

Establish and sustain measurement
commitment C

Plan the measurement process C
Perform the measurement process C
Evaluate measurement C

SOFTWARE ENGINEERING PROCESS

T
ax

on
om

y
L

ev
el

1. Process implementation and change

Process infrastructure
 Software engineering process group C
 Experience factory C

Activities AP
Models for process implementation and
change K

Practical considerations C

2. Process definition

Life cycle models AP
Software life cycle processes C
Notations for process definitions C
Process adaptation C
Automation C

3. Process assessment

Process assessment models C
Process assessment methods C

4. Product and process measurement

Software process measurement AP
Software product measurement AP

 Size measurement AP
 Structure measurement AP
 Quality measurement AP

Quality of measurement results AN
Software information models

 Model building AP
 Model implementation AP

Measurement techniques
 Analytic techniques AP
 Benchmarking techniques C

© IEEE – 2004 Version D-7

SOFTWARE ENGINEERING TOOLS AND METHODS

Breakdown of Topics

T
ax

on
om

y
L

ev
el

1. Software tools

Software requirements tools AP
Software design tools AP
Software construction tools AP
Software testing tools AP
Software maintenance tools AP
Software engineering process tools AP
Software quality tools AP
Software configuration management tools AP
Software engineering management tools AP
Miscellaneous tool issues AP

2. Software engineering methods

Heuristic methods AP
Formal methods and notations C
Prototyping methods AP
Miscellaneous method issues C

SOFTWARE QUALITY

T
ax

on
om

y
L

ev
el

1. Software quality fundamentals

Software engineering culture and
ethics AN

Value and costs of quality AN
Quality models and characteristics
 Software process quality AN
 Software product quality AN
Quality improvement AP

2. Software quality management processes

Software quality assurance AP
Verification and validation AP
Reviews and audits
 Inspections AP
 Peer reviews AP
 Walkthroughs AP
 Testing AP
 Audits C

3. Practical considerations

Application quality requirements
 Criticality of systems C
 Dependability C
 Integrity levels of software C
Defect characterization AP
Software quality management
techniques

 Static techniques AP
 People-intensive techniques AP
 Analytic techniques AP
 Dynamic techniques AP
Software quality measurement AP

 D-8 © IEEE – 2004 Version

