

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO

Rua Dom Manoel de Medeiros, s/n – Dois Irmãos 52171-900 Recife-PE Fone: 0xx-81-332060-40 proreitor@preg.ufrpe.br

PLANO DE ENSINO

I – IDENTIFICAÇÃO

CURSO: Bacharelado em Sistemas de Informação

MODALIDADE: Presencial

DISCIPLINA: Matemática Discreta

PRÉ-REQUISITO: não há

(X) OBRIGATÓRIA () OPTATIVA

DEPARTAMENTO: Departamento de Estatística e Informática

PROFESSORES RESPONSÁVEIS: Marcelo Gama da Silva - Turma SI-2

Silvana Bocanegra – Turma SI-1

Sites da disciplina:

Turma SI1 - http://bit.ly/1m0EBoL

turma SI2 -

Ano: 2015

Semestre Letivo: () Primeiro (x) Segundo

Total de Créditos (se for o caso): 4

Carga Horária: 60 horas

II - EMENTA (Sinopse do Conteúdo)

Noções de Lógica e Técnicas de Demonstração. Teoria dos Conjuntos. Relações e Funções. Indução e Recursão. Introdução a Teoria dos Números. Combinatória. Introdução a Teoria de Grafos.

III - OBJETIVOS DA DISCIPLINA

- Apresentar conceitos básicos de provas matemáticas e da teoria dos conjuntos para o desenvolvimento da capacidade de raciocínio abstrato, da organização e síntese de ideias;
- Obter uma visão abrangente de conceitos matemáticos que fundamentam a construção de teorias em computação;
- Introduzir a definição de grafos, suas propriedades, formas de armazenamento e aplicações em problemas reais;
- Desenvolver no aluno a capacidade da escrita e leitura da matemática formal;
- Integrar a prática dos conhecimentos adquiridos em aplicações na informática;

Ao final da disciplina, o estudante deverá ser capaz de ler, compreender e aplicar os conhecimentos adquiridos na disciplina em contextos matemáticos e computacionais.

IV - CONTEÚDO PROGRAMÁTICO

1. Noções de Lógica e Técnicas em Demonstração

- **1.1** Lógica Proposicional.
- **1.2** Equivalências Proposicionais
- **1.3** Predicados e Quantificadores
- **1.4** Regras de Inferência.
- **1.5** Técnicas de Demonstração: prova direta, por contradição e por redução ao absurdo, contra-exemplo.

2. Estruturas Básicas (Conjuntos, Funções, Sequências e Somatórios)

- **2.1.** Conjuntos
- **2.2.** Operações em conjuntos
- **2.3.** Funções
- **2.4.** Sequências e Somatórios

3. Fundamentos: Algoritmos, Números Inteiros

3.1. Números Inteiros e Divisão

- 3.2. Números Primos e MDC
 3.3. Números Inteiros e Algoritmos
 3.4. Aplicações da Teoria dos Números
 4. Indução e Recursão
 4.1 Indução Matemática
 4.2 Provas por Indução
 4.3 Definições Recursivas e Indução Estrutural
 4.4 Problemas Recursivos
 5. Análise Combinatória
 5.1 Conceitos Básicos de Contagem
 5.2 Princípio da Inclusão e Exclusão
 5.3 Princípio da casa dos pombos
 5.4 Arranjos, Permutações e Combinações
- 6. Relações
 - **6.1.** Relações e suas propriedades
 - **6.2.** Representação de relações
 - **6.3.** Fechos
 - **6.4.** Relações de Equivalência e Partição
 - **6.5.** Relação de Ordem

7. Introdução a Teoria dos Grafos

- **7.1** Terminologia e tipos especiais de grafos
- 7.2 Representação e Isomorfismo
- 7.3 Conectividade e Caminhos

V – MÉTODOS DIDÁTICOS DE ENSINO	
(X) Aula Expositiva	
() Seminário	
(X) Leitura Dirigida	
() Demonstração (prática realizada pelo Professor)	
(X) Laboratório (prática realizada pelo aluno)	
() Trabalho de Campo	
() Execução de Pesquisa	

() Outra. Especificar:	

I - CRITÉRIOS DE AVALIAÇÃO

1a VA =

Teste 1: 4,0 pontos Teste 2: 4,0 pontos Teste 3: 2,0 pontos

 $2^a VA = Teste 1: 5,0 pontos$

Teste 2: 5,0 pontos

 $3^{a} VA = Prova$ Final = Prova

OBS1: a 3ª VA e Final incluem toda a matéria do semestre.

FORMAS DE ACOMPANHAMENTO DO ALUNO DURANTE O SEMESTRE: Participação nas aulas práticas e teóricas e entrega de atividades.

CRONOGRAMA		
Aulas	CONTEÚDO	
	Noções de Lógica e Técnicas de Demonstração	
1.	Apresentação da disciplina. Lógica Proposicional	

2.	Equivalências Proposicionais. Predicados e Quantificadores
3.	Quantificadores Agrupados. Regras de Inferência
4.	
5.	Técnicas de Demonstração: Prova Direta, Prova pela contrapositiva, Prova por redução ao absurdo
	Exercícios
6.	Teste 1
	Estruturas Básicas: Conjuntos, Funções, Sequências e Somatórios
7	Conjuntos: Notação, Subconjunto, Conjunto das partes, Cardinalidade
8	Operadores de Conjuntos: União, Interseção, Diferença, Complemento,
	Identidade
9	Funções: Injetora, Sobrejetora, Composta
10	Sequências e Somatórios
11	Teste 2
	Fundamentos: Algorimtos e Números Inteiros
12	Números Inteiros e Divisão
13	Números Primos e MDC
14	Números Inteiros e Algorimtos
15	Aplicações
16	Teste3
	Indução e Recursão
17	O princípio da indução finita. Provas por indução
18	Definições Recursivas e Indução Estutural
19	Recursividade. Problemas Recursivos
	Análise Combinatória
20	Conceitos básicos de contagem. Princípio da Inclusão e Exclusão. Princípio da casa dos pombos
21	Arranjos, Combinações e Permutação
22	Teste 4
	Relações
23	Relações e suas propriedades
24	Fechos de relações. Relações de Equivalência e Relação de Ordem
	Introdução a Teoria dos Grafos
25	Terminologia dos grafos
26	Representação e Isomorfismo
27	Concectividade e Caminhos
28	Teste 5
29	3ª VA
30	Final

VIII – BIBLIOGRAFIA (Conforme normas da ABNT)

BIBLIOGRAFIA

BÁSICA

- 1. SCHEINERMAN, Edward R. Matemática discreta: uma introdução. São Paulo, SP: Thomson, 2003. xxiv, 532 p. ISBN 8522102910.
- 2. GERSTING, Judith L. Fundamentos matemáticos para a ciência da computação: um tratamento moderno de matemática discreta. 5. ed. Rio de Janeiro: LTC Livros Técnicos e Científicos, 2008. 597 p. ISBN 9788521614227.
- MENEZES, Paulo Blauth. Matemática discreta para computação e informática. 2. ed. Porto Alegre: Sagra Luzzatto, 2005. 258 p. (Livros didáticos;16) ISBN 8524106913.
- **4.** ROSEN, Kenneth H. Matemática Discreta e suas Aplicações. Editora Bookman, 6 edição.2009. (7a Edição em Inglês)

COMPLEMENTAR

- 5. LEHMAN, E., LEIGHTON, F. T, MEYER, A. R. Mathematics for Computer Science. Creative Commons 2011, (ebook MIT course, disponível em: http://courses.csail.mit.edu/6.042/spring12/mcs.pdf).
- 6. STEIN, Cliff L.; DRYSDALE, Robert; BOGART, Kenneth. Discrete Mathematics for Computer Scientists. Key College Publishing; 1 edition. 2005.
- 7. GRAHAM, Ronald L.; KMUTH, Donald E.; PATASHNIK, Oren. Matemática concreta: fundamentos para a ciência da computação. Rio de Janeiro: LTC, c1995. 475 p. ISBN 9788521610403 (broch.).
- 8. LIPSCHUTZ, Seymour; LIPSON, Mark. Matemática Discreta Coleção Schaum. Editora Bookman, 3 edição. 2013.
- 9. MORGADO, A. C. et al. Análise combinatória e probabilidade. 9. ed. Rio de Janeiro: Sociedade Brasileira de Matemática, 2006 343 p. ISBN 8585818018 (Broch.).
- 10. ALENCAR FILHO, Edgard de. Iniciação à lógica matemática. São Paulo: Nobel, 2002. 203 p. ISBN 852130403X (broch.).
- 11. LOCIKS, Julio. Raciocínio lógico e matemático. 8. ed. Brasília, D.F.: Vestcon, 2006. 221 p. ISBN 8574002070 (broch.).

Recife, 17 de Agosto de 2015.

Silvana Bocanegra

MarceloGama