Expressões regulares

Rodrigo Gabriel Ferreira Soares

DEINFO - UFRPE

2014

 Linguagens finitas podem ser descritas pela enumeração exaustiva de suas cadeias.

- Linguagens finitas podem ser descritas pela enumeração exaustiva de suas cadeias.
- Linguagens infinitas são um desafio.

- Linguagens finitas podem ser descritas pela enumeração exaustiva de suas cadeias.
- Linguagens infinitas são um desafio.
- Como o conjunto Σ* de cadeias sobre o alfabeto Σ é contavelmente infinito, o número de possíveis representações de linguagens será também contavelmente infinito.

- Linguagens finitas podem ser descritas pela enumeração exaustiva de suas cadeias.
- Linguagens infinitas são um desafio.
- Como o conjunto Σ* de cadeias sobre o alfabeto Σ é contavelmente infinito, o número de possíveis representações de linguagens será também contavelmente infinito.
- Por outro lado, o conjunto de todas as possíveis linguagens sobre Σ, ou seja 2^{Σ*}, é incontavelmente infinito, uma vez que o conjunto das partes de qualquer conjunto contavelmente NÃO É contavelmente infinito.

 Independentemente do poder dos métodos de representação de linguagens, seremos capazes apenas de representar um conjunto contável delas, caso as representações sejam finitas.

- Independentemente do poder dos métodos de representação de linguagens, seremos capazes apenas de representar um conjunto contável delas, caso as representações sejam finitas.
- Apresentaremos diversas maneiras de se representar linguagens, cada uma mais poderosa que a anterior.

Exemplo

• Seja $L = \{w \in \{0,1\}^* : w \text{ tem duas ou tres ocorrencias de 1, sendo que a primeira e a segunda nao sao consecutivas}\}, podemos representar <math>L$ da seguinte forma:

$$\{0\}^* \circ \{1\} \circ \{0\}^* \circ \{0\} \circ \{1\} \circ \{0\}^* \circ ((\{1\} \circ \{0\}^*) \cup \emptyset^*)$$

• Podemos simplificar essa representação com uma nova notação

$$L = 0*10*010*(10* \cup \emptyset*)$$

Exemplo. Uma expressão regular descreve uma linguagem por meio de símbolos isolados e \emptyset , combinados, não necessariamente através dos símbolos \cup e *, possivelmente agrupados com parênteses.

Exemplo. Uma expressão regular descreve uma linguagem por meio de símbolos isolados e \emptyset , combinados, não necessariamente através dos símbolos \cup e *, possivelmente agrupados com parênteses. Expressões regulares sobre Σ^* são cadeias sobre o alfabeto $\Sigma \cup \{(,),\emptyset,\cup,*\}$ que podem ser construídas através das seguintes regras

lacktriangle e cada membro de Σ são uma expressão regular

- lacktriangledown e cada membro de Σ são uma expressão regular
- ② Se α e β são expressões regulares, então, $(\alpha\beta)$ será também uma expressão regular.

- lacktriangle e cada membro de Σ são uma expressão regular
- ② Se α e β são expressões regulares, então, $(\alpha\beta)$ será também uma expressão regular.
- § Se α e β são expressões regulares, então, $(\alpha \cup \beta)$ será também uma expressão regular.

- lacktriangle e cada membro de Σ são uma expressão regular
- ② Se α e β são expressões regulares, então, $(\alpha\beta)$ será também uma expressão regular.
- \odot Se α e β são expressões regulares, então, $(\alpha \cup \beta)$ será também uma expressão regular.
- $\ \ \, \mbox{\bf 9} \ \, \mbox{\bf 8} \ \, \alpha$ é uma expressão regular, então, α^* será também uma expressão regular.

- \bigcirc 0 e cada membro de Σ são uma expressão regular
- 2 Se α e β são expressões regulares, então, $(\alpha\beta)$ será também uma expressão regular.
- **Se** α e β são expressões regulares, então, $(\alpha \cup \beta)$ será também uma expressão regular.
- **1** Se α é uma expressão regular, então, α^* será também uma expressão regular.
- Nada será expressão regular, a menos que possa ser produzido a partir das regras anteriores.

• Toda expressão regular representa uma linguagem.

- Toda expressão regular representa uma linguagem.
- Formalmente, a função $\mathcal L$ representa a relação entre expressões regulares e linguagens. Se α é uma expressão regular, então $\mathcal L(\alpha)$ é a linguagem representada por α .

- Toda expressão regular representa uma linguagem.
- Formalmente, a função $\mathcal L$ representa a relação entre expressões regulares e linguagens. Se α é uma expressão regular, então $\mathcal L(\alpha)$ é a linguagem representada por α .
 - **1** $\mathcal{L}(\emptyset) = \emptyset$ e $\mathcal{L}(a) = \{a\}$ para cada $a \in \Sigma$

- Toda expressão regular representa uma linguagem.
- Formalmente, a função $\mathcal L$ representa a relação entre expressões regulares e linguagens. Se α é uma expressão regular, então $\mathcal L(\alpha)$ é a linguagem representada por α .
 - ① $\mathcal{L}(\emptyset) = \emptyset$ e $\mathcal{L}(a) = \{a\}$ para cada $a \in \Sigma$
 - ② Se α e β são expressões regulares, então $\mathcal{L}((\alpha\beta)) = \mathcal{L}(\alpha)\mathcal{L}(\beta)$

- Toda expressão regular representa uma linguagem.
- Formalmente, a função $\mathcal L$ representa a relação entre expressões regulares e linguagens. Se α é uma expressão regular, então $\mathcal L(\alpha)$ é a linguagem representada por α .
 - **1** $\mathcal{L}(\emptyset) = \emptyset$ e $\mathcal{L}(a) = \{a\}$ para cada $a \in \Sigma$
 - ② Se α e β são expressões regulares, então $\mathcal{L}((\alpha\beta)) = \mathcal{L}(\alpha)\mathcal{L}(\beta)$
 - Se α e β são expressões regulares, então $\mathcal{L}((\alpha \cup \beta)) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$

- Toda expressão regular representa uma linguagem.
- Formalmente, a função $\mathcal L$ representa a relação entre expressões regulares e linguagens. Se α é uma expressão regular, então $\mathcal L(\alpha)$ é a linguagem representada por α .
 - ① $\mathcal{L}(\emptyset) = \emptyset$ e $\mathcal{L}(a) = \{a\}$ para cada $a \in \Sigma$
 - ② Se α e β são expressões regulares, então $\mathcal{L}((\alpha\beta)) = \mathcal{L}(\alpha)\mathcal{L}(\beta)$
 - Se α e β são expressões regulares, então $\mathcal{L}((\alpha \cup \beta)) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$
 - **3** Se α é expressão regular, então $\mathcal{L}((\alpha^*)) = \mathcal{L}(\alpha)^*$

- Toda expressão regular representa uma linguagem.
- Formalmente, a função $\mathcal L$ representa a relação entre expressões regulares e linguagens. Se α é uma expressão regular, então $\mathcal L(\alpha)$ é a linguagem representada por α .
 - ① $\mathcal{L}(\emptyset) = \emptyset$ e $\mathcal{L}(a) = \{a\}$ para cada $a \in \Sigma$
 - ② Se α e β são expressões regulares, então $\mathcal{L}((\alpha\beta)) = \mathcal{L}(\alpha)\mathcal{L}(\beta)$
 - Se α e β são expressões regulares, então $\mathcal{L}((\alpha \cup \beta)) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$
 - **3** Se α é expressão regular, então $\mathcal{L}((\alpha^*)) = \mathcal{L}(\alpha)^*$
- Toda expressão regular é associada a uma linguagem.

• Exemplo 1. O que significa $\mathcal{L}(((a \cup b)^*a))$?

- Exemplo 1. O que significa $\mathcal{L}(((a \cup b)^*a))$?
- Exemplo 2. Qual a linguagem representada por $(c^*(a \cup (bc^*))^*)$?

- Exemplo 1. O que significa $\mathcal{L}(((a \cup b)^*a))$?
- Exemplo 2. Qual a linguagem representada por (c*(a ∪ (bc*))*)?
- Toda linguagem que pode ser representada por uma expressão regular pode ser representada por infinitas outras. Exemplo α e $(\alpha \cup \epsilon)$, e $((\alpha \cup \beta) \cup \gamma)$ e $(\alpha \cup (\beta \cup \gamma))$

- Exemplo 1. O que significa $\mathcal{L}(((a \cup b)^*a))$?
- Exemplo 2. Qual a linguagem representada por (c*(a ∪ (bc*))*)?
- Toda linguagem que pode ser representada por uma expressão regular pode ser representada por infinitas outras. Exemplo α e $(\alpha \cup \epsilon)$, e $((\alpha \cup \beta) \cup \gamma)$ e $(\alpha \cup (\beta \cup \gamma))$
- Podemos agora dizer que a expressão regular a*b* é o conjunto de todas as cadeias com um certo número de a's seguidos de um certo número de b's.

• A classe das **linguagens regulares** sobre um alfabeto Σ são todas as linguagens L tais que $L = \mathcal{L}(\alpha)$ para alguma expressão regular α sobre Σ .

- A classe das **linguagens regulares** sobre um alfabeto Σ são todas as linguagens L tais que $L = \mathcal{L}(\alpha)$ para alguma expressão regular α sobre Σ .
- Todas as linguagens regulares podem ser descritas por ERs.

- A classe das **linguagens regulares** sobre um alfabeto Σ são todas as linguagens L tais que $L = \mathcal{L}(\alpha)$ para alguma expressão regular α sobre Σ .
- Todas as linguagens regulares podem ser descritas por ERs.
- A classe das **linguagens regulares** sobre um alfabeto Σ é o fechamento do conjunto de linguagens $\{\{\sigma\}: \sigma \in \Sigma\} \cup \{\emptyset\}$ sob a união, concatenação e estrela de Kleene.

- A classe das **linguagens regulares** sobre um alfabeto Σ são todas as linguagens L tais que $L = \mathcal{L}(\alpha)$ para alguma expressão regular α sobre Σ .
- Todas as linguagens regulares podem ser descritas por ERs.
- A classe das **linguagens regulares** sobre um alfabeto Σ é o fechamento do conjunto de linguagens $\{\{\sigma\}: \sigma \in \Sigma\} \cup \{\emptyset\}$ sob a união, concatenação e estrela de Kleene.
- Não podemos descrever todas as linguagens com ER's. Por exemplo, $\{0^n, 1^n : n \ge 0\}$ não é regular.

• ERs são insuficientes. Podemos voltar para $L = \{ w \in \Sigma^* : w \text{ goza da propriedade } P \}.$

- ERs são insuficientes. Podemos voltar para $L = \{ w \in \Sigma^* : w \text{ goza da propriedade } P \}.$
- Por enquanto, P é uma propriedade algorítmica. Deve haver um algoritmo para decidir se uma cadeia pertence a uma linguagem.

- ERs são insuficientes. Podemos voltar para $L = \{ w \in \Sigma^* : w \text{ goza da propriedade } P \}.$
- Por enquanto, P é uma propriedade algorítmica. Deve haver um algoritmo para decidir se uma cadeia pertence a uma linguagem.
- Para responder 'A cadeia w pertence a L?' temos o dispositivo reconhecedor dessa linguagem.

Exemplo $L = \{w \in \{0,1\} * : wnotem111comosubcadeia\}$. O reconhecedor de L que lê um símbolo por vez da esquerda da direita pode ter os seguintes passos:

Mantenha um contador que começa em zero e é zerado sempre que encontrar 0.

- Mantenha um contador que começa em zero e é zerado sempre que encontrar 0.
- 2 Incremente o contador se encontrar um 1.

- Mantenha um contador que começa em zero e é zerado sempre que encontrar 0.
- 2 Incremente o contador se encontrar um 1.
- 3 Pare em resposta NÃO se o contador for 3.

- Mantenha um contador que começa em zero e é zerado sempre que encontrar 0.
- 2 Incremente o contador se encontrar um 1.
- Pare em resposta NÃO se o contador for 3.
- Pare em resposta SIM caso a cadeia termine e o contador for 3.

 Um método alternativo é definir como cada membro da linguagem é gerado. Uma ER, como
L = (ϵ ∪ b ∪ bb)(a ∪ ab ∪ abb)*, pode ser entendida como uma forma de se produzir elementos de uma linguagem.

- Um método alternativo é definir como cada membro da linguagem é gerado. Uma ER, como
 L = (ϵ ∪ b ∪ bb)(a ∪ ab ∪ abb)*, pode ser entendida como uma forma de se produzir elementos de uma linguagem.
- Para gerar um elemento de L
 - 1 Escreva nada, ou b, ou bb

- Um método alternativo é definir como cada membro da linguagem é gerado. Uma ER, como
 L = (ϵ ∪ b ∪ bb)(a ∪ ab ∪ abb)*, pode ser entendida como uma forma de se produzir elementos de uma linguagem.
- Para gerar um elemento de L
 - Escreva nada, ou b, ou bb
 - 2 Escreva a, ou ab, ou abb e faça isso zero ou mais vezes

- Um método alternativo é definir como cada membro da linguagem é gerado. Uma ER, como
 L = (ϵ ∪ b ∪ bb)(a ∪ ab ∪ abb)*, pode ser entendida como uma forma de se produzir elementos de uma linguagem.
- Para gerar um elemento de L
 - Escreva nada, ou b, ou bb
 - 2 Escreva a, ou ab, ou abb e faça isso zero ou mais vezes
- todos os elementos de *L* e somente eles podem ser gerados dessa forma.

- Um método alternativo é definir como cada membro da linguagem é gerado. Uma ER, como
 L = (ϵ ∪ b ∪ bb)(a ∪ ab ∪ abb)*, pode ser entendida como uma forma de se produzir elementos de uma linguagem.
- Para gerar um elemento de L
 - Escreva nada, ou b, ou bb
 - 2 Escreva a, ou ab, ou abb e faça isso zero ou mais vezes
- todos os elementos de *L* e somente eles podem ser gerados dessa forma.
- Tais geradores de linguagens não são algoritmos, pois não são explícitos sobre o que fazer.