Universidade Federal Rural de Pernambuco Departamento de Estatística e Informática Bacharelado em Sistemas de Informação Introdução à Teoria da Computação

Lista de Exercícios sobre Autômatos Finitos e Linguagens Regulares

- 1. O que é e qual a finalidade do AF? Quão geral é esse modelo e qual sua relação com linguagens regulares?
- 2. Descreva intuitivamente o que é a classe das linguagens regulares.
- 3. Qual a relação entre AFNs e AFDs? Descreva-a formalmente.
- 4. Em um AFN, o que significa uma transição em vazio e ele aceitar uma cadeia vazia?
- 5. Elabore AFDs que reconheçam as seguintes linguagens.
 - (a) $L = \{w \in \{a, b\} : w \text{ tem pelo menos duas ocorrências da cadeia } abba\}$
 - (b) $L = \{w \in \{a, b\} : w \text{ não tem três } a \text{'s seguidos}\}$
 - (c) $(ab^*(ab \cup bbb)^*)^*$
- 6. Elabore AFNs, tal que haja transições em vazio e Δ não seja função, que reconheçam as seguintes linguagens.
 - (a) $L = \{w \in \{a, b\} : w \text{ tem zero ou mais ocorrências da cadeia } bbba\}$
 - (b) $L = \{w \in \{a, b\} : w \text{ não tem } a \text{'s seguidos}\}$
 - (c) $a^*(ba \cup a)^*(b \cup \epsilon)a^*$. Use para esta linguagem as regras de construção de AFN a partir de expressões regulares apresentadas em sala de aula.
- 7. Converta os AFNs do item anterior em AFDs.
- 8. Verifique se as seguintes linguagens sobre $\{a, b\}$ são regulares.
 - (a) $L = \{a^n b^n : n > 0\}$
 - (b) $L = \{a^n b^{3n} : n \ge 0\}$
 - (c) $L = \{a^n : n \text{ \'e divis\'ivel por } 3\}$
 - (d) $L = \{a^n b^m : n, m > 0, m = n^2\}$
- 9. Prove as seguintes proposições.
 - (a) $2^{2n} 1$ é divisível por 3 para todo inteiro $n \ge 1$.
 - (b) $\sum_{i=0}^{n} 2^{i} = 2^{n+1} 1$ para todo inteiro $n \ge 0$.
 - (c) Dada a seqüência a_1,a_2,a_3,\ldots definida como $a_1=2$ e $a_n=5a_{n-1}$ para $n\geq 2$. Mostre que $a_n=2*5^{n-1}$ para $n\geq 1$.
- 10. Prove que $2^{\mathbb{N}}$ é incontável.
- 11. Prove que o conjunto de todos os números reais no intervalo [0, 1] é incontável. Dica: sabese que cada número real pode ser escrito, em notação binária, na forma de uma seqüência infinita de 0s e 1s, por exemplo 0110111000... Admita a existência de uma enumeração para essas seqüências e crie uma seqüência diagonal através da complementação do *i*-ésimo bit da *i*-ésima seqüência.