Autômatos finitos

Rodrigo Gabriel Ferreira Soares

DEINFO - UFRPE

2014

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Automatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos initos e expressões

Linguagens regulares e não-regulares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

egulares e aão-regulares

Minimização de estados

▶ Neste momento, mostraremos uma representação relativamente modesta de um computador.

egulares e não-regulares

- ▶ Neste momento, mostraremos uma representação relativamente modesta de um computador.
- Um autômato tem como características comuns com um computador uma unidade de processamento com capacidade fixa, finita.

Linguagens regulares e não-regulares

- ► Neste momento, mostraremos uma representação relativamente modesta de um computador.
- Um autômato tem como características comuns com um computador uma unidade de processamento com capacidade fixa, finita.
- ► Ele tem como entrada uma cadeia em uma fita de entrada. Produz como saída uma indicação se a entrada foi considerada aceitável ou não.

inguagens egulares e ñão-regulares

- ► Neste momento, mostraremos uma representação relativamente modesta de um computador.
- Um autômato tem como características comuns com um computador uma unidade de processamento com capacidade fixa, finita.
- ► Ele tem como entrada uma cadeia em uma fita de entrada. Produz como saída uma indicação se a entrada foi considerada aceitável ou não.
- É um dispositivo de reconhecimento de linguagens.

Linguagens regulares e não-regulares

- ▶ Neste momento, mostraremos uma representação relativamente modesta de um computador.
- Um autômato tem como características comuns com um computador uma unidade de processamento com capacidade fixa, finita.
- ► Ele tem como entrada uma cadeia em uma fita de entrada. Produz como saída uma indicação se a entrada foi considerada aceitável ou não.
- É um dispositivo de reconhecimento de linguagens.
- ▶ É muito restrito devido à completa ausência de memória externa ao processador.

Autômatos finitos determinísticos

Autômatos permitem projetar vários tipos de algoritmos. Exemplo: análise léxica. Autômatos finitos nãodeterminísticos

Autômatos initos e expressões egulares

inguagens egulares e

inguagens egulares e ão-regulares

- Autômatos permitem projetar vários tipos de algoritmos.
 Exemplo: análise léxica.
 - Cadeias são recebidas através da leitura de uma fita de entrada, que é composta por células, com um símbolo gravado em cada uma delas.

regulares e não-regulares

- Autômatos permitem projetar vários tipos de algoritmos. Exemplo: análise léxica.
 - Cadeias são recebidas através da leitura de uma fita de entrada, que é composta por células, com um símbolo gravado em cada uma delas.
 - 2. O **controle finito** é um mecanismo que pode apresentar, em um momento específico, em um de seus **estados internos**. Ele pode ler qualquer símbolo de entrada através do **cabeçote móvel de leitura**.

regulares e não-regulares

- Autômatos permitem projetar vários tipos de algoritmos. Exemplo: análise léxica.
 - Cadeias são recebidas através da leitura de uma fita de entrada, que é composta por células, com um símbolo gravado em cada uma delas.
 - 2. O **controle finito** é um mecanismo que pode apresentar, em um momento específico, em um de seus **estados internos**. Ele pode ler qualquer símbolo de entrada através do **cabeçote móvel de leitura**.

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

> inguagens egulares e ão-regulares

Minimização de estados

 Inicialmente, o cabeçote está na posição mais à esquerda da fita e o controle finito está em seu estado inicial pré-estabelecido.

xpressões egulares

não-regulares

- Inicialmente, o cabeçote está na posição mais à esquerda da fita e o controle finito está em seu estado inicial pré-estabelecido.
- 2. Em intervalos regulares, o autômato lê um símbolo da fita de entrada e então entra em um novo estado.

egulares e año-regulares

- Inicialmente, o cabeçote está na posição mais à esquerda da fita e o controle finito está em seu estado inicial pré-estabelecido.
- Em intervalos regulares, o autômato lê um símbolo da fita de entrada e então entra em um novo estado.
- 3. Esse novo estado depende apenas do estado atual e do símbolo que acabou de ser lido.

inguagens egulares e ão-regulares

- Inicialmente, o cabeçote está na posição mais à esquerda da fita e o controle finito está em seu estado inicial pré-estabelecido.
- 2. Em intervalos regulares, o autômato lê um símbolo da fita de entrada e então entra em um novo estado.
- 3. Esse novo estado depende apenas do estado atual e do símbolo que acabou de ser lido.
 - Autômato finito determinístico.

inguagens regulares e

- Inicialmente, o cabeçote está na posição mais à esquerda da fita e o controle finito está em seu estado inicial pré-estabelecido.
- 2. Em intervalos regulares, o autômato lê um símbolo da fita de entrada e então entra em um novo estado.
- 3. Esse novo estado depende apenas do estado atual e do símbolo que acabou de ser lido.
 - Autômato finito determinístico.
- 4. Após a leitura de um símbolo de entrada, o cabeçote se movimenta uma célula para a direta na fita de modo que, no próximo movimento, ela leia o símbolo na próxima célula.

inguagens egulares e ñão-regulares

- Inicialmente, o cabeçote está na posição mais à esquerda da fita e o controle finito está em seu estado inicial pré-estabelecido.
- Em intervalos regulares, o autômato lê um símbolo da fita de entrada e então entra em um novo estado.
- 3. Esse novo estado depende apenas do estado atual e do símbolo que acabou de ser lido.
 - Autômato finito determinístico.
- Após a leitura de um símbolo de entrada, o cabeçote se movimenta uma célula para a direta na fita de modo que, no próximo movimento, ela leia o símbolo na próxima célula.
- 5. Esse processo é repetido continuamente: um símbolo é lido, o cabeçote move-se para a direita e muda o estado interno do controle finito.

inguagens egulares e ñão-regulares

- Inicialmente, o cabeçote está na posição mais à esquerda da fita e o controle finito está em seu estado inicial pré-estabelecido.
- Em intervalos regulares, o autômato lê um símbolo da fita de entrada e então entra em um novo estado.
- 3. Esse novo estado depende apenas do estado atual e do símbolo que acabou de ser lido.
 - Autômato finito determinístico.
- Após a leitura de um símbolo de entrada, o cabeçote se movimenta uma célula para a direta na fita de modo que, no próximo movimento, ela leia o símbolo na próxima célula.
- 5. Esse processo é repetido continuamente: um símbolo é lido, o cabeçote move-se para a direita e muda o estado interno do controle finito.

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

inguagens egulares e

Minimização de estados

6. Finalmente, o cabeçote alcança o final da cadeia de entrada.

> inguagens egulares e ão-regulares

- Finalmente, o cabeçote alcança o final da cadeia de entrada.
- O autômato, então, indica a aprovação ou rejeição do que foi lido de acordo com o estado a que foi conduzido ao final desse processo.

> inguagens egulares e

Minimização de

Ferreira Soares

- 6. Finalmente, o cabeçote alcança o final da cadeia de entrada.
- O autômato, então, indica a aprovação ou rejeição do que foi lido de acordo com o estado a que foi conduzido ao final desse processo.
- 8. Caso o estado resultante pertencer ao conjunto de **estados finais**, a cadeia de entrada é **aceita**.

> inguagens egulares e

- Finalmente, o cabeçote alcança o final da cadeia de entrada.
- O autômato, então, indica a aprovação ou rejeição do que foi lido de acordo com o estado a que foi conduzido ao final desse processo.
- 8. Caso o estado resultante pertencer ao conjunto de estados finais, a cadeia de entrada é aceita.
- 9. A linguagem aceita pela máquina é o conjunto de cadeias que ela reconhece.

Ferreira Soares

Definição

Um autômato finito determinístico é uma quíntupla

 $M = (K, \Sigma, \delta, s, F)$, onde

K é um conjunto finito de estados,

 Σ é um alfabeto,

 $s \in K$ é o estado inicial,

 $F \subseteq K$ é o conjunto de **estados finais**, e

 δ , a função de transição, é uma função de $K \times \Sigma$ para K.

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

inguagens egulares e

Minimização de

As regras pelas quais o autômato M escolhe seu próximo estado são codificadas em sua função de transição δ .

> inguagens egulares e ão-regulares

- As regras pelas quais o autômato M escolhe seu próximo estado são codificadas em sua função de transição δ .
- ▶ Se M estiver no estado $q \in K$, e o símbolo lido na fita de entrada for $a \in \Sigma$, então $\delta(q, a) \in K$ será o estado, univocamente determinado, para o qual M transitará.

não-regulares

- As regras pelas quais o autômato M escolhe seu próximo estado são codificadas em sua função de transição δ .
- ▶ Se M estiver no estado $q \in K$, e o símbolo lido na fita de entrada for $a \in \Sigma$, então $\delta(q, a) \in K$ será o estado, univocamente determinado, para o qual M transitará.
- ► A computação de uma cadeia pode ser caracterizada por uma seqüência de configurações de M, que representam o aspecto de M em momentos sucessivos.

inguagens regulares e

- As regras pelas quais o autômato M escolhe seu próximo estado são codificadas em sua função de transição δ .
- ▶ Se M estiver no estado $q \in K$, e o símbolo lido na fita de entrada for $a \in \Sigma$, então $\delta(q, a) \in K$ será o estado, univocamente determinado, para o qual M transitará.
- ► A computação de uma cadeia pode ser caracterizada por uma seqüência de configurações de M, que representam o aspecto de M em momentos sucessivos.
- Uma configuração de um autômato finito determinístico (AFD) é qualquer elemento de K × Σ*.

Linguagens regulares e não-regulares

- As regras pelas quais o autômato M escolhe seu próximo estado são codificadas em sua função de transição δ .
- ▶ Se M estiver no estado $q \in K$, e o símbolo lido na fita de entrada for $a \in \Sigma$, então $\delta(q, a) \in K$ será o estado, univocamente determinado, para o qual M transitará.
- A computação de uma cadeia pode ser caracterizada por uma seqüência de configurações de M, que representam o aspecto de M em momentos sucessivos.
- Uma configuração de um autômato finito determinístico (AFD) é qualquer elemento de K × Σ*.
- ▶ Um exemplo é $(q_2, ababab)$.

não-regulares

Minimização de estados

A relação binária \vdash_M se aplica a um par de configurações se a máquina puder passar de uma configuração a outra, como resultado de um simples movimento.

egulares e não-regulares

- A relação binária ⊢_M se aplica a um par de configurações se a máquina puder passar de uma configuração a outra, como resultado de um simples movimento.
- Se (q, w) e (q', w') são duas configurações de M, então $(q, w) \vdash (q', w')$ see w = aw' para algum $a \in \Sigma$, e $\delta(q, a) = q'$.

regulares e não-regulares

- A relação binária \vdash_M se aplica a um par de configurações se a máquina puder passar de uma configuração a outra, como resultado de um simples movimento.
- Se (q, w) e (q', w') são duas configurações de M, então $(q, w) \vdash (q', w')$ see w = aw' para algum $a \in \Sigma$, e $\delta(q, a) = q'$.
- ▶ Dizemos assim que (q, w) leva a (q', w') em um passo.

regulares e não-regulares

- A relação binária \vdash_M se aplica a um par de configurações se a máquina puder passar de uma configuração a outra, como resultado de um simples movimento.
- Se (q, w) e (q', w') são duas configurações de M, então $(q, w) \vdash (q', w')$ see w = aw' para algum $a \in \Sigma$, e $\delta(q, a) = q'$.
- ▶ Dizemos assim que (q, w) leva a (q', w') em um passo.
- ▶ \vdash_M é uma função $K \times \Sigma^+$ para $K \times \Sigma^*$.

regulares e não-regulares

- A relação binária \vdash_M se aplica a um par de configurações se a máquina puder passar de uma configuração a outra, como resultado de um simples movimento.
- Se (q, w) e (q', w') são duas configurações de M, então $(q, w) \vdash (q', w')$ see w = aw' para algum $a \in \Sigma$, e $\delta(q, a) = q'$.
- ▶ Dizemos assim que (q, w) leva a (q', w') em um passo.
- ▶ \vdash_M é uma função $K \times \Sigma^+$ para $K \times \Sigma^*$.
- Para cada configuração, existe uma configuração seguinte, exceto da forma (q, ϵ) , que indica que M consumiu todas as suas entradas, encerrando sua operação.

Autômatos finitos nãodeterminísticos

> Autómatos initos e expressões egulares

inguagens egulares e ão-regulares

Minimização de estados

▶ Denotamos o fechamento transitivo reflexivo de \vdash_M como \vdash_M^* .

> inguagens egulares e

- Denotamos o fechamento transitivo reflexivo de ⊢_M como ⊢_M*.
- ▶ $(q, w) \vdash_{M}^{*} (q', w')$ denota que (q, w) produz um resultado (q', w') após um certo número, possivelmente zero, de passos.

inguagens egulares e ñão-regulares

- Denotamos o fechamento transitivo reflexivo de ⊢_M como ⊢_M*.
- ▶ $(q, w) \vdash_M^* (q', w')$ denota que (q, w) produz um resultado (q', w') após um certo número, possivelmente zero, de passos.
- ▶ Uma cadeia $w \in \Sigma^*$ é **aceita** por M sse existir algum estado $q \in F$, tal que $(s, w) \vdash_M^* (q, \epsilon)$.

inguagens egulares e ñão-regulares

- ▶ Denotamos o fechamento transitivo reflexivo de \vdash_M como \vdash_M^* .
- ▶ $(q, w) \vdash_M^* (q', w')$ denota que (q, w) produz um resultado (q', w') após um certo número, possivelmente zero, de passos.
- ▶ Uma cadeia $w \in \Sigma^*$ é **aceita** por M sse existir algum estado $q \in F$, tal que $(s, w) \vdash_M^* (q, \epsilon)$.
- ▶ A linguagem aceita por M, denotada por L(M), é o conjunto de todas as cadeias aceitas por M.

Autómatos initos e expressões egulares

inguagens egulares e

Minimização de estados

▶ Seja M o AFD $(K, \Sigma, \delta, s, F)$ onde $K = \{q_0, q_1\}$, $\Sigma = \{a, b\}$, $s = q_0$, $F = \{q_0\}$, e δ é a função na tabela a seguir

q	σ	$\delta(q,\sigma)$
q_0	а	q_0
q_0	b	q_1
q_1	a	q_1
q_1	b	q_0

Autômatos finitos e expressões regulares

inguagens egulares e ñão-regulares

Minimização de estados

▶ Seja M o AFD $(K, \Sigma, \delta, s, F)$ onde $K = \{q_0, q_1\}$, $\Sigma = \{a, b\}$, $s = q_0$, $F = \{q_0\}$, e δ é a função na tabela a seguir

q	σ	$\delta(q,\sigma)$
q 0	а	q_0
q_0	b	q_1
q_1	a	q_1
q_1	b	q_0

► Se *M* recebe *aabba* como entrada, sua configuração inicial será (*q*₀, *aabba*), daí

Autômato finitos e expressões regulares

> Linguagens regulares e não-regulares

Minimização de estados

Exemplo

Seja M o AFD $(K, \Sigma, \delta, s, F)$ onde $K = \{q_0, q_1\}$, $\Sigma = \{a, b\}, s = q_0, F = \{q_0\}, e \delta$ é a função na tabela

a seguir

q	σ	$\delta(q,\sigma)$
q_0	а	q_0
q_0	b	q_1
q_1	а	q_1
q_1	b	q_0

► Se *M* recebe *aabba* como entrada, sua configuração inicial será (*q*₀, *aabba*), daí

$$(q_0, aabba) \vdash_M (q_0, abba)$$
 (1)

Autômato finitos e expressões regulares

regulares e não-regulares

Minimização de

▶ Seja M o AFD $(K, \Sigma, \delta, s, F)$ onde $K = \{q_0, q_1\}$, $\Sigma = \{a, b\}$, $s = q_0$, $F = \{q_0\}$, e δ é a função na tabela a seguir

q	σ	$\delta(q,\sigma)$
q_0	а	q_0
q_0	b	q_1
q_1	а	q_1
q_1	b	q_0

 Se M recebe aabba como entrada, sua configuração inicial será (q₀, aabba), daí

$$(q_0, aabba) \vdash_M (q_0, abba)$$
 (1)

$$\vdash_M (q_0, bba)$$
 (2)

Autômatos finitos e expressões regulares

Linguagens regulares e não-regulares

Minimização de

▶ Seja M o AFD $(K, \Sigma, \delta, s, F)$ onde $K = \{q_0, q_1\}$, $\Sigma = \{a, b\}$, $s = q_0$, $F = \{q_0\}$, e δ é a função na tabela a seguir

q	σ	$\delta(q,\sigma)$
q_0	а	q_0
q_0	b	q_1
q_1	a	q_1
q_1	b	q_0

► Se *M* recebe *aabba* como entrada, sua configuração inicial será (*q*₀, *aabba*), daí

$$(q_0, aabba) \vdash_M (q_0, abba)$$
 (1)

$$\vdash_M (q_0, bba)$$
 (2)

$$\vdash_M (q_1, ba)$$
 (3)

Rodrigo Gabriel Ferreira Soares

> finitos determinísticos

(2)

▶ Seja M o AFD $(K, \Sigma, \delta, s, F)$ onde $K = \{q_0, q_1\}$, $\Sigma = \{a, b\}, s = q_0, F = \{q_0\}, e \delta$ é a função na tabela a seguir

q	σ	$\delta(q,\sigma)$
q_0	а	q_0
q_0	b	q_1
q_1	a	q_1
q_1	b	q_0

 Se M recebe aabba como entrada, sua configuração inicial será (q₀, aabba), daí

$$(q_0, aabba) \vdash_M (q_0, abba)$$
 (1)

$$\vdash_M$$
 (q_0, bba)

$$\vdash_M (q_1, ba)$$
 (3)

$$\vdash_M (q_0, a)$$
 (4)

Autômato finitos e expressões regulares

Linguagens regulares e

Minimização de

▶ Seja M o AFD $(K, \Sigma, \delta, s, F)$ onde $K = \{q_0, q_1\}$, $\Sigma = \{a, b\}$, $s = q_0$, $F = \{q_0\}$, e δ é a função na tabela a seguir

q	σ	$\delta(q,\sigma)$
q 0	а	q_0
q_0	b	q_1
q_1	a	q_1
q_1	b	q_0

► Se *M* recebe *aabba* como entrada, sua configuração inicial será (*q*₀, *aabba*), daí

$$(q_0, aabba) \vdash_M (q_0, abba)$$
 (1)

$$\vdash_M (q_0, bba)$$
 (2)

$$\vdash_{M} (q_1, ba)$$
 (3)

$$\vdash_M (q_0, a)$$
 (4)

$$\vdash_{M} (q_0, \epsilon)$$
 (5)

Exemplo

▶ Assim, $(q_0, aabba) \vdash_M^* (q_0, \epsilon)$, logo aabba é aceita por M.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos initos e expressões egulares

inguagens egulares e ão-regulares

expressões regulares

regulares e não-regulares

- ▶ Assim, $(q_0, aabba) \vdash_M^* (q_0, \epsilon)$, logo aabba é aceita por M.
- Para representar com mais clareza um AFD, temos o diagrama de estados.

tinitos e expressões regulares

não-regulares

- ▶ Assim, $(q_0, aabba) \vdash_M^* (q_0, \epsilon)$, logo aabba é aceita por M.
- Para representar com mais clareza um AFD, temos o diagrama de estados.
- Ele é um grafo orientado com algumas informações adicionais.

Autômatos initos e expressões egulares

Linguagens regulares e não-regulares

- ▶ Assim, $(q_0, aabba) \vdash_M^* (q_0, \epsilon)$, logo aabba é aceita por M.
- Para representar com mais clareza um AFD, temos o diagrama de estados.
- Ele é um grafo orientado com algumas informações adicionais.

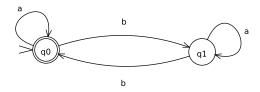


Figura: Diagrama de estados de M.

Autómatos initos e expressões egulares

regulares e não-regulares

Minimização de estados

▶ Vamos projetar um AFD M que reconhece a linguagem $L(M) = \{w \in \{a, b\}^* : w \text{ não contém três } b$'s consecutivos $\}$.

initos e expressões egulares

não-regulares

- ▶ Vamos projetar um AFD M que reconhece a linguagem $L(M) = \{w \in \{a, b\}^* : w \text{ não contém três } b$'s consecutivos $\}$.
- ▶ Seja $M = (K, \Sigma, \delta, s, F)$, onde $K = \{q_0, q_1, q_2, q_3\}$, $\Sigma = \{a, b\}$, $s = q_0$, $F = \{q_0, q_1, q_2\}$, e δ é a função na tabela a seguir

Autômatos finitos e expressões regulares

inguagens egulares e ão-regulares

- ▶ Vamos projetar um AFD M que reconhece a linguagem $L(M) = \{w \in \{a, b\}^* : w \text{ não contém três } b$'s consecutivos $\}$.
- ▶ Seja $M = (K, \Sigma, \delta, s, F)$, onde $K = \{q_0, q_1, q_2, q_3\}$, $\Sigma = \{a, b\}$, $s = q_0$, $F = \{q_0, q_1, q_2\}$, e δ é a função na tabela a seguir

q	σ	$\delta(q,\sigma)$
q_0	а	q 0
q_0	b	q_1
q_1	a	q_0
q_1	b	q_2
q_2	a	9 0
q_2	b	q 3
q_3	a	q 3
q 3	b	q 3

Autômatos finitos nãodeterminísticos

Autômato finitos e expressões regulares

Linguagens regulares e não-regulares

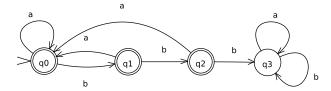


Figura: Diagrama de estados de M.

Automato: finitos e expressões regulares

Linguagens regulares e não-regulares

Minimização de

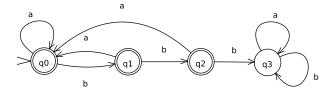


Figura: Diagrama de estados de M.

ightharpoonup M irá permanecer em q_3 independentemente da entrada.

Autômatos finitos nãodeterminísticos

Autómatos initos e expressões egulares

Linguagens regulares e não-regulares

Minimização de estados

Figura: Diagrama de estados de M.

- ightharpoonup M irá permanecer em q_3 independentemente da entrada.
- ▶ Diz-se que *q*₃ é um **estado morto**.

Autômato: finitos e expressões regulares

Linguagens regulares e não-regulares

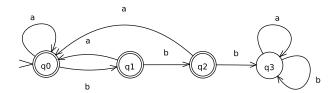


Figura: Diagrama de estados de M.

- ightharpoonup M irá permanecer em q_3 independentemente da entrada.
- ▶ Diz-se que q_3 é um **estado morto**.
- M fica preso (trapped) em q₃, pois não pode escapar desse estado.

 Capacidade de mudar de estado de forma apenas parcialmente determinada pelo estado atual e pelo símbolo de entrada.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Automatos finitos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

> inguagens egulares e

inguagens egulares e ão-regulares

- Capacidade de mudar de estado de forma apenas parcialmente determinada pelo estado atual e pelo símbolo de entrada.
- Há vários possíveis estados seguintes para uma dada combinação de estado e símbolo.

- Capacidade de mudar de estado de forma apenas parcialmente determinada pelo estado atual e pelo símbolo de entrada.
- Há vários possíveis estados seguintes para uma dada combinação de estado e símbolo.
- A escolha do próximo estado não é determinada por nada em nosso modelo – não-determinismo.

Autômatos finitos e expressões regulares

Linguagens regulares e

- Capacidade de mudar de estado de forma apenas parcialmente determinada pelo estado atual e pelo símbolo de entrada.
- Há vários possíveis estados seguintes para uma dada combinação de estado e símbolo.
- A escolha do próximo estado não é determinada por nada em nosso modelo – não-determinismo.
- Não são modelos realistas de computadores. São generalizações notacionais úteis para simplificar a descrição de AFDs.

Linguagens regulares e

- Capacidade de mudar de estado de forma apenas parcialmente determinada pelo estado atual e pelo símbolo de entrada.
- Há vários possíveis estados seguintes para uma dada combinação de estado e símbolo.
- A escolha do próximo estado não é determinada por nada em nosso modelo – não-determinismo.
- Não são modelos realistas de computadores. São generalizações notacionais úteis para simplificar a descrição de AFDs.
- Todo autômato finito não-determinístico (AFN) tem um AFD equivalente.

► Considere o AFD que aceita a linguagem $L = (ab \cup aba)^*$.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

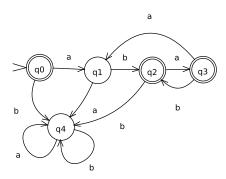
Autômatos finitos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

> inguagens egulares e

► Considere o AFD que aceita a linguagem $L = (ab \cup aba)^*$.



Autômatos finitos

Rodrigo Gabriel Ferreira Soares

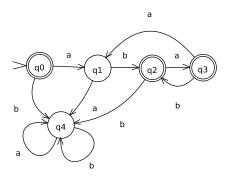
Autômatos finitos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

Linguagens regulares e

► Considere o AFD que aceita a linguagem $L = (ab \cup aba)^*$.



Há exatamente duas arestas saindo de cada estado.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

Linguagens regulares e não-regulares

▶ L é aceita pelo seguinte AFN, que é mais simples que o AFD anterior.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

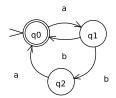
Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

nitos e xpressões

inguagens egulares e

▶ L é aceita pelo seguinte AFN, que é mais simples que o AFD anterior.



Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos

Autômatos finitos nãodeterminísticos

finitos e expressões regulares

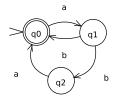
inguagens egulares e

Autômatos finitos e expressões regulares

> Linguagens regulares e não-regulares

Minimização de

▶ L é aceita pelo seguinte AFN, que é mais simples que o AFD anterior.



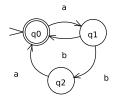
Ele aceita a cadeia aba?

Autômatos finitos e expressões regulares

Linguagens regulares e não-regulares

Minimização de

▶ L é aceita pelo seguinte AFN, que é mais simples que o AFD anterior.



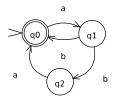
- ▶ Ele aceita a cadeia aba?
- ► Aceitar se existir alguma maneira de atingir o estado final a partir do inicial com essa entrada.

finitos e expressões regulares

> inguagens egulares e

Minimização de

▶ L é aceita pelo seguinte AFN, que é mais simples que o AFD anterior.



- ▶ Ele aceita a cadeia aba?
- ► Aceitar se existir alguma maneira de atingir o estado final a partir do inicial com essa entrada.
- ▶ Pode haver vários estados seguintes, bem como nenhum.

• Um AFN pode conter setas rotuladas com cadeia vazia ϵ .

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos

Autômatos finitos nãodeterminísticos

Autômatos initos e expressões

inguagens egulares e

- Um AFN pode conter setas rotuladas com cadeia vazia ϵ .
- ► A máquina seguinte aceita a mesma linguagem *L* do exemplo anterior.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Automatos finitos e expressões regulares

inguagens egulares e ão-regulares

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

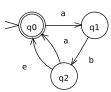
Autômatos finitos

Autômatos finitos nãodeterminísticos

Autômato: finitos e expressões regulares

inguagens egulares e ão-regulares

- Um AFN pode conter setas rotuladas com cadeia vazia ϵ .
- ▶ A máquina seguinte aceita a mesma linguagem L do exemplo anterior.



Autômatos finitos

Rodrigo Gabriel Ferreira Soares

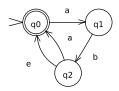
Autômatos finitos

Autômatos finitos nãodeterminísticos

finitos e expressões regulares

Linguagens regulares e não-regulares

- Um AFN pode conter setas rotuladas com cadeia vazia ϵ .
- ▶ A máquina seguinte aceita a mesma linguagem *L* do exemplo anterior.



- ▶ De q_2 , esse dispositivo pode retornar para q_0 ,
 - após a leitura do símbolo a ou
 - ▶ imediatamente, sem consumir qualquer entrada.

Definição

Um autômato finito não-determinístico é uma quíntupla

 $M = (K, \Sigma, \Delta, s, F)$, onde

K é um conjunto finito de estados,

 Σ é um alfabeto,

 $s \in K$ é o estado inicial,

 $F \subseteq K$ é o conjunto de **estados finais**, e

 Δ , a relação de transição, é um subconjunto de

 $K \times (\Sigma \cup \{\epsilon\}) \times K$.

Transições, configurações e aceitação

▶ Cada tripla $(q, u, p) \in \Delta$ é uma transição de M.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos

Autômatos finitos nãodeterminísticos

Autômatos initos e expressões

inguagens egulares e

Transições, configurações e aceitação

- ▶ Cada tripla $(q, u, p) \in \Delta$ é uma transição de M.
- ▶ M pode seguir qualquer transição das formas (q, a, p) ou (q, ϵ, p) . Se (q, ϵ, p) é executada, então nenhum símbolo de entrada é consumido.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos

Autômatos finitos nãodeterminísticos

finitos e expressões regulares

inguagens egulares e

Minimização de

- ▶ Cada tripla $(q, u, p) \in \Delta$ é uma transição de M.
- ▶ M pode seguir qualquer transição das formas (q, a, p) ou (q, ϵ, p) . Se (q, ϵ, p) é executada, então nenhum símbolo de entrada é consumido.
- ▶ Se (q, w) e (q', w') são duas configurações de M, então $(q, w) \vdash (q', w')$ see w = aw' para algum $a \in \Sigma \cup \{\epsilon\}$, e $(q, a, q') \in \Delta$.

- ▶ Cada tripla $(q, u, p) \in \Delta$ é uma transição de M.
- ▶ M pode seguir qualquer transição das formas (q, a, p) ou (q, ϵ, p) . Se (q, ϵ, p) é executada, então nenhum símbolo de entrada é consumido.
- ▶ Se (q, w) e (q', w') são duas configurações de M, então $(q, w) \vdash (q', w')$ see w = aw' para algum $a \in \Sigma \cup \{\epsilon\}$, e $(q, a, q') \in \Delta$.
- ► \vdash_M não precisa ser uma função. Pode haver vários pares (q', w'), ou nenhum, tais que $(q, w) \vdash_M (q', w')$.

- ▶ Cada tripla $(q, u, p) \in \Delta$ é uma transição de M.
- ▶ M pode seguir qualquer transição das formas (q, a, p) ou (q, ϵ, p) . Se (q, ϵ, p) é executada, então nenhum símbolo de entrada é consumido.
- ▶ Se (q, w) e (q', w') são duas configurações de M, então $(q, w) \vdash (q', w')$ see w = aw' para algum $a \in \Sigma \cup \{\epsilon\}$, e $(q, a, q') \in \Delta$.
- ► \vdash_M não precisa ser uma função. Pode haver vários pares (q', w'), ou nenhum, tais que $(q, w) \vdash_M (q', w')$.
- ▶ \vdash_M^* é o fechamento transitivo reflexivo de \vdash_M .

- ▶ Cada tripla $(q, u, p) \in \Delta$ é uma transição de M.
- ▶ M pode seguir qualquer transição das formas (q, a, p) ou (q, ϵ, p) . Se (q, ϵ, p) é executada, então nenhum símbolo de entrada é consumido.
- ▶ Se (q, w) e (q', w') são duas configurações de M, então $(q, w) \vdash (q', w')$ see w = aw' para algum $a \in \Sigma \cup \{\epsilon\}$, e $(q, a, q') \in \Delta$.
- ▶ \vdash_M não precisa ser uma função. Pode haver vários pares (q', w'), ou nenhum, tais que $(q, w) \vdash_M (q', w')$.
- ▶ \vdash_M^* é o fechamento transitivo reflexivo de \vdash_M .
- ▶ Uma cadeia $w \in \Sigma^*$ é aceita see houver um estado $q \in F$ tal que $(s, w) \vdash_M^* (q, \epsilon)$.

- ▶ Cada tripla $(q, u, p) \in \Delta$ é uma transição de M.
- ▶ M pode seguir qualquer transição das formas (q, a, p) ou (q, ϵ, p) . Se (q, ϵ, p) é executada, então nenhum símbolo de entrada é consumido.
- ▶ Se (q, w) e (q', w') são duas configurações de M, então $(q, w) \vdash (q', w')$ see w = aw' para algum $a \in \Sigma \cup \{\epsilon\}$, e $(q, a, q') \in \Delta$.
- ▶ \vdash_M não precisa ser uma função. Pode haver vários pares (q', w'), ou nenhum, tais que $(q, w) \vdash_M (q', w')$.
- ▶ \vdash_M^* é o fechamento transitivo reflexivo de \vdash_M .
- ▶ Uma cadeia $w \in \Sigma^*$ é aceita see houver um estado $q \in F$ tal que $(s, w) \vdash_M^* (q, \epsilon)$.
- ightharpoonup L(M) é a linguagem aceita por M.

> regulares e 1ão-regulares

Minimização de

- Seja o AFN que reconhece todas as cadeias que tenham uma ocorrência de bb ou bab.
- Formalmente, $M = (K, \Sigma, \Delta, s, F)$ onde $K = \{q_0, q_1, q_2, q_3, q_4\}$, $\Sigma = \{a, b\}$, $s = q_0$, $F = \{q_4\}$, e

regulares e não-regulares

- Seja o AFN que reconhece todas as cadeias que tenham uma ocorrência de bb ou bab.
- Formalmente, $M = (K, \Sigma, \Delta, s, F)$ onde $K = \{q_0, q_1, q_2, q_3, q_4\}$, $\Sigma = \{a, b\}$, $s = q_0$, $F = \{q_4\}$, e

$$\Delta = \{(q_0, a, q_0), (q_0, b, q_0), (q_0, b, q_1), \\ (q_1, b, q_2), (q_1, a, q_3), (q_2, \epsilon, q_4), \\ (q_3, b, q_4), (q_4, a, q_4), (q_4, b, q_4)\}$$

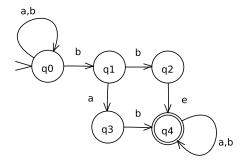
Autômatos finitos

Autômatos finitos nãodeterminísticos

Autômato finitos e expressões regulares

Linguagens regulares e

Minimização de



lacktriangle Se forem usadas transições q_0, a, q_0 e (q_0, b, q_0)

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

finitos

Autômatos finitos nãodeterminísticos

Autômatos initos e expressões regulares

inguagens egulares e ão-regulares

▶ Se forem usadas transições q_0 , a, q_0 e (q_0, b, q_0)

$$(q_0, bababab) \vdash_M (q_0, ababab)$$

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Automatos finitos

Autômatos finitos nãodeterminísticos

Autômatos initos e expressões egulares

inguagens egulares e ão-regulares

▶ Se forem usadas transições q_0 , a, q_0 e (q_0, b, q_0)

```
(q_0, bababab) \vdash_M (q_0, ababab) \vdash_M (q_0, babab)
```

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

finitos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

inguagens egulares e

▶ Se forem usadas transições q_0 , a, q_0 e (q_0, b, q_0)

$$(q_0, bababab)$$
 \vdash_M $(q_0, ababab)$ \vdash_M $(q_0, babab)$ \vdash_M $(q_0, abab)$

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

finitos

Autômatos finitos nãodeterminísticos

Autômato: finitos e expressões regulares

inguagens egulares e ão-regulares

▶ Se forem usadas transições q_0 , a, q_0 e (q_0, b, q_0)

```
 \begin{array}{ccc} (q_0, bababab) & \vdash_M & (q_0, ababab) \\ & \vdash_M & (q_0, babab) \\ & \vdash_M & (q_0, abab) \\ & \vdots \end{array}
```

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

finitos

Autômatos finitos nãodeterminísticos

finitos e expressões regulares

> inguagens egulares e ão-regulares

Autômatos finitos nãodeterminísticos

finitos e expressões regulares

> inguagens egulares e ão-regulares

Minimização de estados

▶ Se forem usadas transições q_0 , a, q_0 e (q_0, b, q_0)

 $\begin{array}{ccc} (q_0,bababab) & \vdash_M & (q_0,ababab) \\ & \vdash_M & (q_0,babab) \\ & \vdash_M & (q_0,abab) \\ & \vdots & \\ & \vdash_M & (q_0,\epsilon) \end{array}$

> inguagens egulares e ão-regulares

Minimização de estados

▶ Se forem usadas transições q_0 , a, q_0 e (q_0, b, q_0)

$$\begin{array}{cccc} (q_0,bababb) & \vdash_M & (q_0,ababab) \\ & \vdash_M & (q_0,babab) \\ & \vdash_M & (q_0,abab) \\ & \vdots & & \\ & \vdash_M & (q_0,\epsilon) \end{array}$$

ightharpoonup Mesma cadeia pode direcionar M para o estado final q_4

Se forem usadas transições q_0 , a, q_0 e (q_0, b, q_0)

$$\begin{array}{cccc} (q_0,bababab) & \vdash_M & (q_0,ababab) \\ & \vdash_M & (q_0,babab) \\ & \vdash_M & (q_0,abab) \\ & \vdots & & \\ & \vdash_M & (q_0,\epsilon) \end{array}$$

Mesma cadeia pode direcionar M para o estado final q_4

$$(q_0, bababab) \vdash_M (q_1, ababab)$$

Se forem usadas transições q_0 , a, q_0 e (q_0, b, q_0)

$$\begin{array}{cccc} (q_0,bababb) & \vdash_M & (q_0,ababab) \\ & \vdash_M & (q_0,babab) \\ & \vdash_M & (q_0,abab) \\ & \vdots & & \\ & \vdash_M & (q_0,\epsilon) \end{array}$$

Mesma cadeia pode direcionar M para o estado final q_4

$$(q_0, bababab) \vdash_M (q_1, ababab)$$

 $\vdash_M (q_3, babab)$

Autômatos finitos e expressões regulares

> Linguagens regulares e não-regulares

Minimização de estados

▶ Se forem usadas transições q_0 , a, q_0 e (q_0, b, q_0)

$$\begin{array}{cccc} (q_0,bababab) & \vdash_M & (q_0,ababab) \\ & \vdash_M & (q_0,babab) \\ & \vdash_M & (q_0,abab) \\ & \vdots & & \\ & \vdash_M & (q_0,\epsilon) \end{array}$$

 \blacktriangleright Mesma cadeia pode direcionar M para o estado final q_4

$$(q_0, bababab)$$
 \vdash_M $(q_1, ababab)$ \vdash_M $(q_3, babab)$ \vdash_M $(q_4, abab)$

regulares e não-regulares

Minimização de estados

▶ Se forem usadas transições q_0 , a, q_0 e (q_0, b, q_0)

$$\begin{array}{cccc} (q_0,bababab) & \vdash_M & (q_0,ababab) \\ & \vdash_M & (q_0,babab) \\ & \vdash_M & (q_0,abab) \\ & \vdots & & \vdots \\ & \vdash_M & (q_0,\epsilon) \end{array}$$

 \blacktriangleright Mesma cadeia pode direcionar M para o estado final q_4

$$(q_0, bababab)$$
 \vdash_M $(q_1, ababab)$
 \vdash_M $(q_3, babab)$
 \vdash_M $(q_4, abab)$
 \vdash_M (q_4, bab)

Autômatos finitos nãodeterminísticos

Se forem usadas transições q_0 , a, q_0 e (q_0, b, q_0)

$$\begin{array}{ccc} (q_0,bababab) & \vdash_M & (q_0,ababab) \\ & \vdash_M & (q_0,babab) \\ & \vdash_M & (q_0,abab) \\ & \vdots & \\ & \vdash_M & (q_0,\epsilon) \end{array}$$

Mesma cadeia pode direcionar M para o estado final q_4

$$\begin{array}{ccc} (q_0,bababab) & \vdash_M & (q_1,ababab) \\ & \vdash_M & (q_3,babab) \\ & \vdash_M & (q_4,abab) \\ & \vdash_M & (q_4,bab) \\ & \vdash_M & (q_4,ab) \end{array}$$

> inguagens egulares e ão-regulares

Minimização de estados

▶ Se forem usadas transições q_0 , a, q_0 e (q_0, b, q_0)

$$\begin{array}{cccc} (q_0,bababab) & \vdash_{M} & (q_0,ababab) \\ & \vdash_{M} & (q_0,babab) \\ & \vdash_{M} & (q_0,abab) \\ & \vdots & & \\ & \vdash_{M} & (q_0,\epsilon) \end{array}$$

 \blacktriangleright Mesma cadeia pode direcionar M para o estado final q_4

$$(q_0, bababab) \qquad \vdash_M \qquad (q_1, ababab) \\ \vdash_M \qquad (q_3, babab) \\ \vdash_M \qquad (q_4, abab) \\ \vdash_M \qquad (q_4, bab) \\ \vdash_M \qquad (q_4, ab) \\ \vdash_M \qquad (q_4, b)$$

Autômatos finitos e expressões regulares

> inguagens egulares e ão-regulares

Minimização de estados

▶ Se forem usadas transições q_0 , a, q_0 e (q_0, b, q_0)

$$\begin{array}{cccc} (q_0,bababab) & \vdash_M & (q_0,ababab) \\ & \vdash_M & (q_0,babab) \\ & \vdash_M & (q_0,abab) \\ & \vdots & & \\ & \vdash_M & (q_0,\epsilon) \end{array}$$

 \blacktriangleright Mesma cadeia pode direcionar M para o estado final q_4

$$\begin{array}{cccc} (q_0,bababab) & \vdash_M & (q_1,ababab) \\ & \vdash_M & (q_3,babab) \\ & \vdash_M & (q_4,abab) \\ & \vdash_M & (q_4,bab) \\ & \vdash_M & (q_4,ab) \\ & \vdash_M & (q_4,b) \\ & \vdash_M & (q_4,\epsilon) \end{array}$$

AFDs e AFNs

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

finitos

Autômatos finitos nãodeterminísticos

Autômatos initos e expressões egulares

inguagens egulares e ão-regulares

Minimização de estados

▶ Um AFD é apenas um caso particular de AFN.

AFDs e AFNs

finitos Rodrigo Gabriel Ferreira Soares

Autômatos

Autômatos finitos

Autômatos finitos nãodeterminísticos

finitos e expressões regulares

regulares e não-regulares

- Um AFD é apenas um caso particular de AFN.
- Em um AFD, a relação de transição Δ é uma função de $K \times \Sigma$ para K.

Minimização de

- Um AFD é apenas um caso particular de AFN.
- Em um AFD, a relação de transição Δ é uma função de K × Σ para K.
- ▶ Ou seja, um AFN será determinístico see não tiver transições da forma $(q, \epsilon, p) \in \Delta$ e para cada $q \in K$ e $a \in \Sigma$, houver um e um só $p \in K$ tal que $(q, a, p) \in \Delta$.

Minimização de

- Um AFD é apenas um caso particular de AFN.
- Em um AFD, a relação de transição Δ é uma função de $K \times \Sigma$ para K.
- ▶ Ou seja, um AFN será determinístico see não tiver transições da forma $(q, \epsilon, p) \in \Delta$ e para cada $q \in K$ e $a \in \Sigma$, houver um e um só $p \in K$ tal que $(q, a, p) \in \Delta$.
- ▶ Um AFN pode ser convertido em um AFD equivalente.

- ▶ Um AFD é apenas um caso particular de AFN.
- Em um AFD, a relação de transição Δ é uma função de $K \times \Sigma$ para K.
- ▶ Ou seja, um AFN será determinístico see não tiver transições da forma $(q, \epsilon, p) \in \Delta$ e para cada $q \in K$ e $a \in \Sigma$, houver um e um só $p \in K$ tal que $(q, a, p) \in \Delta$.
- Um AFN pode ser convertido em um AFD equivalente.
- ▶ Dois autômatos finitos M_1 e M_2 (AFD ou AFN) são equivalentes see $L(M_1) = L(M_2)$.

▶ Um AFD é apenas um caso particular de AFN.

- Em um AFD, a relação de transição Δ é uma função de $K \times \Sigma$ para K.
- ▶ Ou seja, um AFN será determinístico see não tiver transições da forma $(q, \epsilon, p) \in \Delta$ e para cada $q \in K$ e $a \in \Sigma$, houver um e um só $p \in K$ tal que $(q, a, p) \in \Delta$.
- Um AFN pode ser convertido em um AFD equivalente.
- ▶ Dois autômatos finitos M_1 e M_2 (AFD ou AFN) são equivalentes see $L(M_1) = L(M_2)$.
- ▶ Teorema: Para cada AFN, há um AFD equivalente.

Convertendo AFNs em AFDs

▶ Seja $M = (K, \Sigma, \Delta, s, F)$ um AFN. Pretendemos construir um AFD $M' = (K', \Sigma, \delta, s', F')$ equivalente a M.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

> inguagens egulares e

regulares e não-regulares

- ▶ Seja $M = (K, \Sigma, \Delta, s, F)$ um AFN. Pretendemos construir um AFD $M' = (K', \Sigma, \delta, s', F')$ equivalente a M.
- ► A idéia central é visualizar um AFN como se ele ocupasse, em qualquer momento, não um só estado, mas o conjunto de todos os estados que podem ser alcançados a partir do estado inicial por meio da parte da cadeia consumida até então.

regulares e não-regulares

Minimização de

- ▶ Seja $M = (K, \Sigma, \Delta, s, F)$ um AFN. Pretendemos construir um AFD $M' = (K', \Sigma, \delta, s', F')$ equivalente a M.
- A idéia central é visualizar um AFN como se ele ocupasse, em qualquer momento, não um só estado, mas o conjunto de todos os estados que podem ser alcançados a partir do estado inicial por meio da parte da cadeia consumida até então.
 - 1. Se M tiver 5 estados $\{q_0,\ldots,q_4\}$, e após a leitura de certa cadeia , atingir o estado q_0 , q_2 ou q_3 , mas não q_1 ou q_4 , seu estado poderia ser $\{q_0,q_2,q_3\}$, em vez de algum membro não-determinado desse conjunto.

Linguagens regulares e não-regulares

- ▶ Seja $M = (K, \Sigma, \Delta, s, F)$ um AFN. Pretendemos construir um AFD $M' = (K', \Sigma, \delta, s', F')$ equivalente a M.
- A idéia central é visualizar um AFN como se ele ocupasse, em qualquer momento, não um só estado, mas o conjunto de todos os estados que podem ser alcançados a partir do estado inicial por meio da parte da cadeia consumida até então.
 - 1. Se M tiver 5 estados $\{q_0,\ldots,q_4\}$, e após a leitura de certa cadeia , atingir o estado q_0 , q_2 ou q_3 , mas não q_1 ou q_4 , seu estado poderia ser $\{q_0,q_2,q_3\}$, em vez de algum membro não-determinado desse conjunto.
 - 2. Se o próximo símbolo pudesse levar M de q_0 para q_1 ou q_2 , de q_2 para q_0 e de q_3 para q_2 , então o próximo estado de M poderia ser o conjunto $\{q_0, q_1, q_2\}$.

▶ Para qualquer estado $q \in K$, seja E(q) o conjunto de todos os estados de M alcançáveis a partir de q, sem a leitura de qualquer símbolo de entrada, isto é,

$$E(q) = \{ p \in K : (q, \epsilon) \vdash_{M}^{*} (p, \epsilon) \}.$$

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos nãodeterminísticos

Minimização de

▶ Para qualquer estado $q \in K$, seja E(q) o conjunto de todos os estados de M alcançáveis a partir de q, sem a leitura de qualquer símbolo de entrada, isto é,

$$E(q) = \{ p \in K : (q, \epsilon) \vdash_{M}^{*} (p, \epsilon) \}.$$

ightharpoonup E(q) é o fechamento do conjunto $\{q\}$ sob a relação

$$\{(p,r): \text{existe uma transição } (p,\epsilon,r)\in\Delta\}.$$

▶ Para qualquer estado $q \in K$, seja E(q) o conjunto de todos os estados de M alcançáveis a partir de q, sem a leitura de qualquer símbolo de entrada, isto é,

 $E(q) = \{ p \in K : (q, \epsilon) \vdash_{M}^{*} (p, \epsilon) \}.$

ightharpoonup E(q) é o fechamento do conjunto $\{q\}$ sob a relação

 $\{(p,r): \text{existe uma transição } (p,\epsilon,r)\in\Delta\}.$

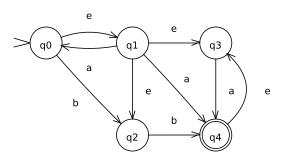
- ightharpoonup E(q) pode ser computado pelo algoritmo
 - 1. Inicialmente faça $E(q) = \{q\}$
 - 2. Enquanto existir $(p, \epsilon, r) \in \Delta$ com $p \in E(q)$ e $r \notin E(q)$ faça

2.1
$$E(q) = E(q) \cup \{r\}$$

Linguagens regulares e não-regulares

Minimização de

No AFN abaixo, temos $E(q_0) = \{q_0, q_1, q_2, q_3\}$, $E(q_1) = \{q_1, q_2, q_3\}$, $E(q_2) = \{q_2\}$, $E(q_3) = \{q_3\}$ e $E(q_4) = \{q_3, q_4\}$.



Convertendo AFNs em AFDs

Podemos agora definir formalmente o AFD $M' = (K', \Sigma, \delta, s', F')$ que é equivalente a M.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

inguagens egulares e ão-regulares

- Podemos agora definir formalmente o AFD $M' = (K', \Sigma, \delta, s', F')$ que é equivalente a M.
 - $K' = 2^K$
 - ightharpoonup s' = E(s)
 - $F' = \{Q \subseteq K : Q \cap F \neq \emptyset\}$
 - ▶ Para cada $Q \subseteq K$ e cada símbolo $a \in \Sigma$, defina

$$\delta(Q,a) = \bigcup \{E(p) : p \in K \text{ e } (q,a,p) \in \Delta \text{ para algum } q \in A\}$$

Minimização de

- Podemos agora definir formalmente o AFD $M' = (K', \Sigma, \delta, s', F')$ que é equivalente a M.
 - $K' = 2^K$
 - ightharpoonup s' = E(s)
 - $F' = \{Q \subseteq K : Q \cap F \neq \emptyset\}$
 - ▶ Para cada $Q \subseteq K$ e cada símbolo $a \in \Sigma$, defina

$$\delta(Q,a) = \bigcup \{ E(p) : p \in K \text{ e } (q,a,p) \in \Delta \text{ para algum } q \in A \}$$

 $\delta(Q, a)$ é o conjunto de todos os estados de M para os quais M pode ir através da leitura da entrada a, possivelmente executando várias transições em vazio.

- ▶ Podemos agora definir formalmente o AFD $M' = (K', \Sigma, \delta, s', F')$ que é equivalente a M.
 - $\mathbf{k}' = 2^K$
 - ightharpoonup s' = E(s)
 - $F' = \{Q \subseteq K : Q \cap F \neq \emptyset\}$
 - ▶ Para cada $Q \subseteq K$ e cada símbolo $a \in \Sigma$, defina

$$\delta(Q,a) = \bigcup \{E(p) : p \in K \text{ e } (q,a,p) \in \Delta \text{ para algum } q \in A\}$$

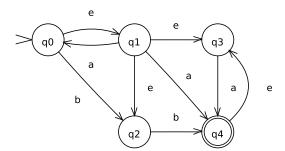
- δ(Q, a) é o conjunto de todos os estados de M para os quais M pode ir através da leitura da entrada a, possivelmente executando várias transições em vazio.
- ► Como as únicas transições de q_1 , para a, são (q_1, a, q_0) e (q_1, a, q_4) , então $\delta(\{q_1\}, a) = E(q_0) \cup E(q_4) = \{q_0, q_1, q_2, q_3, q_4\}$

Autômatos finitos e expressões regulares

Linguagens regulares e não-regulares

Minimização de estados

► Seja o AFN anterior.



Minimização de estados

▶ Definimos E(q) para cada estado q de M. Como $s' = \{q_0, q_1, q_2, q_3\}$ e (q_1, a, q_0) , (q_1, a, q_4) e (q_3, a, q_4) , são todas as transições (q, a, p) para algum $q \in s'$, então

$$\delta(s',a) = E(q_0) \cup E(q_4) = \{q_0,q_1,q_2,q_3,q_4\}.$$

então

▶ Definimos E(q) para cada estado q de M. Como $s' = \{q_0, q_1, q_2, q_3\}$ e (q_1, a, q_0) , (q_1, a, q_4) e (q_3, a, q_4) , são todas as transições (q, a, p) para algum $q \in s'$,

$$\delta(s',a) = E(q_0) \cup E(q_4) = \{q_0,q_1,q_2,q_3,q_4\}.$$

Analogamente, (q_0, b, q_2) e (q_2, b, q_4) , são todas as transições (q, b, p) para algum $q \in s'$, então

$$\delta(s',b) = E(q_2) \cup E(q_4) = \{q_2,q_3,q_4\}.$$

$$\delta(\{q_0, q_1, q_2, q_3, q_4\}, a) = \{q_0, q_1, q_2, q_3, q_4\}
\delta(\{q_0, q_1, q_2, q_3, q_4\}, b) = \{q_2, q_3, q_4\}
\delta(\{q_2, q_3, q_4\}, a) = E(q_4) = \{q_3, q_4\}
\delta(\{q_2, q_3, q_4\}, b) = E(q_4) = \{q_3, q_4\}.$$

Rodrigo Gabriel Ferreira Soares

Autômatos finitos

Autômatos finitos nãodeterminísticos

finitos e expressões regulares

> inguagens egulares e ñão-regulares

finitos e expressões regulares

Linguagens regulares e não-regulares

Minimização de estados

 Repetindo esse cálculo para os estados recém criados, temos

$$\begin{array}{lcl} \delta(\{q_0,q_1,q_2,q_3,q_4\},a) &=& \{q_0,q_1,q_2,q_3,q_4\} \\ \delta(\{q_0,q_1,q_2,q_3,q_4\},b) &=& \{q_2,q_3,q_4\} \\ \delta(\{q_2,q_3,q_4\},a) &=& E(q_4) = \{q_3,q_4\} \\ \delta(\{q_2,q_3,q_4\},b) &=& E(q_4) = \{q_3,q_4\}. \end{array}$$

► Em seguida,

$$\delta(\{q_3, q_4\}, a) = E(q_4) = \{q_3, q_4\}$$

 $\delta(\{q_3, q_4\}, b) = \emptyset.$

 Repetindo esse cálculo para os estados recém criados, temos

$$\begin{array}{lcl} \delta(\{q_0,q_1,q_2,q_3,q_4\},a) & = & \{q_0,q_1,q_2,q_3,q_4\} \\ \delta(\{q_0,q_1,q_2,q_3,q_4\},b) & = & \{q_2,q_3,q_4\} \\ \delta(\{q_2,q_3,q_4\},a) & = & E(q_4) = \{q_3,q_4\} \\ \delta(\{q_2,q_3,q_4\},b) & = & E(q_4) = \{q_3,q_4\}. \end{array}$$

► Em seguida,

$$\delta(\{q_3, q_4\}, a) = E(q_4) = \{q_3, q_4\}$$

 $\delta(\{q_3, q_4\}, b) = \emptyset.$

► E, finalmente,

$$\delta(\emptyset, a) = \delta(\emptyset, b) = \emptyset.$$

> inguagens egulares e ão-regulares

Minimização de estados

▶ F', o conjunto dos estados finais, contém cada um dos conjuntos dos quais q_4 é membro, já que $F = \{q_4\}$.

- ▶ F', o conjunto dos estados finais, contém cada um dos conjuntos dos quais q_4 é membro, já que $F = \{q_4\}$.
- ▶ Assim, $\{q_0, q_1, q_2, q_3, q_4\}$, $\{q_2, q_3, q_4\}$ e $\{q_3, q_4\}$ de M' são estados finais.

Rodrigo Gabriel Ferreira Soares

Autômatos finitos

Autômatos

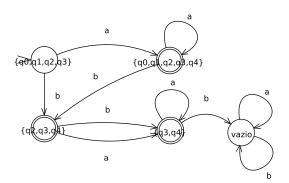
finitos nãodeterminísticos

finitos e expressões regulares

inguagens egulares e ão-regulares

Linguagens regulares e não-regulares

- ▶ F', o conjunto dos estados finais, contém cada um dos conjuntos dos quais q_4 é membro, já que $F = \{q_4\}$.
- ▶ Assim, $\{q_0, q_1, q_2, q_3, q_4\}$, $\{q_2, q_3, q_4\}$ e $\{q_3, q_4\}$ de M' são estados finais.



A classe de linguagens reconhecidas por autômatos finitos (AFs) apresenta uma certa estabilidade: dois esquemas, um aparentemente mais poderoso que o outro, acabam definindo a mesma classe de linguagens.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

> inguagens egulares e

inguagens egulares e

- ▶ A classe de linguagens reconhecidas por autômatos finitos (AFs) apresenta uma certa *estabilidade*: dois esquemas, um aparentemente mais poderoso que o outro, acabam definindo a mesma classe de linguagens.
- A classe de linguagens aceitas por AFs é a classe das linguagens regulares, a mesma descrita por expressões regulares.

inguagens egulares e

- ▶ A classe de linguagens reconhecidas por autômatos finitos (AFs) apresenta uma certa *estabilidade*: dois esquemas, um aparentemente mais poderoso que o outro, acabam definindo a mesma classe de linguagens.
- A classe de linguagens aceitas por AFs é a classe das linguagens regulares, a mesma descrita por expressões regulares.
- A classe das linguagens regulares é o fechamento de certas linguagens finitas sob as operações de união, concatenação e estrela de Kleene.

inguagens egulares e

- ▶ A classe de linguagens reconhecidas por autômatos finitos (AFs) apresenta uma certa *estabilidade*: dois esquemas, um aparentemente mais poderoso que o outro, acabam definindo a mesma classe de linguagens.
- A classe de linguagens aceitas por AFs é a classe das linguagens regulares, a mesma descrita por expressões regulares.
- A classe das linguagens regulares é o fechamento de certas linguagens finitas sob as operações de união, concatenação e estrela de Kleene.

▶ Devemos então mostrar propriedades de fechamento para a classe de linguagens aceitas por AFs.

Teorema

A classe de linguagens aceitas por AFs é fechada em relação às operações de

- 1. união,
- 2. concatenação,
- 3. estrela de Kleene,
- 4. complementação e
- 5. intersecção.
- ▶ Prova: Em cada caso, mostraremos que dados dois AFs, M₁ e M₂ (apenas M₁ para a estrela de Kleene e complementação), é possível construir a linguagem correspondente.

finitos nãodeterminístico

Autômatos finitos e expressões regulares

> inguagens egulares e ão-regulares

Minimização de estados

1. **União.** Sejam $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ e $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ dois AFNs, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1) \cup L(M_2)$.

Autômatos finitos e expressões regulares

Linguagens regulares e não-regulares

- 1. **União**. Sejam $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ e $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ dois AFNs, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1) \cup L(M_2)$.
 - 1.1 M lança mão do não-determinismo para adivinhar se a cadeia de entrada está em $L(M_1)$ ou $L(M_2)$, então processa a cadeia exatamente como o AF correspondente o faria.

Autômatos finitos e expressões regulares

inguagens egulares e ão-regulares

- 1. **União**. Sejam $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ e $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ dois AFNs, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1) \cup L(M_2)$.
 - 1.1 M lança mão do não-determinismo para adivinhar se a cadeia de entrada está em $L(M_1)$ ou $L(M_2)$, então processa a cadeia exatamente como o AF correspondente o faria.
 - 1.2 Sem perda de generalidade, admitimos que K_1 e K_2 são disjuntos.

- 1. **União**. Sejam $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ e $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ dois AFNs, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1) \cup L(M_2)$.
 - 1.1 M lança mão do não-determinismo para adivinhar se a cadeia de entrada está em $L(M_1)$ ou $L(M_2)$, então processa a cadeia exatamente como o AF correspondente o faria.
 - 1.2 Sem perda de generalidade, admitimos que K_1 e K_2 são disjuntos.
 - 1.3 s é um novo estado que não está em K_1 ou K_2 .

- 1. **União.** Sejam $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ e $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ dois AFNs, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1) \cup L(M_2)$.
 - 1.1 M lança mão do não-determinismo para adivinhar se a cadeia de entrada está em $L(M_1)$ ou $L(M_2)$, então processa a cadeia exatamente como o AF correspondente o faria.
 - 1.2 Sem perda de generalidade, admitimos que K_1 e K_2 são disjuntos.
 - 1.3 s é um novo estado que não está em K_1 ou K_2 .
 - 1.4 $K = K_1 \cup K_2 \cup \{s\}$,

- 1. **União**. Sejam $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ e $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ dois AFNs, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1) \cup L(M_2)$.
 - 1.1 M lança mão do não-determinismo para adivinhar se a cadeia de entrada está em $L(M_1)$ ou $L(M_2)$, então processa a cadeia exatamente como o AF correspondente o faria.
 - 1.2 Sem perda de generalidade, admitimos que K_1 e K_2 são disjuntos.
 - 1.3 s é um novo estado que não está em K_1 ou K_2 .
 - 1.4 $K = K_1 \cup K_2 \cup \{s\}$,
 - 1.5 $F = F_1 \cup F_2$,

- 1. **União**. Sejam $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ e $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ dois AFNs, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1) \cup L(M_2)$.
 - 1.1 M lança mão do não-determinismo para adivinhar se a cadeia de entrada está em $L(M_1)$ ou $L(M_2)$, então processa a cadeia exatamente como o AF correspondente o faria.
 - 1.2 Sem perda de generalidade, admitimos que K_1 e K_2 são disjuntos.
 - 1.3 s é um novo estado que não está em K_1 ou K_2 .
 - 1.4 $K = K_1 \cup K_2 \cup \{s\}$,
 - 1.5 $F = F_1 \cup F_2$,
 - 1.6 $\Delta = \Delta_1 \cup \Delta_2 \cup \{(s, \epsilon, s_1), (s, \epsilon, s_2)\},\$

- 1.1 M lança mão do não-determinismo para adivinhar se a cadeia de entrada está em $L(M_1)$ ou $L(M_2)$, então processa a cadeia exatamente como o AF correspondente o faria.
- 1.2 Sem perda de generalidade, admitimos que K_1 e K_2 são disjuntos.
- 1.3 s é um novo estado que não está em K_1 ou K_2 .
- 1.4 $K = K_1 \cup K_2 \cup \{s\}$,
- 1.5 $F = F_1 \cup F_2$,
- 1.6 $\Delta = \Delta_1 \cup \Delta_2 \cup \{(s, \epsilon, s_1), (s, \epsilon, s_2)\},\$
- 1.7 Se $w \in \Sigma^*$, então $(s, w) \vdash_M^* (q, \epsilon)$ para algum $q \in F$, see $(s_1, w) \vdash_{M_1}^* (q, \epsilon)$ para algum $q \in F_1$ ou $(s_2, w) \vdash_{M_2}^* (q, \epsilon)$ para algum $q \in F_2$.

Rodrigo Gabriel Ferreira Soares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

Linguagens regulares e não-regulares

Autômatos finitos e expressões regulares

Linguagens regulares e não-regulares

Minimização de estados

2. Concatenação. Sejam $M_1=(K_1,\Sigma,\Delta_1,s_1,F_1)$ e $M_2=(K_2,\Sigma,\Delta_2,s_2,F_2)$ dois AFNs, devemos construir um AFN $M=(K,\Sigma,\Delta,s,F)$ tal que $L(M)=L(M_1)\circ L(M_2)$.

Linguagens regulares e

- 2. Concatenação. Sejam $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ e $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ dois AFNs, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1) \circ L(M_2)$.
 - 2.1 M opera como M_1 por alguns momentos e então "salta" não-deterministicamente de um estado final de M_1 para o estado inicial de M_2 .

Autômatos finitos e expressões regulares

Linguagens regulares e

- 2. Concatenação. Sejam $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ e $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ dois AFNs, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1) \circ L(M_2)$.
 - 2.1 M opera como M_1 por alguns momentos e então "salta" não-deterministicamente de um estado final de M_1 para o estado inicial de M_2 .
 - 2.2 Os estados finais de M_1 deixam de ser finais em M, pois essa reconhece apenas $L(M_1) \circ L(M_2)$.

Autômatos finitos e expressões regulares

Linguagens regulares e

- 2. Concatenação. Sejam $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ e $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ dois AFNs, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1) \circ L(M_2)$.
 - 2.1 M opera como M_1 por alguns momentos e então "salta" não-deterministicamente de um estado final de M_1 para o estado inicial de M_2 .
 - 2.2 Os estados finais de M_1 deixam de ser finais em M, pois essa reconhece apenas $L(M_1) \circ L(M_2)$.
 - 2.3 Os estados finais de M são os mesmos de M_2 .

Autômatos finitos e expressões regulares

> inguagens egulares e

Minimização de estados

3. Estrela de Kleene. Seja $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ um AFN, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1)^*$.

- 3. Estrela de Kleene. Seja $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ um AFN, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1)^*$.
 - 3.1 *M* é composto pelos estados e todas as transições de M_1 .

Rodrigo Gabriel Ferreira Soares

Autômatos finitos e expressões regulares

finitos e

- 3. Estrela de Kleene. Seja $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ um AFN, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1)^*$.
 - 3.1 M é composto pelos estados e todas as transições de M_1 .
 - 3.2 Qualquer estado final de M_1 é também estado final em M.

finitos e expressões regulares

- 3. Estrela de Kleene. Seja $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ um AFN, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1)^*$.
 - 3.1 M é composto pelos estados e todas as transições de M_1 .
 - 3.2 Qualquer estado final de M_1 é também estado final em M
 - 3.3 *M* tem um novo estado inicial *s*. Esse novo estado também é final, assim a cadeia vazia ϵ é aceita.

finitos e expressões regulares

Minimização de

- 3. Estrela de Kleene. Seja $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ um AFN, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1)^*$.
 - 3.1 M é composto pelos estados e todas as transições de M_1 .
 - 3.2 Qualquer estado final de M_1 é também estado final em M.
 - 3.3 *M* tem um novo estado inicial *s*. Esse novo estado também é final, assim a cadeia vazia ϵ é aceita.
 - 3.4 De s há uma transição em vazio para o estado inicial s_1 de M_1 , de tal modo que a operação de M_1 possa ser iniciada logo após M ter sido iniciada no estado s.

- 3. Estrela de Kleene. Seja $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ um AFN, devemos construir um AFN $M = (K, \Sigma, \Delta, s, F)$ tal que $L(M) = L(M_1)^*$.
 - 3.1 M é composto pelos estados e todas as transições de M_1 .
 - 3.2 Qualquer estado final de M_1 é também estado final em Μ.
 - 3.3 *M* tem um novo estado inicial *s*. Esse novo estado também é final, assim a cadeia vazia ϵ é aceita.
 - 3.4 De s há uma transição em vazio para o estado inicial s_1 de M_1 , de tal modo que a operação de M_1 possa ser iniciada logo após M ter sido iniciada no estado s.
 - 3.5 Outras transições em vazio são adicionadas a partir de cada estado final de M_1 de volta para s_1 , desse modo, uma vez que uma cadeia de $L(M_1)$ tenha sido lida, a computação poderá prosseguir a partir do estado inicial de M_1 .

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

inguagens egulares e

Minimização de estados

4. **Complementação.** Seja $M=(K,\Sigma,\delta,s,F)$ um AFD. Então, a linguagem complementar $L=\Sigma^*-L(M)$ é aceita pelo AFD $\bar{M}=(K,\Sigma,\delta,s,K-F)$. Isto é, \bar{M} é idêntico a M, exceto que estados finais e não-finais são intercambiados.

Autômatos finitos e expressões regulares

- 4. Complementação. Seja $M = (K, \Sigma, \delta, s, F)$ um AFD. Então, a linguagem complementar $L = \Sigma^* - L(M)$ é aceita pelo AFD $\bar{M}=(K,\Sigma,\delta,s,K-F)$. Isto é, M é idêntico a M, exceto que estados finais e não-finais são intercambiados.
- 5. **Intersecção**. Basta considerar que

$$L_1 \cap L_2 = \Sigma^* - ((\Sigma^* - L_1) \cup (\Sigma^* - L_2)).$$

Assim, o fechamento em relação à intersecção pode ser obtido a partir do fechamento sob união e complementação mostrados anteriormente.

Autômatos finitos e expressões regulares

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

> inguagens egulares e

Minimização de estados

Identificamos a equivalência de duas importantes técnicas de especificação finita de linguagens - um gerador e um reconhecedor de linguagem.

Autômatos finitos e expressões regulares

finitos Rodrigo Gabriel

Ferreira Soares

Autômatos

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

Linguagens regulares e

Minimização de

Identificamos a equivalência de duas importantes técnicas de especificação finita de linguagens - um gerador e um reconhecedor de linguagem.

Teorema

Uma linguagem é regular se e somente se ela for aceita por um autômato finito.

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

inguagens egulares e

Minimização de estados

► (Somente se) A classe das linguagens regulares é a menor classe de linguagens contendo Ø e os conjuntos unitários {a}, onde a é um símbolo do alfabeto e é fechada em relação às operações de união, concatenação e estrela de Kleene.

determinísti
Autômatos
finitos e

expressões regulares

regulares e não-regulares

- ► (Somente se) A classe das linguagens regulares é a menor classe de linguagens contendo Ø e os conjuntos unitários {a}, onde a é um símbolo do alfabeto e é fechada em relação às operações de união, concatenação e estrela de Kleene.
- É evidente que ∅ e os conjuntos unitários são aceitos por AFs.

finitos nãodeterminístico

Autômatos finitos e expressões regulares

Linguagens regulares e não-regulares

- ► (Somente se) A classe das linguagens regulares é a menor classe de linguagens contendo Ø e os conjuntos unitários {a}, onde a é um símbolo do alfabeto e é fechada em relação às operações de união, concatenação e estrela de Kleene.
- É evidente que ∅ e os conjuntos unitários são aceitos por AFs.
- ► As linguagens representadas por AFs são fechadas em relação à união, concatenação e estrela de Kleene.

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

Linguagens regulares e não-regulares

- ► (Somente se) A classe das linguagens regulares é a menor classe de linguagens contendo Ø e os conjuntos unitários {a}, onde a é um símbolo do alfabeto e é fechada em relação às operações de união, concatenação e estrela de Kleene.
- É evidente que ∅ e os conjuntos unitários são aceitos por AFs.
- ► As linguagens representadas por AFs são fechadas em relação à união, concatenação e estrela de Kleene.
- Portanto, todas as linguagens regulares são aceitas por AFs.

Autômatos initos nãodeterminísticos

Autômatos finitos e expressões regulares

Linguagens regulares e

Minimização de

- ► (Somente se) A classe das linguagens regulares é a menor classe de linguagens contendo Ø e os conjuntos unitários {a}, onde a é um símbolo do alfabeto e é fechada em relação às operações de união, concatenação e estrela de Kleene.
- É evidente que ∅ e os conjuntos unitários são aceitos por AFs.
- ► As linguagens representadas por AFs são fechadas em relação à união, concatenação e estrela de Kleene.
- Portanto, todas as linguagens regulares são aceitas por AFs.
- ▶ **Exemplo:** Um AF que aceita a linguagem gerada por $(ab \cup abb)^*$ pode ser construído de acordo com os métodos mostrados anteriormente.

Linguagens regulares e não-regulares

 Mostramos que as linguagens regulares são fechadas em relação a diversas operações, e que podem ser especificadas por expressões regulares ou por AFDs ou AFNs.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos initos e expressões

Linguagens regulares e não-regulares

Autômatos finitos e expressões regulares

Linguagens regulares e não-regulares

Minimização de

- Mostramos que as linguagens regulares são fechadas em relação a diversas operações, e que podem ser especificadas por expressões regulares ou por AFDs ou AFNs.
- Esses fatos nos oferecem uma diversidade de técnicas para mostrar que uma linguagem é regular.

Rodrigo Gabriel Ferreira Soares

Linguagens regulares e não-regulares

Minimização de estados

- Seja Σ = {0,1,...,9} e L ⊆ Σ* o conjunto de representações decimais para inteiros não-negativos (sem 0s redundantes) divisíveis por 2 e por 3.
 - Seja L₁ o conjunto de representações decimais de inteiros não-negativos, assim,

$$L_1 = 0 \cup \{1, 2, \dots, 9\} \Sigma^*$$

é regular, pois é denotada por uma expressão regular.

1. Seja L_1 o conjunto de representações decimais de inteiros não-negativos, assim,

$$L_1=0\cup\{1,2,\ldots,9\}\Sigma^*$$

é regular, pois é denotada por uma expressão regular.

 Seja L₂ o conjunto de representações decimais de números inteiros não-negativos divisíveis por 2. Então, L₂ é apenas o conjuntos dos membros de L₁ terminados em 0, 2, 4, 6, 8, ou seja,

$$L_2 = L_1 \cap \Sigma^*\{0, 2, 4, 6, 8\}.$$

Rodrigo Gabriel Ferreira Soares

finitos determinísticos

Autômatos finitos nãodeterminísticos

finitos e expressões regulares

Linguagens regulares e não-regulares

- Seja Σ = {0,1,...,9} e L ⊆ Σ* o conjunto de representações decimais para inteiros não-negativos (sem 0s redundantes) divisíveis por 2 e por 3.
 - 1. Seja L_1 o conjunto de representações decimais de inteiros não-negativos, assim,

$$L_1=0\cup\{1,2,\ldots,9\}\Sigma^*$$

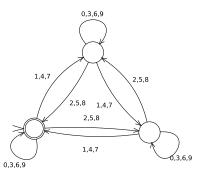
é regular, pois é denotada por uma expressão regular.

 Seja L₂ o conjunto de representações decimais de números inteiros não-negativos divisíveis por 2. Então, L₂ é apenas o conjuntos dos membros de L₁ terminados em 0, 2, 4, 6, 8, ou seja,

$$L_2 = L_1 \cap \Sigma^* \{0, 2, 4, 6, 8\}.$$

 Seja L₃ o conjunto de representações decimais de números inteiros não-negativos divisíveis por 3. Construimos o seguinte AF para tal fim.

Exemplo



Autômatos finitos

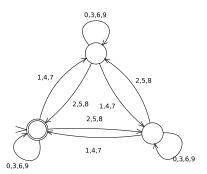
Rodrigo Gabriel Ferreira Soares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos finitos e expressões regulares

Linguagens regulares e não-regulares



▶ Então, $L = L_1 \cup L_2$ é regular.

Autômatos finitos

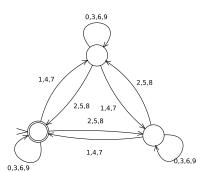
Rodrigo Gabriel Ferreira Soares

Linguagens regulares e não-regulares

Autômatos finitos nãodeterminísticos

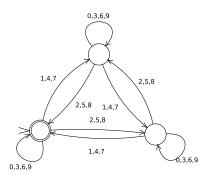
Autômatos finitos e expressões regulares

Linguagens regulares e não-regulares



- ▶ Então, $L = L_1 \cup L_2$ é regular.
- Sabemos que o conjuntos de todas as expressões regulares (e de AFs) é contável, porém o conjunto de todas as linguagens não é. Assim, aprendemos que existem linguagens não-regulares.

Exemplo



- ▶ Então, $L = L_1 \cup L_2$ é regular.
- Sabemos que o conjuntos de todas as expressões regulares (e de AFs) é contável, porém o conjunto de todas as linguagens não é. Assim, aprendemos que existem linguagens não-regulares.
- ► Demonstrar que uma linguagem não é regular requer técnicas especiais.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

finitos e expressões regulares

Linguagens regulares e não-regulares

Teorema de bombeamento

Duas propriedades são compartilhadas por linguagens regulares, mas não por certas linguagens não-regulares.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos initos e expressões egulares

Linguagens regulares e não-regulares

- Como uma cadeia é lida da esquerda para direita, a quantidade de memória exigida para determinar se a cadeia pertence ou não à linguagem deve ser limitada, fixada previamente e dependente da linguagem e não da cadeia em particular.
 - ► Exemplo: esperamos que $\{a^nb^n : n \ge 0\}$ não seja regular.

Rodrigo Gabriel Ferreira Soares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Automatos finitos e expressões regulares

Linguagens regulares e não-regulares

finitos e expressões regulares

Duas propriedades são compartilhadas por linguagens regulares, mas não por certas linguagens não-regulares.

- Como uma cadeia é lida da esquerda para direita, a quantidade de memória exigida para determinar se a cadeia pertence ou não à linguagem deve ser limitada, fixada previamente e dependente da linguagem e não da cadeia em particular.
 - ► Exemplo: esperamos que $\{a^nb^n : n \ge 0\}$ não seja regular.
- 2. Linguagens regulares com um número infinito de cadeias são representadas por AFs com ciclos e por ERs com estrela de Kleene.
 - ► Tais linguagens devem ter subconjuntos infinitos com uma certa estrutura simples e repetitiva associada à estrela de Kleene em uma ER correspondente, ou a um circuito no diagrama de estados do AF.
 - Assim, suspeitamos que $\{a^n: n \geq 1 \text{ é um primo}\}$ não é regular, pois não há periodicidade simples no conjunto dos primos.

initos e xpressões egulares

Linguagens

regulares e não-regulares

Minimização de estados

Teorema

Seja L uma linguagem regular. Há um inteiro $n \geq 1$ tal que qualquer cadeia $w \in L$ com $|w| \geq n$ pode ser reescrita como w = xyz, tal que $y \neq \epsilon$, $|xy| \leq n$, e $xy^iz \in L$ para cada $i \geq 0$.

Autômatos initos e xpressões egulares

Linguagens regulares e não-regulares

Minimização de

Teorema

Seja L uma linguagem regular. Há um inteiro $n \geq 1$ tal que qualquer cadeia $w \in L$ com $|w| \geq n$ pode ser reescrita como w = xyz, tal que $y \neq \epsilon$, $|xy| \leq n$, e $xy^iz \in L$ para cada $i \geq 0$.

► Esse teorema pertence a uma classe geral, chamada de teoremas de bombeamento (pumping theorems), porque afirmam a existência de certos pontos em determinadas cadeias, onde uma subcadeia pode ser repetidamente inserida sem afetar a aceitação da mesma.

Teorema de bombeamento

Ås vezes, é útil pensar na aplicação desse teorema como um jogo entre você, que tentará provar que uma linguagem L não é regular, e um adversário, que insiste que L é regular.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

nitos e xpressões

Linguagens regulares e não-regulares

Autômatos finitos nãodeterminísticos

expressões regulares Linguagens

regulares e não-regulares

Minimização de estados

Às vezes, é útil pensar na aplicação desse teorema como um jogo entre você, que tentará provar que uma linguagem L não é regular, e um adversário, que insiste que L é regular.

1. O adversário deve iniciar estabelecendo um número n.

Autômatos finitos nãodeterminísticos

finitos e expressões regulares Linguagens

regulares e não-regulares

Minimização de estados

- 1. O adversário deve iniciar estabelecendo um número n.
- 2. Então, você apresenta uma cadeia w que tenha comprimento de, no mínimo, n.

finitos e expressões regulares Linguagens

regulares e não-regulares

Minimização de

- 1. O adversário deve iniciar estabelecendo um número n.
- 2. Então, você apresenta uma cadeia w que tenha comprimento de, no mínimo, n.
- 3. O adversário deve agora produzir uma decomposição apropriada de w na forma w = xyz,

Autômatos initos e expressões regulares

Linguagens regulares e não-regulares

Minimização de estados

- 1. O adversário deve iniciar estabelecendo um número n.
- 2. Então, você apresenta uma cadeia w que tenha comprimento de, no mínimo, n.
- 3. O adversário deve agora produzir uma decomposição apropriada de w na forma w = xyz,
- 4. Até que você, triunfante, indique i para o qual xy^iz não pertença a L.

Autômatos initos e expressões regulares

Linguagens regulares e não-regulares

Minimização de estados

- 1. O adversário deve iniciar estabelecendo um número n.
- 2. Então, você apresenta uma cadeia w que tenha comprimento de, no mínimo, n.
- 3. O adversário deve agora produzir uma decomposição apropriada de w na forma w = xyz,
- 4. Até que você, triunfante, indique i para o qual xy^iz não pertença a L.
- 5. Se você tiver uma estratégia sempre vitoriosa, então provou que *L* não é regular.

Teorema de bombeamento

1. $L = \{a^i b^i : i \ge 0\}$ não é regular.

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos initos e expressões egulares

Linguagens regulares e não-regulares

Autômatos finitos nãodeterminísticos

expressões regulares Linguagens

regulares e não-regulares

- 1. $L = \{a^i b^i : i \ge 0\}$ não é regular.
 - ▶ Considere $w = a^n b^n \in L$. Pelo teorema, ela pode ser reescrita como w = xyz, tal que $|xy| \le n$ e $y \ne \epsilon$.
 - ▶ Isto é, $y = a^i$ para algum i > 0. Mas então $xz = a^{n-i}b^n \notin L$, contradizendo o teorema.

finitos e expressões regulares

Linguagens regulares e não-regulares

- 1. $L = \{a^i b^i : i \ge 0\}$ não é regular.
 - ▶ Considere $w = a^n b^n \in L$. Pelo teorema, ela pode ser reescrita como w = xyz, tal que $|xy| \le n$ e $y \ne \epsilon$.
 - ▶ Isto é, $y = a^i$ para algum i > 0. Mas então $xz = a^{n-i}b^n \notin L$, contradizendo o teorema.
- 2. $\{a^n : n \text{ é primo}\}$ não é regular.

- 1. $L = \{a^i b^i : i \ge 0\}$ não é regular.
 - ▶ Considere $w = a^n b^n \in L$. Pelo teorema, ela pode ser reescrita como w = xyz, tal que $|xy| \le n$ e $y \ne \epsilon$.
 - ▶ Isto é, $y = a^i$ para algum i > 0. Mas então $xz = a^{n-i}b^n \notin L$, contradizendo o teorema.
- 2. $\{a^n : n \text{ é primo}\}$ não é regular.
 - Conforme o teorema, teríamos $x = a^p$, $y = a^q$ e $z = a^r$, onde $p, r \ge 0$ e q > 0.
 - Ainda pelo teorema, xy^nz inL para cada $n \ge 0$, isto é, p + nq + r é primo para cada $n \ge 0$.
 - ▶ Isso é impossível, supondo que n = p + 2q + r + 2, então p + nq + r = (q + 1) * (p + 2q + r), que é o produto de dois números naturais maiores que 0, daí n não pode ser primo.

Autômatos finitos e expressões regulares

Minimização de estados

3. Às vezes, é útil usar as propriedades de fechamento para a prova.

 $L = \{w \in \{a,b\}^* : w \text{ tem o mesmo número de a's e b's}\}$

não é regular, pois se assim fosse, $L \cap a^*b^*$ também seria regular, por fechamento das linguagens regulares em relação à intersecção. Entretanto essa última linguagem é precisamente $\{a^ib^i:i\geq 0\}$, que acabamos de mostrar que não é regular.

Minimização de estados

Autômatos finitos

Rodrigo Gabriel Ferreira Soares

Autômatos finitos determinísticos

Autômatos finitos nãodeterminísticos

Autômatos initos e expressões egulares

inguagens egulares e ão-regulares