

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO

Rua Dom Manoel de Medeiros, s/n – Dois Irmãos 52171-900 Recife-PE Fone: 0xx-81-332060-40 proreitor@preg.ufrpe.br

PLANO DE ENSINO

I – IDENTIFICAÇÃO						
С	CURSO: Bacharelado em Sistemas de Informação					
M	MODALIDADE: Presencial					
D	DISCIPLINA: Introdução à Teoria da Computação					
Р	PRÉ-REQUISITO: Matemática discreta					
(X) OBRIGATÓRIA	() OPTATIVA				
D	DEPARTAMENTO: Estatística e Informática					
Р	PROFESSOR RESPONSÁVEL: Rodrigo Gabriel Ferreira Soares					
Α	no: 2016					
S	emestre Letivo:	(X) Primeiro	() Segundo		
To	Total de Créditos (se for o caso): 04					
	Carga Horária: 60					

II - EMENTA (Sinopse do Conteúdo)

Autômatos: Finitos, a Pilha e Máquina de Turing (linearmente limitada). Linguagens Formais: Regular, Livre e Sensível ao Contexto, Estrutura de Frases. Hierarquia de Chomsky. Aplicações em compiladores. Computabilidade: modelos computacionais (funções recursivas, linguagens de programação), funções não computáveis, problema da parada, decidibilidade.

III - OBJETIVOS DA DISCIPLINA

Fundamentar o estudante nos conceitos e definições da Teoria da Computação. O objetivo é que o estudante compreenda como os computadores funcionam em sua teoria e implemente protótipos de máquinas abstratas como instrumento de aprendizado e fixação dos conceitos adquiridos. O entendimento dos

fundamentos é imprescindível para o desenvolvimento de algoritmos ótimos para problemas computacionais presentes nos sistemas de informação complexos.

IV - CONTEÚDO PROGRAMÁTICO

- 1. Introdução e Conceitos Básicos: Notas Históricas, Abordagem e Conceitos Básicos
- 2. Autômatos
 - 2.1 Finitos (Determinísticos e Não-determinísticos)
 - 2.2 a Pilha
 - 2.3 Máquina de Turing
 - 2.4 Equivalência de Máquinas
- 3. Linguagens Formais
 - 3.1 Regular
 - 3.2 Livre de Contexto
 - 3.3 Sensível ao Contexto
 - 3.4 Estrutura de Frases
 - 3.5 Gramáticas
 - 3.6 Hierarquia de Chomsky
- 4. Computabilidade
 - 4.1 Modelos Computacionais
 - 4.2 Funções Recursivas
- 4.3 Funções não-computáveis
- 4.4 Problema da Parada
- 4.5 Decidibilidade
 - 5. Conclusões
 - 5.1 Resumo dos Principais Conceitos
 - 5.2 Contribuições da Teoria da Computação

V – MÉTODOS DIDÁTICOS DE ENSINO (X) Aula Expositiva () Seminário (X) Leitura Dirigida () Demonstração (prática realizada pelo Professor) () Laboratório (prática realizada pelo aluno)

<u> </u>) Trabalho de Campo
) Execução de Pesquisa
) Outra. Especificar:
() Satisfied Laptonical.

VI - CRITÉRIOS DE AVALIAÇÃO

As datas previstas para as avaliações são dadas no cronograma, podendo haver mudanças conforme necessidade da turma. A composição das notas é formada por:

NOTA 1ª V.A.: Dois testes escritos, valendo 50% da nota cada um. NOTA 2ª V.A.: Dois testes escritos, valendo 50% da nota cada um. NOTA 3ª V.A.: Prova valendo 100% da nota com todo o conteúdo. PROVA FINAL: Prova valendo 100% da nota com todo o conteúdo.

As aulas são obrigatórias, e a frequência será acompanhada.

CRONOGRAMA					
AULA	DATA	CONTEÚDO			
1	09/03/2016	Apresentação da disciplina Introdução a Conjuntos, relações e linguagens.			
2	14/03/2016	Conjuntos. Relações e funções. Tipos especiais de relações binárias.			
3	16/03/2016	Conjuntos finitos e infinitos. Fechamentos e algoritmos.			
4	21/03/2016	Alfabetos e linguagens. Representações finitas de linguagens.			
5	23/03/2016	Exercícios			
6	28/03/2016	1º Teste da 1ª VA			
7	30/03/2016	Introdução a Autômatos finitos. Autômatos finitos determinísticos.			
8	04/04/2016 Autômatos finitos não-determinísticos.				
9	06/04/2016	Autômatos finitos e expressões regulares.			
10	11/04/2016	Linguagens regulares e não-regulares. Minimização de estados.			
11	13/04/2016	2º Teste da 1ª VA			
12	18/04/2016	Gramáticas livres de contexto			
13	20/04/2016	Árvores de análise sintática			
14	25/04/2016	Autômatos de pilha			
15	27/04/2016	Autômatos de pilha e gramáticas livres de contexto			
16	02/05/2016	Autômatos de pilha e gramáticas livres de contexto			
17	04/05/2016	Determinismo e análise sintática			
18	09/05/2016	Determinismo e análise sintática			

19	11/05/2016	Determinismo e análise sintática
20	16/05/2016	Determinismo e análise sintática
21	18/05/2016	Exercícios
22	23/05/2016	1º Teste para 2ª VA
23	25/05/2016	Máquinas de Turing. Definição de uma máquina de Turing.
24	30/05/2016	Computação com máquinas de Turing.
25	01/06/2016	Extensões das máquinas de Turing.
26	06/06/2016	Gramáticas. Funções numéricas.
27	08/06/2016	Indecidibilidade. A tese de Church-Turing. Máquinas de Turing universais.
28	13/06/2016	O problema da parada. Revisão.
29	15/06/2016	2° Teste da 2ª VA
30	20/06/2016	Prova da 3ª VA
31	27/06/2015	Prova Final

VIII – BIBLIOGRAFIA

BÁSICA:

- 1. LEWIS, Harry R; PAPADIMITRIOU, Christos H. Elementos de teoria da computação. 2. ed. Porto Alegre: Bookman, 2000. 339 p. ISBN8573075341.
- 2. MENEZES, Paulo Blauth. Linguagens formais e autômatos. 5. ed. Porto Alegre, RS: Bookman, 2008. 215p. (Livros didáticos ;n.3) ISBN 9788577802661.
- 3. DIVERIO, Tiarajú A; MENEZES, Paulo Blauth. Teoria da computação: máquinas universais e computabilidade. 2. ed. Porto Alegre: Sagra Luzzatto, 2008. 205 p. (Série livros didáticos. Instituto de informática da UFRG;5) ISBN 9788577802678.

COMPLEMENTAR:

- 1. VIEIRA, Newton José. Introdução aos fundamentos da computação: linguagem e máquinas. São Paulo: Thomson, 2006. xiii, 319p.
- 2. SUDKAMP, Thomas A. Languages and machines: an introduction to the theory of computer science. 3rd ed. Boston, MA: Pearson Addison-Wesley,c 2006. xvii, 654 p. ISBN 0321322215.
- 3. HOPCROFT, John E.; MOTWANI, Rajeev; ULLMAN, Jeffrey D. Introdução à teoria de autômatos, linguagens e computação. Rio de Janeiro:Campus, c2003. 560 p. ISBN 8535210725.

Recife, 1 de março de 2015.

Rodrigo Gabriel Ferreira Soares *Professor Responsável*