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Abstract 
 
This tutorial paper presents a way to 
design a RISC simulator in software. 
Design concepts and sample ‘C’ 
implementation excerpts are shown to 
support the concepts. 
 
The tutorial does not assume prior 
experience in programming a RISC 
processor. An understanding and 
appreciation of the RISC philosophy is 
desirable, yet, not mandatory. 
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Introduction 
 
Before we plunge into designing a 
RISC processor simulator, let us spend 
a few moments in understanding the 
philosophical differences between the 
traditional RISC and CISC 
architectures. 
 
A quick look at the evolution of 
automated computing indicates a 
continuous improvement in the ease of 
programming vis-à-vis program 
complexity. This can primarily be 
attributed to the advent of ‘high-level’ 
programming languages, which 
liberated the computer programmer 

from writing code1 directly in machine 
or assembler languages. 
 
High-level programming languages are 
programmer-friendly but they 
introduce an unavoidable overhead of 
a multi-stage translation. A program in 
a typical high level programming 
language goes through a series of 
complex transformations such as 
lexical analysis, parsing, code 
generation and optimisation before its 
equivalent machine code is produced2. 
 
Obviously, such a translation would be 
entirely unnecessary if the target 
processor directly interprets the 
constructs of the programming 
language. However, such an option is 
not scaleable3 as the programming 
languages continue to grow in number 
as well as complexity. Imagine a 
system that needs an additional 
processor for every new programming 
language designed! It is precisely this 
problem the program translators 
address. 
 

The reign of CISC   
 
Even as we rule out language specific 
processors as a solution, it seems 

                                           
1 No wonder the name ‘code’ was chosen for 
programs, in the machine-language 
programming days 
2 These are apart from incidental processes such 
as adding debug information and linking which 
do not alter the fundamental transform 
3 Very much possible nonetheless as 
demonstrated by the good old Burroughs LISP 
machine! 
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desirable to have a good match 
between constructs of programming 
languages and instruction sets of 
generic processors. This makes 
program translation easier as the code 
generator only needs to establish a 
mapping between the language 
constructs and the target processor’s 
instruction set. This, in a nutshell, is 
the CISC (Complex Instruction Set 
Computers) philosophy. 
 
The CISC philosophy reigned 
unchallenged for well over a decade in 
which it had as popular ambassadors, 
microprocessors from IBM, Digital, 
Motorola, Intel, Zilog and the like. 
These microprocessors supported a 
large number of addressing modes, 
varied data processing instructions 
including complicated mathematical 
operations. 
 
However, the CISC lunch did not come 
free. Complex micro-code (which 
consumed a significant portion of 
silicon on the real-estate starved chip), 
multi-cycle instructions (which blocked 
interrupts as long as they were 
executing!) and a performance that 
was slower as compared to memory 
offered by new technologies made 
CISC a good candidate for second 
choice. Only, the first choice was non-
existent. 
 

The emergence of RISC 
 
As the semiconductor industry strove 
hard to produce all-new and highly 
improved mousetraps4, Ditzel, 
Hennessy and Patterson made a case 
for reinventing the whole wheel based 
on the principles of, what they termed, 
a “reduced instruction set computer” 
architecture. Some students at 
Berkeley took the RISC idea seriously 
and designed a simple processor by 
name ‘RISC I’. This marked the 
beginning of the end of pure-CISC era. 
                                           
4 Read CISC micro-processors 

 
The RISC architecture was based on a 
simple observation that most 
programs spent most of their time 
(over 70%) in moving data between 
the processor and memory, and in 
making program control decisions 
based on that data. RISC designers 
devoted most of their attention 
towards making processors that run 
faster for these frequently used 
instructions. These processors had 
their functional units (ALU, register 
files, decode logic, control signal logic 
etc.) organised so as to be operated in 
parallel. This allowed for splitting the 
lifecycle of each instruction into 
multiple phases, with one functional 
unit per phase. This approach, known 
as ‘pipelining’ closely resembles the 
assembly line in a manufacturing 
industry. Fig.1 is a snapshot of on 
such three-stage instruction pipeline. 
The lightly shaded portion shows the 
stages that would be executed in the 
future while the darkly shaded portion 
shows those that are completed. 
 

 Future Clk Past 
        
1     E D F 
        
2    E D F  
        
3   E D F   
        
4  E D F    
        
5 E D F     
…        

 
Fig.1 – Snapshot of an instruction pipeline 

F: Fetch D: Decode E: Execute 
 
Each instruction enters the pipeline 
from the memory retires after 
completing execution. Of the five 
instructions shown in the figure, only 
three are in the pipeline, in various 
stages of execution. The first 
instruction has completed its three 
stages and has retired. The fifth 
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instruction is in the memory5 and is 
yet to enter the pipeline. 
 
In the current clock cycle (shown as 
‘Clk’ in the figure), the processor 
parallely executes the E-stage of 
instruction-2, D-stage of 3 and F of 4. 
This is made possible by a design, 
which ensures that no two active 
stages require the same processor 
functional unit simultaneously (i.e., in 
the same clock cycle).  
 
 
Throughput and turnaround time: 
 
It is common to hear and read that 
most RISC processor instructions are 
single-cycle in nature. This confuses 
first time RISCers as it contradicts 
their understanding of the processor 
pipeline. 
 
The confusion can be reduced by re-
reading such statements as: “Most 
RISC processor instructions take one 
clock cycle per pipeline-stage”. 
Alternately, the ‘single-cycle’ can be 
interpreted as referring to a single 
pipeline-cycle instead of being seen as 
a single clock-cycle. 
  
The fact is that all instructions are 
multi-cycle in nature. Every instruction 
takes at least as many clock cycles to 
complete, as the number of pipeline 
stages. This is a measure of the 
instruction turnaround time. 
 
However, setting special conditions 
aside, a pipeline has a throughput of    
one instruction per clock-cycle, once it 
reaches steady state. Fig.2 through 
Fig.5 delineate these two concepts. 

                                           
5 Anywhere in the memory hierarchy 

 
            
            
1       E D F   
            

2      E D F    
            

3     E D F     
…            
            

Fig.2 Initial state of a 3-stage pipeline 
 
            
            
1       E D F   
            

2      E D F    
            

3     E D F     
            

4    E D F      
…            
            

Fig.3 One clock-cycle past the initial state 
 
            
            
1       E D F   
            

2      E D F    
            

3     E D F     
            

4    E D F      
            

5   E D F       
…            
            

Fig.4 Two clock-cycles past the initial state 
 
            
            
1       E D F   
            

2      E D F    
            

3     E D F     
            

4    E D F      
            

5   E D F       
…            
            

Fig.5 Three clock-cycles past the initial state 
 
As can be seen, it takes three clock 
cycles for this pipeline to get ‘filled’. At 
the end of the third cycle, the first 
instruction completes execution and 
retires. With this the pipeline reaches 
a steady state as shown in Fig.1. From 
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thereon, one instruction retires per 
clock-cycle. 
 
While the ideal number of stages for a 
pipeline is debatable, a few limiting 
factors help make this decision easier 
for a RISC processor designer: 

o The number of parallely usable 
functional units (including 
internal buses!) 

o The number of frequently used 
instructions that take more 
than one clock-cycle to 
complete any of their stages 
(e.g., memory load/store, 
multiplication, branch 
instructions) 

o Non-interlocking vs. stalling 
pipeline approach6  

 
 
Processor Simulation 
 
The process of design, development 
and testing of a processor takes a long 
time during which many models are 
made to fine-tune its functionality and 
performance, before the production is 
commenced. These models simulate 
the processor behaviour in various 
levels of detail. For instance, typical 
FPGA models match their processor’s 
functionality but not the timing 
characteristics. Yet, these models help 
the designers identify and correct most 
of the flaws. 
 
The production of hardware models is 
usually discontinued after the 
processor is proven and accepted in 
the market. However, the software 
models, also more popularly known as 
simulators, continue to be used, 
enhanced and produced as long as the 
processor is in use. In spite of certain 
limitations (such as being unable to 
exactly reproduce time critical 
behaviour such as interrupt latency 
and bus cycles), these simulators 

                                           
6 For example, the MIPS pipeline design allows 
delayed-execution while the ARM lets the 
pipeline stall 

serve as close functional 
approximations and inexpensive 
alternatives to their processors, the 
reference hardware boards and 
associated environment. 
 
 
Design Considerations 
 
It is fairly trivial to design a processor 
simulator as a simple transformation 
function / mapping between the 
processor’s instruction set – Ip and the 
instruction set – Ih of the simulator’s 
host machine. This mapping may 
simply be based on a lookup-table if Ip 

is a functional subset of Ih i.e., if there 
is a one-one mapping between Ip and 
Ih (with allowance to difference in 
instruction formats). If the two 
instruction sets are significantly 
different from each other, a slightly 
involved mapping has to be employed. 
In this case, each instruction of Ip has 
to be implemented in terms of two or 
more instructions from Ih. 
 
These mappings can be implemented 
by designing the simulator as an 
interpreter for the instruction stream 
of a program written for the target 
processor. The simulator can take as 
input, either the executable 
instructions of Ip or their assembler 
mnemonics. In either case, the 
interpretation is easier by using an 
intermediate high-level language – HL 
that is supported by the host. The 
translation from HL to Ih is best left to 
the host’s HL translator7. 
 

Granularity of simulation 
 
The simple instruction mapping 
approach suffices most normal 
programming tasks. However, on a 
closer look, it becomes evident that 
there is more to simulating a 
processor than implementing its 

                                           
7 Read as compiler/interpreter 
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instruction set. A fine grain 
behavioural simulation should involve 
modeling key functional blocks and 
macro blocks that make the processor.  
 
Typical blocks that constitute a RISC 
processor include ALU, instruction 
decoder, processor control logic, 
register files, instruction pipeline, 
barrel shifters, multipliers, write-
buffers and internal buses. Depending 
on the target application / users, a 
simulator designer has to include 
models of these blocks into the 
simulator. For instance, if the 
simulator is to be used for detailed 
clock-cycle level profiling, the 
simulator must include a good model 
of the instruction pipeline and its 
clock. 
 
Simulator Components 
 
The rest of this paper presents a 
detailed behavioural model of Crisp8 - 
a hypothetical RISC processor. Instead 
of explaining the architecture of Crisp 
as a separate section, its simulator 
design is used as a vehicle to 
introduce the processor and its 
components. 
 
The key processor components to be 
modeled are: 
 

0. Clock 
1. Memory Interface 
2. Execution Unit 
3. Arithmetic and Logic Unit 
4. Pipeline and parallelism among 

components 
 

Clock 
  
For a real processor, a clock signal 
provides the heartbeat. Each 
instruction takes a pre-designed 
number of clock cycles to complete. 
Such a clock is not an essential 
                                           
8 Readers will find some similarities between 
Crisp and ARM 

requirement for building a software 
model of the processor. Yet, 
instruction level profiling and fine grain 
performance analysis of programs will 
be difficult if such a model makes no 
provision for a clock. Also, as will be 
seen later, a model with a clock eases 
simulating the behaviour of an 
instruction pipeline. 
 
While the hardware design of a system 
clock is fairly complicated and involves 
high precision engineering for the 
oscillator and phase locked loops for 
fine-tuning, its software equivalent can 
be modelled very easily. A system 
wide counter can act as the clock with 
its value being updated at appropriate 
stages of executing each instruction. 
 
It is clear that this behaviour is 
opposite to that observed on a real 
processor where the clock drives the 
instruction execution. However letting 
the instruction execution phases drive 
the clock is a good enough approach 
for a software simulator. 
 
It might be worthwhile to consider 
using a floating-point value for the 
clock counter so as to represent 
half/quarter cycles or any other 
intermediate points within a clock 
cycle for very fine grain timing 
analysis. e.g., 

o RD, WR signals go high/low at 
set points in a cycle 

o data/address buses contain 
valid data only during a specific 
portion of the cycle 

 
Crisp receives its clock from an 
external source such as a PLL. 

Memory 
 
Memory is best modelled as an array 
of data words. A more sophisticated 
approach would be to model memory 
as an abstract data type with features 
such as separate program and data 
memories, write protection and 
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storage heirarchy (TLB, multi-level 
cache, primary memory, secondary 
memory etc.). 
 
Registers can be treated as an 
extension to the memory model. 
Register files can be supported by a 
two dimensional array of data words, 
with one column per register. 
 
Crisp has 15 general-purpose registers 
named r0 through r14. By convention, 
r13 is used as the stack pointer and 
r14 as the link register for procedure 
calls. r15, a special register, serves as 
the program counter (instruction 
pointer). These registers are 32-bit 
wide. 

Execution Unit 
 
The execution unit can be modelled by 
as a mapping of the instruction set of 
the processor being modelled to that 
of the host processor. Or, as a simple 
translation of the semantics of a model 
instruction to that of a language 
construct interpretable on the host 
processor. e.g., 
 
Model instruction: 
 operator operand_1 operand_2 
 
A 'C' translation: 
 operator(operand_1, operand_2) 
 
Though it seems unnecessary to 
introduce one more level of indirection 
between the model instruction and 
translation in the form of a function 
call, its utility becomes evident when it 
is realised that different types of 
operators might involve different kinds 
of processor subsystems. e.g., 
 
add r0, r1 
; involves only registers and ALU 
 
add r0, [r1] 
; involves registers, memory and ALU 
 
mov r0, 0x10 

; involves only registers (instruction 
; register and r0) 
 
mov [r0], 0x10 
; involves registers and memory 
 

Arithmetic and Logic Unit 
 
ALU operations come next only to 
memory operations in number, in any 
typical program. The ALU can also be 
modelled on lines similar to those of 
the execution unit. The operators of 
the processor being modelled are 
mapped on to those of the host 
processor or to those of any language 
understood on the host processor. 
e.g., 
Model instruction: 
 add r0, r1 
 
Execution Unit model: 
 _add(_reg_r0, _reg_r1) 
 
ALU model: 
 return (_reg_r0 += _reg_r1); 
 
Crisp does not have a multiplier but 
has a barrel-shifter to perform shifts of 
length 1-32 in a single cycle. Most of 
the Crisp instructions are in 3-address 
code format (with unspecified 
operands filled by an assembler with 
default values). 
 

Pipeline and parallelism among 
components 
 
Most modern processors have a 3-6 
stage instruction execution pipeline. 
 
A pipeline helps to maximise the 
utilisation of different components of a 
processor, which function in parallel 
and independent of each other 
(sharing the same clock). 
 
A software model need not simulate 
parallelism in the real world time. It is 
necessary and sufficient if various 
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components of the processor run in 
parallel with respect to the software 
clock that is available in the model. 
 

Crisp employs a 3-stage fetch-decode-
execute pipeline. The pipeline is 
clocked at the same speed as the 
external clock input. 

 
 

A Crisp simulator 
 
In this section, ‘C’ code fragments of the simulator will be presented along with 
suitable explanations wherever required. We take a top-down approach for the 
design and look at non-trivial functionalities in detail. Firstly, the super-structure of 
the simulator: 
 
             
 
int main(int argc, char *argv[]) 
{ 
 extern char *progname; 
 
 /* process arguments */ 

progname = argv[0]; 
/* ... */ 

 
 init_sim();  /* initialise Crisp functional blocks */ 
 
 /* 

 * load the Crisp instruction stream to be executed into memory. 
 * argv[1] holds the stream file name. 
 */ 

 program_start = load_program(argv[1]); 
 
 start_Crisp(); /* Crisp starts executing from address 0 */ 
} 
             
 

Initialisation 
 
             
 
void init_sim(void) 
{ 
 init_regs(0); /* clear (zero) Crisp registers */ 
 init_memory(0); /* clear memory accessible to Crisp */ 
 
 init_clock(); /* reset the clock counter to zero */ 
 init_pipeline(); /* setup an [empty] queue of instructions */ 
} 
             
 
Though it is usual, at startup, to set the registers and memory to zero, it is better to 
design for a value other than zero too. For instance, in order to understand memory 
usage patterns, it is useful to initialise the memory to relatively unique patterns such 
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as 0xbaba and 0xf00dcafe. Hence, init_regs() and init_memory() take an integer 
argument. 
 
The pipeline is best modeled as a queue of instructions. New instructions enter the 
queue at the tail while the completed instructions exit the pipeline from the head. 
init_pipeline() initialises these head and tail indices. 
             
 
void init_pipeline(void) 
{ 
 _p_head = _p_tail = 0; 
} 
             
 

Crisp in action 
 
The main phase of simulation opens with start_Crisp(), as the instruction stream 
execution starts from memory word zero – Crisp’s reset vector address. 
 
             
 
void start_Crisp(void) 
{ 
 extern int pending_bds; /* see ‘Handling branches’ */ 
 
 set_reg_val(REG_NEXTPC, RESET_VEC_ADDR); 
 set_reg_val(REG_PC, get_reg_val(REG_NEXTPC) - 8); 
 pending_bds = 0; 
 
 /* pipelined execution */ 
 while (1) { 
  start_new_cycle(); 
  exec_pipeline_stages(); 
  retire_instrs(); 
 } 
} 
             
 
 
All Crisp instructions take exactly three cycles to complete. Each instruction in the 
pipeline completes one stage of execution, per clock cycle. exec_pipeline_stages() 
illustrates this. The reason for REG_PC trailing REG_NEXTPC by 8-bytes (two 
instructions) becomes evident as we go through the inner workings of all the three 
stages. 
 
             
 
void exec_pipeline_stages(void) 
{ 
 _decoder_output cur_decoder_output; 
 
 /* 

 * simulate pipelining by retaining a decoded instruction 
 * across invocations 
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 */ 
static _decoder_output prev_decoded_instr = {INVALID}; 

 
 /*  
  * The three pipeline stages: 

 * 1. fetch the instruction pointed to by PC 
 * 2. decode the instruction trailing the head by one position 
 * 3. execute the instruction which was previously decoded 
 */ 
 

 fetch(get_reg_val(REG_NEXTPC)); 
 decode(peek_pipeline(HEAD, 1), &cur_decoder_output); 
 execute(prev_decoded_instr); 
 
 /* prepare for next cycle */ 
 prev_decoded_instr = cur_decoder_output; 
} 
             
 
 
As the inline comments suggest, peek_pipeline() takes as arguments, an 
enumerated reference position (HEAD/TAIL) and an offset (0-2) from that position 
(towards the other position). It returns a (possibly NULL) pointer to the required 
instruction.  
 

Crisp pipeline mechanics 
 
The fetch() stage simply requests the memory subsystem for the instruction at the 
address contained in an internal register REG_NEXTPC and puts it into the pipeline. 
 
             
 
void fetch(word *instr_addr) 
{ 
 enpipe((_instruction) *instr_addr); 
} 
             
 
 
The decode() stage is a bit more involved. In this stage, Crisp’s instruction decode 
logic parses the instruction and generates necessary control signals that are needed 
for the ‘execute’ stage. The simulator can afford, however, to abstract most of these 
low-level details and only implement NEXTPC modification logic. 
 
             
 
void decode(_intruction *instr, _decoder_output *out) 
{ 
 if (instr) { 
 

 out->opc = get_opcode(instr); 
 
  /* most Crisp instructions are in 3-address code format */ 

 get_operands(instr, &out->opd1, &out->opd2, &out->opd3); 
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 } else { 
 

 /* invalidate output so that execute stage ignores it */ 
  out->result = INVALID; 
 } 
   
 /* prepare REG_NEXTPC for next cycle’s fetch stage */ 
 set_reg_val(REG_NEXTPC, get_reg_val(REG_NEXTPC) + 4); 
} 
             
 
 
In the execute() stage, Crisp’s functional units such as the ALU, shifter and data 
memory interfaces are activated according to the control signals generated by the 
decode stage for this instruction in the previous cycle. The simulator only needs the 
decoded instruction for this phase. 
 
             
 
void execute(_decoder_output *decoded_instr) 
{ 

extern void (* instr_handlers[])(_operand1 *, _operand2 *, 
_operand3 *); 
 
 instr_handlers[decoded_instr->opc] 

( 
&decoded_instr->opd1, 
&decoded_instr->opd2, 
&decoded_instr->opd3, 

 ); 
 
 /* prepare REG_PC for the next cycle’s execute stage */ 
 set_reg_val(REG_PC, get_reg_val(REG_PC) + 4); 
} 
             
 
 
Each type of instruction is executed by its handler which can be obtained by indexing 
into instr_handlers[] with the instruction’s opcode. 
 
 
Sample handlers 
 
The assembler instruction “add r0, r1” triggers the following handler in its execute 
stage: 
 
instr_handlers[OPC_ADD](REG_R0, REG_R0, REG_R1); 
 
This causes opc_add_handler() to be invoked with the three operands. 
 
             
 
void opc_add_handler(_operand1 *opd1, _operand2 *opd2, _operand3 
*opd3) 
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{ 
 /* 
  * operand1 = operand2 + operand3;  

 * operand3 can either be a register or an immediate value; 
 */ 

 
 set_reg_val ( 

opd1->reg, 
get_reg_val(opd2->reg) +  
(opd3->type == OPD_TYPE_REG) ? 

get_reg_val(opd3->reg) : 
opd3->imm 

); 
} 
             
 
 
A store instruction such as “store r0, [r1], #4” can be handled as follows: 
 
             
 
void opc_load_handler(_operand1 *opd1, _operand2 *opd2, _operand3 
*opd3) 
{ 
 /* 

 * operand1 is the source register; 
 * operand2 is the base register containing the memory address; 
 * operand3 can either be a register or an immediate value and 
 *          specifies an offset from the base; 
 */ 
 

 set_mem_val ( 
get_reg_val(opd2->reg) +  

  (opd3->type == OPD_TYPE_REG) ? 
get_reg_val(opd3->reg) : 
opd3->imm, 

  get_reg_val(opd1->reg) 
 ); 
} 
             
 
 

Handling branches 
 
Arithmetic and logical instructions such as add/sub, shift, or/xor/and and compare 
update an internal register - REG_FLAGS, which holds processor state information 
related to carry, overflow, zero etc. Program flow can be altered by branching based 
on the state of these flags. This helps implementation of control structures such as 
if-else, for and do-while using branch instructions. 
 
Branch instructions break the smooth flow in the pipeline and hence need special 
handling. Crisp takes the non-interlocked approach in implementing branches, by 
unconditionally executing two instructions that immediately follow the branch 
instruction in the program. This is also known as delayed-branching and the two 
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instructions following the branch instruction are said to be in branch-delay-slots9. 
This approach helps the pipeline to run without stalling for the branch target to be 
fetched. 
 
             
 
void opc_branch_handler(_operand1 *opd1, _operand2 *opd2, _operand3 
*opd3) 
{ 
 extern int pending_bds; /* to handle branch delay slots */ 
 
 /* operand1 can be one of: 

 *  a register containing the target address; 
 *  a PC-relative target address offset as a +/- immediate value; 
 * 
 * operands 2 and 3 are not applicable to branch instructions 
 */ 
 
set_reg_val ( 

REG_NEXTPC, 
(opd1->type == OPD_TYPE_REG) ? 

get_reg_val(opd1->reg) : 
get_reg_val(REG_PC) + opd1->imm 

); 
 
pending_bds = 2; /* next two cycles are branch delay slots */ 

} 
             
 
 
The number of branch delay slots yet to be executed is tracked by pending_bds. This 
helps to maintain the integrity of REG_PC. The REG_PC updation logic in execute() 
has to be modified to handle branches. During the execution of the two delay slots 
REG_PC should contain their addresses but should contain the address of the branch 
target immediately after the completion of the delay slots’ execution. This is 
accomplished by resetting REG_PC to trail REG_NEXTPC by two instructions, as 
should be the normal case. 
 
             
 
void execute(_decoder_output *decoded_instr) 
{ 

extern void (* instr_handlers[])(_operand1 *, _operand2 *, 
_operand3 *); 
 
 extern int pending_bds, bds_flag; 

/* to handle branch delay slots */ 
 
 instr_handlers[decoded_instr->opc] 

( 
&decoded_instr->opd1, 
&decoded_instr->opd2, 
&decoded_instr->opd3, 

                                           
9 It is possible to do with one delay-slot but pipeline behaviour illustration is easier by allowing two of 
them 
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 ); 
 
 /* prepare REG_PC for the next cycle’s execute stage */ 
 switch (pending_bds) { 

 case 2: 
 /* 

 * first of the two delay slots executed in this 
 * cycle; let REG_PC move forward 
 */ 
set_reg_val(REG_PC, get_reg_val(REG_PC) + 4); 

  pending_bds --; 
  break; 
 
 case 1: 

 /* 
 * second delay slot executed in this cycle; 
 * reset REG_PC to trail REG_NEXTPC 
 */ 
set_reg_val(REG_PC, get_reg_val(REG_NEXTPC) – 8); 

   pending_bds --; 
  break; 

  
 case 0: /* normal sequential flow */ 
  set_reg_val(REG_PC, get_reg_val(REG_PC) + 4); 
} 

} 
             
 
 
To avoid indeterminate behaviour, the Crisp architecture suggests that a BDS may 
not contain a branch instruction10. 
 

REG_PC and the pipeline 
 
Readers would have noticed that special control logic is required to ensure that the 
user-visible REG_PC always contains the address of the current instruction being 
executed. However, if REG_PC were allowed to reflect the state of the pipeline, this 
control logic can be eliminated. For instance, in the ARM processor architecture, the 
PC value is two instructions ahead of the current instruction being executed. The 
ARM programmer has to factor this while performing any calculations based on the 
PC value. 
 
 
 
 

This space left intentionally blank

                                           
10 Readers are welcome to experiment with code sequences that violate this suggestion, to understand the 
motivation. 
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A sample run 
 
We shall now take a simple Crisp assembly program ‘sigma_10’ and run it on the 
simulator we designed in the previous section. 
 
 

0x00 
0x04 
 

0x08 
0x0c 
0x10 
0x14 
0x18 
0x1c 
 

; sigma_10: a program to compute the sum of first 10 natural 
numbers 
 
 .text 
sigma_10_start: 
 
MOV r0, #10 ; number count 
MOV r1, #0 ; current sum 
 
sum_loop_start: 
 ADD r1, r1, r0 ; r1 := r1 + r0 
 SUB r0, r0, #1 ; r0 := r0 – 1 
 CMP r0, #0 ; are all the numbers done ? 
 BNE sum_loop_start 
 NOP   ; BDS-1: no operation 
 NOP   ; BDS-2: no operation 
 
; at exit, r1 contains 55, the required sum. 
 HALT   ; halt the processor 
 
sigma_10_end: 

 
Shown below are 11 clock cycles of Crisp along with the processor state and the 
actions taken in each of the pipeline stages. Of special interest are cycles 7 through 
10, which illustrate REG_NEXTPC/REG_PC behaviour when branches are encountered 
in the pipeline. 
 
 
Cycle #0: 
Crisp state: 

NEXTPC: 0x00 
PC: -0x08 
pending_bds: 0 
 

Actions: 
Fetch(0x00) i.e., MOV-1 
Decode(-), NEXTPC += 4 
Execute(-), PC += 4 

 
Cycle #1: 
Crisp state: 

NEXTPC: 0x04 
PC: -0x04 
pending_bds: 0 
 

Actions: 
Fetch(0x04) i.e., MOV-2 
Decode(MOV-1), NEXTPC += 4 

Execute(-), PC += 4 
 
 
Cycle #2: 
Crisp state: 

NEXTPC: 0x08 
PC: 0x00 
pending_bds: 0 
 

Actions: 
Fetch(0x08) i.e., ADD 
Decode(MOV-2), NEXTPC += 4 
Execute(MOV-1), PC += 4 

 
Cycle #3: 
Crisp state: 

NEXTPC: 0x0c 
PC: 0x04 
pending_bds: 0 
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Actions: 
Fetch(0x0c) i.e., SUB 
Decode(ADD), NEXTPC += 4 
Execute(MOV-2), PC += 4 

 
Cycle #4: 
Crisp state: 

NEXTPC: 0x10 
PC: 0x08 
pending_bds: 0 
 

Actions: 
Fetch(0x10) i.e., CMP 
Decode(SUB), NEXTPC += 4 
Execute(ADD), PC += 4 

 
Cycle #5: 
Crisp state: 

NEXTPC: 0x14 
PC: 0x0c 
pending_bds: 0 
 

Actions: 
Fetch(0x14) i.e., BNE 
Decode(CMP), NEXTPC += 4 
Execute(SUB), PC += 4 

 
Cycle #6: 
Crisp state: 

NEXTPC: 0x18 
PC: 0x10 
pending_bds: 0 
 

Actions: 
Fetch(0x18) i.e., NOP-1 
Decode(BNE), NEXTPC += 4 
Execute(CMP), PC += 4 

 
Cycle #7: 
Crisp state: 

NEXTPC: 0x1c 
PC: 0x14 
pending_bds: 0 
 

Actions: 
Fetch(0x1c) i.e., NOP-2 
Decode(NOP-1), NEXTPC += 4 
 
Execute(BNE), NEXTPC = 0x08, 
PC += 4, pending_bds = 2 

 
Cycle #8: 
Crisp state: 

NEXTPC: 0x08 
PC: 0x18 
pending_bds: 2 
 

Actions: 
Fetch(0x08) i.e., ADD 
Decode(NOP-2), NEXTPC += 4 
 
Execute(NOP-1), PC += 4, 
pending_bds--  

 
Cycle #9: 
Crisp state: 

NEXTPC: 0x0c 
PC: 0x1c 
pending_bds: 1 
 

Actions: 
Fetch(0x0c) i.e., SUB 
Decode(ADD), NEXTPC += 4 
 
Execute(NOP-2), PC = NEXTPC 
- 8, pending_bds--  

 
Cycle #10: 
Crisp state: 

NEXTPC: 0x10 
PC: 0x08 
pending_bds: 0 
 

Actions: 
Fetch(0x10) i.e., CMP 
Decode(SUB), NEXTPC += 4 
Execute(ADD), PC += 4  

 
 
 

Advanced design notes 
 
Before calling it a day, allow me to add a few notes on the finer aspects of simulator 
design. 
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• In reality, the Crisp assertion that all instructions complete in 3-cycles is 
impractical. Allowance has to be made for memory latencies, load/store delays, 
multiplier output delays and the like. A memory-interface module can abstract 
the details of the memory heirarchy, associated buffers and latencies. This calls 
for altering the pipeline behaviour according to the processor specification. 

• Interaction with co-processors (FPU/MMU etc) has not been covered in this paper. 
Individual processors can be designed as separate processes and inter-process 
communication facilities offered by the host OS can be used to communicate data 
and control signals between the processors. This makes the simulator modular 
and easy to implement. 

• Interrupts and exceptions such as data aborts can be handled by using setjmp 
(for setting up exception handling code) and longjump (for handling an 
exception). User defined signals can also be used for this purpose. 

• Speculative branching can be implemented by pre-fetching the target based on 
the probability of the branch being taken. The probability can be computed by 
maintaining a history of ‘branch taken/not-taken’ per branch instruction in the 
program. 

• Some processors execute independent instructions out-of-order to improve 
throughput. The instruction stream can be converted into a dependency graph of 
code-blocks and then be executed out-of-order based on the dependencies. A 
thorough understanding of the target processor’s instruction retiring policy is 
important to implement this feature. This feature can be abstracted off the 
simulator if appropriate allowance can be made to the resulting reduction in 
performance of the target processor being simulated. 

• Fine-grain profiling can be performed by accessing the system-wide clock counter 
via appropriate interfaces (e.g., get_clock_ticks() and set_clock_ticks()) at 
required points of execution. 

 
It is important however, to understand the requirements of the users before adding 
complex features to the simulator. In the absence of a demonstrated need 
(current/future) for modeling specific processor features / functional units, it is 
better to abstract them and keep the simulator simple and functional. For, the aim of 
a simulator is not to replace an FPGA prototype. 
 
 

Conclusion 
 
In this paper, we have seen the architectural differences that make a RISC processor 
simpler to design and yet extract better performance as compared to a CISC 
processor. Software modeling of processor behaviour was explained by designing a 
simulator for a hypothetical RISC processor – Crisp. A sample run of the simulator 
demonstrated the inner workings of the Crisp pipeline. Design tips for simulating 
advanced techniques employed in modern RISC processors were only briefly 
discussed towards the end so as to keep this paper focussed at embedded systems 
designers and programmers who are new to the RISC philosophy. Readers can gain 
further knowledge about RISC concepts from the references. 
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