
 Build your own RISC processor simulator

Vijaya Sagar Vinnakota (vijaya.sagar@wipro.com)
Wipro Technologies

Abstract

This tutorial paper presents a way to
design a RISC simulator in software.
Design concepts and sample ‘C’
implementation excerpts are shown to
support the concepts.

The tutorial does not assume prior
experience in programming a RISC
processor. An understanding and
appreciation of the RISC philosophy is
desirable, yet, not mandatory.

Keywords

RISC, CISC, pipeline, inter-locking,
profiling

Introduction

Before we plunge into designing a
RISC processor simulator, let us spend
a few moments in understanding the
philosophical differences between the
traditional RISC and CISC
architectures.

A quick look at the evolution of
automated computing indicates a
continuous improvement in the ease of
programming vis-à-vis program
complexity. This can primarily be
attributed to the advent of ‘high-level’
programming languages, which
liberated the computer programmer

from writing code1 directly in machine
or assembler languages.

High-level programming languages are
programmer-friendly but they
introduce an unavoidable overhead of
a multi-stage translation. A program in
a typical high level programming
language goes through a series of
complex transformations such as
lexical analysis, parsing, code
generation and optimisation before its
equivalent machine code is produced2.

Obviously, such a translation would be
entirely unnecessary if the target
processor directly interprets the
constructs of the programming
language. However, such an option is
not scaleable3 as the programming
languages continue to grow in number
as well as complexity. Imagine a
system that needs an additional
processor for every new programming
language designed! It is precisely this
problem the program translators
address.

The reign of CISC

Even as we rule out language specific
processors as a solution, it seems

1 No wonder the name ‘code’ was chosen for
programs, in the machine-language
programming days
2 These are apart from incidental processes such
as adding debug information and linking which
do not alter the fundamental transform
3 Very much possible nonetheless as
demonstrated by the good old Burroughs LISP
machine!

Build your own RISC processor simulator 2

desirable to have a good match
between constructs of programming
languages and instruction sets of
generic processors. This makes
program translation easier as the code
generator only needs to establish a
mapping between the language
constructs and the target processor’s
instruction set. This, in a nutshell, is
the CISC (Complex Instruction Set
Computers) philosophy.

The CISC philosophy reigned
unchallenged for well over a decade in
which it had as popular ambassadors,
microprocessors from IBM, Digital,
Motorola, Intel, Zilog and the like.
These microprocessors supported a
large number of addressing modes,
varied data processing instructions
including complicated mathematical
operations.

However, the CISC lunch did not come
free. Complex micro-code (which
consumed a significant portion of
silicon on the real-estate starved chip),
multi-cycle instructions (which blocked
interrupts as long as they were
executing!) and a performance that
was slower as compared to memory
offered by new technologies made
CISC a good candidate for second
choice. Only, the first choice was non-
existent.

The emergence of RISC

As the semiconductor industry strove
hard to produce all-new and highly
improved mousetraps4, Ditzel,
Hennessy and Patterson made a case
for reinventing the whole wheel based
on the principles of, what they termed,
a “reduced instruction set computer”
architecture. Some students at
Berkeley took the RISC idea seriously
and designed a simple processor by
name ‘RISC I’. This marked the
beginning of the end of pure-CISC era.

4 Read CISC micro-processors

The RISC architecture was based on a
simple observation that most
programs spent most of their time
(over 70%) in moving data between
the processor and memory, and in
making program control decisions
based on that data. RISC designers
devoted most of their attention
towards making processors that run
faster for these frequently used
instructions. These processors had
their functional units (ALU, register
files, decode logic, control signal logic
etc.) organised so as to be operated in
parallel. This allowed for splitting the
lifecycle of each instruction into
multiple phases, with one functional
unit per phase. This approach, known
as ‘pipelining’ closely resembles the
assembly line in a manufacturing
industry. Fig.1 is a snapshot of on
such three-stage instruction pipeline.
The lightly shaded portion shows the
stages that would be executed in the
future while the darkly shaded portion
shows those that are completed.

 Future Clk Past

1 E D F

2 E D F

3 E D F

4 E D F

5 E D F
…

Fig.1 – Snapshot of an instruction pipeline

F: Fetch D: Decode E: Execute

Each instruction enters the pipeline
from the memory retires after
completing execution. Of the five
instructions shown in the figure, only
three are in the pipeline, in various
stages of execution. The first
instruction has completed its three
stages and has retired. The fifth

Build your own RISC processor simulator 3

instruction is in the memory5 and is
yet to enter the pipeline.

In the current clock cycle (shown as
‘Clk’ in the figure), the processor
parallely executes the E-stage of
instruction-2, D-stage of 3 and F of 4.
This is made possible by a design,
which ensures that no two active
stages require the same processor
functional unit simultaneously (i.e., in
the same clock cycle).

Throughput and turnaround time:

It is common to hear and read that
most RISC processor instructions are
single-cycle in nature. This confuses
first time RISCers as it contradicts
their understanding of the processor
pipeline.

The confusion can be reduced by re-
reading such statements as: “Most
RISC processor instructions take one
clock cycle per pipeline-stage”.
Alternately, the ‘single-cycle’ can be
interpreted as referring to a single
pipeline-cycle instead of being seen as
a single clock-cycle.

The fact is that all instructions are
multi-cycle in nature. Every instruction
takes at least as many clock cycles to
complete, as the number of pipeline
stages. This is a measure of the
instruction turnaround time.

However, setting special conditions
aside, a pipeline has a throughput of
one instruction per clock-cycle, once it
reaches steady state. Fig.2 through
Fig.5 delineate these two concepts.

5 Anywhere in the memory hierarchy

1 E D F

2 E D F

3 E D F
…

Fig.2 Initial state of a 3-stage pipeline

1 E D F

2 E D F

3 E D F

4 E D F
…

Fig.3 One clock-cycle past the initial state

1 E D F

2 E D F

3 E D F

4 E D F

5 E D F
…

Fig.4 Two clock-cycles past the initial state

1 E D F

2 E D F

3 E D F

4 E D F

5 E D F
…

Fig.5 Three clock-cycles past the initial state

As can be seen, it takes three clock
cycles for this pipeline to get ‘filled’. At
the end of the third cycle, the first
instruction completes execution and
retires. With this the pipeline reaches
a steady state as shown in Fig.1. From

Build your own RISC processor simulator 4

thereon, one instruction retires per
clock-cycle.

While the ideal number of stages for a
pipeline is debatable, a few limiting
factors help make this decision easier
for a RISC processor designer:

o The number of parallely usable
functional units (including
internal buses!)

o The number of frequently used
instructions that take more
than one clock-cycle to
complete any of their stages
(e.g., memory load/store,
multiplication, branch
instructions)

o Non-interlocking vs. stalling
pipeline approach6

Processor Simulation

The process of design, development
and testing of a processor takes a long
time during which many models are
made to fine-tune its functionality and
performance, before the production is
commenced. These models simulate
the processor behaviour in various
levels of detail. For instance, typical
FPGA models match their processor’s
functionality but not the timing
characteristics. Yet, these models help
the designers identify and correct most
of the flaws.

The production of hardware models is
usually discontinued after the
processor is proven and accepted in
the market. However, the software
models, also more popularly known as
simulators, continue to be used,
enhanced and produced as long as the
processor is in use. In spite of certain
limitations (such as being unable to
exactly reproduce time critical
behaviour such as interrupt latency
and bus cycles), these simulators

6 For example, the MIPS pipeline design allows
delayed-execution while the ARM lets the
pipeline stall

serve as close functional
approximations and inexpensive
alternatives to their processors, the
reference hardware boards and
associated environment.

Design Considerations

It is fairly trivial to design a processor
simulator as a simple transformation
function / mapping between the
processor’s instruction set – Ip and the
instruction set – Ih of the simulator’s
host machine. This mapping may
simply be based on a lookup-table if Ip

is a functional subset of Ih i.e., if there
is a one-one mapping between Ip and
Ih (with allowance to difference in
instruction formats). If the two
instruction sets are significantly
different from each other, a slightly
involved mapping has to be employed.
In this case, each instruction of Ip has
to be implemented in terms of two or
more instructions from Ih.

These mappings can be implemented
by designing the simulator as an
interpreter for the instruction stream
of a program written for the target
processor. The simulator can take as
input, either the executable
instructions of Ip or their assembler
mnemonics. In either case, the
interpretation is easier by using an
intermediate high-level language – HL
that is supported by the host. The
translation from HL to Ih is best left to
the host’s HL translator7.

Granularity of simulation

The simple instruction mapping
approach suffices most normal
programming tasks. However, on a
closer look, it becomes evident that
there is more to simulating a
processor than implementing its

7 Read as compiler/interpreter

Build your own RISC processor simulator 5

instruction set. A fine grain
behavioural simulation should involve
modeling key functional blocks and
macro blocks that make the processor.

Typical blocks that constitute a RISC
processor include ALU, instruction
decoder, processor control logic,
register files, instruction pipeline,
barrel shifters, multipliers, write-
buffers and internal buses. Depending
on the target application / users, a
simulator designer has to include
models of these blocks into the
simulator. For instance, if the
simulator is to be used for detailed
clock-cycle level profiling, the
simulator must include a good model
of the instruction pipeline and its
clock.

Simulator Components

The rest of this paper presents a
detailed behavioural model of Crisp8 -
a hypothetical RISC processor. Instead
of explaining the architecture of Crisp
as a separate section, its simulator
design is used as a vehicle to
introduce the processor and its
components.

The key processor components to be
modeled are:

0. Clock
1. Memory Interface
2. Execution Unit
3. Arithmetic and Logic Unit
4. Pipeline and parallelism among

components

Clock

For a real processor, a clock signal
provides the heartbeat. Each
instruction takes a pre-designed
number of clock cycles to complete.
Such a clock is not an essential

8 Readers will find some similarities between
Crisp and ARM

requirement for building a software
model of the processor. Yet,
instruction level profiling and fine grain
performance analysis of programs will
be difficult if such a model makes no
provision for a clock. Also, as will be
seen later, a model with a clock eases
simulating the behaviour of an
instruction pipeline.

While the hardware design of a system
clock is fairly complicated and involves
high precision engineering for the
oscillator and phase locked loops for
fine-tuning, its software equivalent can
be modelled very easily. A system
wide counter can act as the clock with
its value being updated at appropriate
stages of executing each instruction.

It is clear that this behaviour is
opposite to that observed on a real
processor where the clock drives the
instruction execution. However letting
the instruction execution phases drive
the clock is a good enough approach
for a software simulator.

It might be worthwhile to consider
using a floating-point value for the
clock counter so as to represent
half/quarter cycles or any other
intermediate points within a clock
cycle for very fine grain timing
analysis. e.g.,

o RD, WR signals go high/low at
set points in a cycle

o data/address buses contain
valid data only during a specific
portion of the cycle

Crisp receives its clock from an
external source such as a PLL.

Memory

Memory is best modelled as an array
of data words. A more sophisticated
approach would be to model memory
as an abstract data type with features
such as separate program and data
memories, write protection and

Build your own RISC processor simulator 6

storage heirarchy (TLB, multi-level
cache, primary memory, secondary
memory etc.).

Registers can be treated as an
extension to the memory model.
Register files can be supported by a
two dimensional array of data words,
with one column per register.

Crisp has 15 general-purpose registers
named r0 through r14. By convention,
r13 is used as the stack pointer and
r14 as the link register for procedure
calls. r15, a special register, serves as
the program counter (instruction
pointer). These registers are 32-bit
wide.

Execution Unit

The execution unit can be modelled by
as a mapping of the instruction set of
the processor being modelled to that
of the host processor. Or, as a simple
translation of the semantics of a model
instruction to that of a language
construct interpretable on the host
processor. e.g.,

Model instruction:
 operator operand_1 operand_2

A 'C' translation:
 operator(operand_1, operand_2)

Though it seems unnecessary to
introduce one more level of indirection
between the model instruction and
translation in the form of a function
call, its utility becomes evident when it
is realised that different types of
operators might involve different kinds
of processor subsystems. e.g.,

add r0, r1
; involves only registers and ALU

add r0, [r1]
; involves registers, memory and ALU

mov r0, 0x10

; involves only registers (instruction
; register and r0)

mov [r0], 0x10
; involves registers and memory

Arithmetic and Logic Unit

ALU operations come next only to
memory operations in number, in any
typical program. The ALU can also be
modelled on lines similar to those of
the execution unit. The operators of
the processor being modelled are
mapped on to those of the host
processor or to those of any language
understood on the host processor.
e.g.,
Model instruction:
 add r0, r1

Execution Unit model:
 _add(_reg_r0, _reg_r1)

ALU model:
 return (_reg_r0 += _reg_r1);

Crisp does not have a multiplier but
has a barrel-shifter to perform shifts of
length 1-32 in a single cycle. Most of
the Crisp instructions are in 3-address
code format (with unspecified
operands filled by an assembler with
default values).

Pipeline and parallelism among
components

Most modern processors have a 3-6
stage instruction execution pipeline.

A pipeline helps to maximise the
utilisation of different components of a
processor, which function in parallel
and independent of each other
(sharing the same clock).

A software model need not simulate
parallelism in the real world time. It is
necessary and sufficient if various

Build your own RISC processor simulator 7

components of the processor run in
parallel with respect to the software
clock that is available in the model.

Crisp employs a 3-stage fetch-decode-
execute pipeline. The pipeline is
clocked at the same speed as the
external clock input.

A Crisp simulator

In this section, ‘C’ code fragments of the simulator will be presented along with
suitable explanations wherever required. We take a top-down approach for the
design and look at non-trivial functionalities in detail. Firstly, the super-structure of
the simulator:

int main(int argc, char *argv[])
{
 extern char *progname;

 /* process arguments */

progname = argv[0];
/* ... */

 init_sim(); /* initialise Crisp functional blocks */

 /*

 * load the Crisp instruction stream to be executed into memory.
 * argv[1] holds the stream file name.
 */

 program_start = load_program(argv[1]);

 start_Crisp(); /* Crisp starts executing from address 0 */
}

Initialisation

void init_sim(void)
{
 init_regs(0); /* clear (zero) Crisp registers */
 init_memory(0); /* clear memory accessible to Crisp */

 init_clock(); /* reset the clock counter to zero */
 init_pipeline(); /* setup an [empty] queue of instructions */
}

Though it is usual, at startup, to set the registers and memory to zero, it is better to
design for a value other than zero too. For instance, in order to understand memory
usage patterns, it is useful to initialise the memory to relatively unique patterns such

Build your own RISC processor simulator 8

as 0xbaba and 0xf00dcafe. Hence, init_regs() and init_memory() take an integer
argument.

The pipeline is best modeled as a queue of instructions. New instructions enter the
queue at the tail while the completed instructions exit the pipeline from the head.
init_pipeline() initialises these head and tail indices.

void init_pipeline(void)
{
 _p_head = _p_tail = 0;
}

Crisp in action

The main phase of simulation opens with start_Crisp(), as the instruction stream
execution starts from memory word zero – Crisp’s reset vector address.

void start_Crisp(void)
{
 extern int pending_bds; /* see ‘Handling branches’ */

 set_reg_val(REG_NEXTPC, RESET_VEC_ADDR);
 set_reg_val(REG_PC, get_reg_val(REG_NEXTPC) - 8);
 pending_bds = 0;

 /* pipelined execution */
 while (1) {
 start_new_cycle();
 exec_pipeline_stages();
 retire_instrs();
 }
}

All Crisp instructions take exactly three cycles to complete. Each instruction in the
pipeline completes one stage of execution, per clock cycle. exec_pipeline_stages()
illustrates this. The reason for REG_PC trailing REG_NEXTPC by 8-bytes (two
instructions) becomes evident as we go through the inner workings of all the three
stages.

void exec_pipeline_stages(void)
{
 _decoder_output cur_decoder_output;

 /*

 * simulate pipelining by retaining a decoded instruction
 * across invocations

Build your own RISC processor simulator 9

 */
static _decoder_output prev_decoded_instr = {INVALID};

 /*
 * The three pipeline stages:

 * 1. fetch the instruction pointed to by PC
 * 2. decode the instruction trailing the head by one position
 * 3. execute the instruction which was previously decoded
 */

 fetch(get_reg_val(REG_NEXTPC));
 decode(peek_pipeline(HEAD, 1), &cur_decoder_output);
 execute(prev_decoded_instr);

 /* prepare for next cycle */
 prev_decoded_instr = cur_decoder_output;
}

As the inline comments suggest, peek_pipeline() takes as arguments, an
enumerated reference position (HEAD/TAIL) and an offset (0-2) from that position
(towards the other position). It returns a (possibly NULL) pointer to the required
instruction.

Crisp pipeline mechanics

The fetch() stage simply requests the memory subsystem for the instruction at the
address contained in an internal register REG_NEXTPC and puts it into the pipeline.

void fetch(word *instr_addr)
{
 enpipe((_instruction) *instr_addr);
}

The decode() stage is a bit more involved. In this stage, Crisp’s instruction decode
logic parses the instruction and generates necessary control signals that are needed
for the ‘execute’ stage. The simulator can afford, however, to abstract most of these
low-level details and only implement NEXTPC modification logic.

void decode(_intruction *instr, _decoder_output *out)
{
 if (instr) {

 out->opc = get_opcode(instr);

 /* most Crisp instructions are in 3-address code format */

 get_operands(instr, &out->opd1, &out->opd2, &out->opd3);

Build your own RISC processor simulator 10

 } else {

 /* invalidate output so that execute stage ignores it */
 out->result = INVALID;
 }

 /* prepare REG_NEXTPC for next cycle’s fetch stage */
 set_reg_val(REG_NEXTPC, get_reg_val(REG_NEXTPC) + 4);
}

In the execute() stage, Crisp’s functional units such as the ALU, shifter and data
memory interfaces are activated according to the control signals generated by the
decode stage for this instruction in the previous cycle. The simulator only needs the
decoded instruction for this phase.

void execute(_decoder_output *decoded_instr)
{

extern void (* instr_handlers[])(_operand1 *, _operand2 *,
_operand3 *);

 instr_handlers[decoded_instr->opc]

(
&decoded_instr->opd1,
&decoded_instr->opd2,
&decoded_instr->opd3,

);

 /* prepare REG_PC for the next cycle’s execute stage */
 set_reg_val(REG_PC, get_reg_val(REG_PC) + 4);
}

Each type of instruction is executed by its handler which can be obtained by indexing
into instr_handlers[] with the instruction’s opcode.

Sample handlers

The assembler instruction “add r0, r1” triggers the following handler in its execute
stage:

instr_handlers[OPC_ADD](REG_R0, REG_R0, REG_R1);

This causes opc_add_handler() to be invoked with the three operands.

void opc_add_handler(_operand1 *opd1, _operand2 *opd2, _operand3
*opd3)

Build your own RISC processor simulator 11

{
 /*
 * operand1 = operand2 + operand3;

 * operand3 can either be a register or an immediate value;
 */

 set_reg_val (

opd1->reg,
get_reg_val(opd2->reg) +
(opd3->type == OPD_TYPE_REG) ?

get_reg_val(opd3->reg) :
opd3->imm

);
}

A store instruction such as “store r0, [r1], #4” can be handled as follows:

void opc_load_handler(_operand1 *opd1, _operand2 *opd2, _operand3
*opd3)
{
 /*

 * operand1 is the source register;
 * operand2 is the base register containing the memory address;
 * operand3 can either be a register or an immediate value and
 * specifies an offset from the base;
 */

 set_mem_val (
get_reg_val(opd2->reg) +

 (opd3->type == OPD_TYPE_REG) ?
get_reg_val(opd3->reg) :
opd3->imm,

 get_reg_val(opd1->reg)
);
}

Handling branches

Arithmetic and logical instructions such as add/sub, shift, or/xor/and and compare
update an internal register - REG_FLAGS, which holds processor state information
related to carry, overflow, zero etc. Program flow can be altered by branching based
on the state of these flags. This helps implementation of control structures such as
if-else, for and do-while using branch instructions.

Branch instructions break the smooth flow in the pipeline and hence need special
handling. Crisp takes the non-interlocked approach in implementing branches, by
unconditionally executing two instructions that immediately follow the branch
instruction in the program. This is also known as delayed-branching and the two

Build your own RISC processor simulator 12

instructions following the branch instruction are said to be in branch-delay-slots9.
This approach helps the pipeline to run without stalling for the branch target to be
fetched.

void opc_branch_handler(_operand1 *opd1, _operand2 *opd2, _operand3
*opd3)
{
 extern int pending_bds; /* to handle branch delay slots */

 /* operand1 can be one of:

 * a register containing the target address;
 * a PC-relative target address offset as a +/- immediate value;
 *
 * operands 2 and 3 are not applicable to branch instructions
 */

set_reg_val (

REG_NEXTPC,
(opd1->type == OPD_TYPE_REG) ?

get_reg_val(opd1->reg) :
get_reg_val(REG_PC) + opd1->imm

);

pending_bds = 2; /* next two cycles are branch delay slots */

}

The number of branch delay slots yet to be executed is tracked by pending_bds. This
helps to maintain the integrity of REG_PC. The REG_PC updation logic in execute()
has to be modified to handle branches. During the execution of the two delay slots
REG_PC should contain their addresses but should contain the address of the branch
target immediately after the completion of the delay slots’ execution. This is
accomplished by resetting REG_PC to trail REG_NEXTPC by two instructions, as
should be the normal case.

void execute(_decoder_output *decoded_instr)
{

extern void (* instr_handlers[])(_operand1 *, _operand2 *,
_operand3 *);

 extern int pending_bds, bds_flag;

/* to handle branch delay slots */

 instr_handlers[decoded_instr->opc]

(
&decoded_instr->opd1,
&decoded_instr->opd2,
&decoded_instr->opd3,

9 It is possible to do with one delay-slot but pipeline behaviour illustration is easier by allowing two of
them

Build your own RISC processor simulator 13

);

 /* prepare REG_PC for the next cycle’s execute stage */
 switch (pending_bds) {

 case 2:
 /*

 * first of the two delay slots executed in this
 * cycle; let REG_PC move forward
 */
set_reg_val(REG_PC, get_reg_val(REG_PC) + 4);

 pending_bds --;
 break;

 case 1:

 /*
 * second delay slot executed in this cycle;
 * reset REG_PC to trail REG_NEXTPC
 */
set_reg_val(REG_PC, get_reg_val(REG_NEXTPC) – 8);

 pending_bds --;
 break;

 case 0: /* normal sequential flow */
 set_reg_val(REG_PC, get_reg_val(REG_PC) + 4);
}

}

To avoid indeterminate behaviour, the Crisp architecture suggests that a BDS may
not contain a branch instruction10.

REG_PC and the pipeline

Readers would have noticed that special control logic is required to ensure that the
user-visible REG_PC always contains the address of the current instruction being
executed. However, if REG_PC were allowed to reflect the state of the pipeline, this
control logic can be eliminated. For instance, in the ARM processor architecture, the
PC value is two instructions ahead of the current instruction being executed. The
ARM programmer has to factor this while performing any calculations based on the
PC value.

This space left intentionally blank

10 Readers are welcome to experiment with code sequences that violate this suggestion, to understand the
motivation.

Build your own RISC processor simulator 14

A sample run

We shall now take a simple Crisp assembly program ‘sigma_10’ and run it on the
simulator we designed in the previous section.

0x00
0x04

0x08
0x0c
0x10
0x14
0x18
0x1c

; sigma_10: a program to compute the sum of first 10 natural
numbers

 .text
sigma_10_start:

MOV r0, #10 ; number count
MOV r1, #0 ; current sum

sum_loop_start:
 ADD r1, r1, r0 ; r1 := r1 + r0
 SUB r0, r0, #1 ; r0 := r0 – 1
 CMP r0, #0 ; are all the numbers done ?
 BNE sum_loop_start
 NOP ; BDS-1: no operation
 NOP ; BDS-2: no operation

; at exit, r1 contains 55, the required sum.
 HALT ; halt the processor

sigma_10_end:

Shown below are 11 clock cycles of Crisp along with the processor state and the
actions taken in each of the pipeline stages. Of special interest are cycles 7 through
10, which illustrate REG_NEXTPC/REG_PC behaviour when branches are encountered
in the pipeline.

Cycle #0:
Crisp state:

NEXTPC: 0x00
PC: -0x08
pending_bds: 0

Actions:
Fetch(0x00) i.e., MOV-1
Decode(-), NEXTPC += 4
Execute(-), PC += 4

Cycle #1:
Crisp state:

NEXTPC: 0x04
PC: -0x04
pending_bds: 0

Actions:
Fetch(0x04) i.e., MOV-2
Decode(MOV-1), NEXTPC += 4

Execute(-), PC += 4

Cycle #2:
Crisp state:

NEXTPC: 0x08
PC: 0x00
pending_bds: 0

Actions:
Fetch(0x08) i.e., ADD
Decode(MOV-2), NEXTPC += 4
Execute(MOV-1), PC += 4

Cycle #3:
Crisp state:

NEXTPC: 0x0c
PC: 0x04
pending_bds: 0

Build your own RISC processor simulator 15

Actions:
Fetch(0x0c) i.e., SUB
Decode(ADD), NEXTPC += 4
Execute(MOV-2), PC += 4

Cycle #4:
Crisp state:

NEXTPC: 0x10
PC: 0x08
pending_bds: 0

Actions:
Fetch(0x10) i.e., CMP
Decode(SUB), NEXTPC += 4
Execute(ADD), PC += 4

Cycle #5:
Crisp state:

NEXTPC: 0x14
PC: 0x0c
pending_bds: 0

Actions:
Fetch(0x14) i.e., BNE
Decode(CMP), NEXTPC += 4
Execute(SUB), PC += 4

Cycle #6:
Crisp state:

NEXTPC: 0x18
PC: 0x10
pending_bds: 0

Actions:
Fetch(0x18) i.e., NOP-1
Decode(BNE), NEXTPC += 4
Execute(CMP), PC += 4

Cycle #7:
Crisp state:

NEXTPC: 0x1c
PC: 0x14
pending_bds: 0

Actions:
Fetch(0x1c) i.e., NOP-2
Decode(NOP-1), NEXTPC += 4

Execute(BNE), NEXTPC = 0x08,
PC += 4, pending_bds = 2

Cycle #8:
Crisp state:

NEXTPC: 0x08
PC: 0x18
pending_bds: 2

Actions:
Fetch(0x08) i.e., ADD
Decode(NOP-2), NEXTPC += 4

Execute(NOP-1), PC += 4,
pending_bds--

Cycle #9:
Crisp state:

NEXTPC: 0x0c
PC: 0x1c
pending_bds: 1

Actions:
Fetch(0x0c) i.e., SUB
Decode(ADD), NEXTPC += 4

Execute(NOP-2), PC = NEXTPC
- 8, pending_bds--

Cycle #10:
Crisp state:

NEXTPC: 0x10
PC: 0x08
pending_bds: 0

Actions:
Fetch(0x10) i.e., CMP
Decode(SUB), NEXTPC += 4
Execute(ADD), PC += 4

Advanced design notes

Before calling it a day, allow me to add a few notes on the finer aspects of simulator
design.

Build your own RISC processor simulator 16

• In reality, the Crisp assertion that all instructions complete in 3-cycles is
impractical. Allowance has to be made for memory latencies, load/store delays,
multiplier output delays and the like. A memory-interface module can abstract
the details of the memory heirarchy, associated buffers and latencies. This calls
for altering the pipeline behaviour according to the processor specification.

• Interaction with co-processors (FPU/MMU etc) has not been covered in this paper.
Individual processors can be designed as separate processes and inter-process
communication facilities offered by the host OS can be used to communicate data
and control signals between the processors. This makes the simulator modular
and easy to implement.

• Interrupts and exceptions such as data aborts can be handled by using setjmp
(for setting up exception handling code) and longjump (for handling an
exception). User defined signals can also be used for this purpose.

• Speculative branching can be implemented by pre-fetching the target based on
the probability of the branch being taken. The probability can be computed by
maintaining a history of ‘branch taken/not-taken’ per branch instruction in the
program.

• Some processors execute independent instructions out-of-order to improve
throughput. The instruction stream can be converted into a dependency graph of
code-blocks and then be executed out-of-order based on the dependencies. A
thorough understanding of the target processor’s instruction retiring policy is
important to implement this feature. This feature can be abstracted off the
simulator if appropriate allowance can be made to the resulting reduction in
performance of the target processor being simulated.

• Fine-grain profiling can be performed by accessing the system-wide clock counter
via appropriate interfaces (e.g., get_clock_ticks() and set_clock_ticks()) at
required points of execution.

It is important however, to understand the requirements of the users before adding
complex features to the simulator. In the absence of a demonstrated need
(current/future) for modeling specific processor features / functional units, it is
better to abstract them and keep the simulator simple and functional. For, the aim of
a simulator is not to replace an FPGA prototype.

Conclusion

In this paper, we have seen the architectural differences that make a RISC processor
simpler to design and yet extract better performance as compared to a CISC
processor. Software modeling of processor behaviour was explained by designing a
simulator for a hypothetical RISC processor – Crisp. A sample run of the simulator
demonstrated the inner workings of the Crisp pipeline. Design tips for simulating
advanced techniques employed in modern RISC processors were only briefly
discussed towards the end so as to keep this paper focussed at embedded systems
designers and programmers who are new to the RISC philosophy. Readers can gain
further knowledge about RISC concepts from the references.

References

• David A. Patterson and David R. Ditzel, The case for the reduced instruction set

computer, Computer Architecture News, October 1980.

Build your own RISC processor simulator 17

• David A. Patterson and John L. Hennessy, Computer Organization and Design:
The Hardware/Software Interface, Morgan Kaufmann Publishers, 1997 (second
edition), ISBN 1-55860-329-8

• Dave Jagger (editor), ARM Architecture Reference Manual, Prentice Hall
• Steve B. Furber, ARM System Architecture, Addison-Wesley, 1996, ISBN 0-201-

40352-8
• http://www.sun.com/microelectronics/sparc/ - Sun SPARC architecture related

information on the web
• http://www.research.ibm.com/journal/rd38-5.html - IBM Journal of Research and

Development, POWER2 and PowerPC architecture, Vol. 38, No. 5, 1994, Order
No. G322-0194

• http://www.arm.com/ - data sheets, instruction set summaries, white papers,
application notes and architecture references for the ARM family of processors

	Build your own RISC processor simulator
	Abstract
	Keywords
	Introduction
	The reign of CISC
	The emergence of RISC

	Processor Simulation
	Design Considerations
	Granularity of simulation

	Simulator Components
	Clock
	Memory
	Execution Unit
	Arithmetic and Logic Unit
	Pipeline and parallelism among components

	A Crisp simulator
	Initialisation
	Crisp in action
	Crisp pipeline mechanics
	Handling branches
	REG_PC and the pipeline

	A sample run
	Advanced design notes
	Conclusion
	References

	return:

