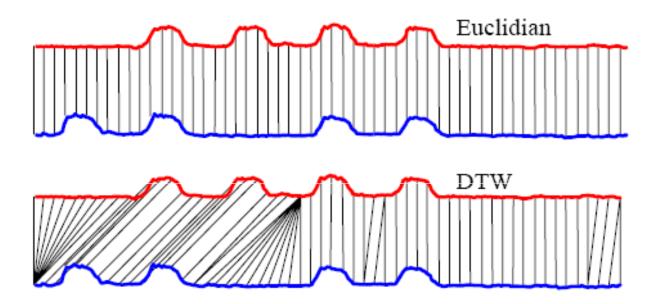
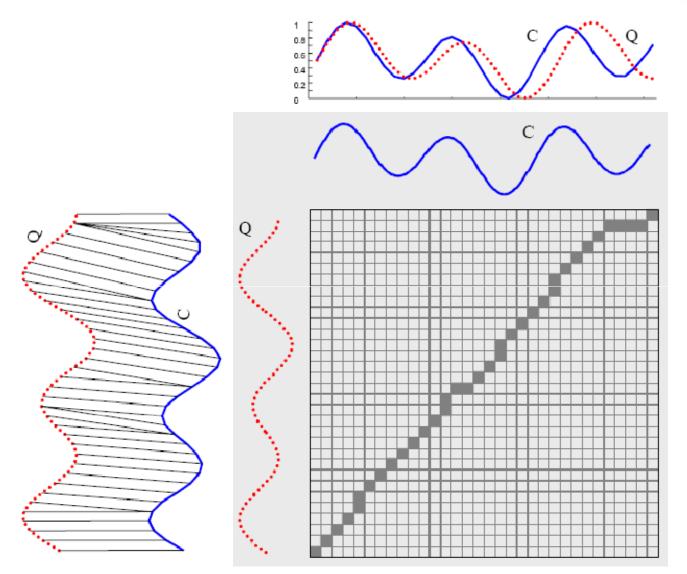
Dynamic Time Warping

George Darmiton da Cunha Cavalcanti CIn/UFPE

Introdução

- Objetivo: dado um conjunto de padrões de referência chamado de TEMPLATES, encontrar qual deles melhor se ajusta a um padrão desconhecido
 - Nesse caso, cada classe é representada por um padrão
- O ponto crucial é adotar uma medida apropriada para quantificar similaridade
- Essas medidas devem acomodar, de forma eficiente, variações entre os padrões de template e de teste
 - Por exemplo, a palavra "beauty" pode ter sido lida como "beeauty" ou "beuty", etc., devido a erros

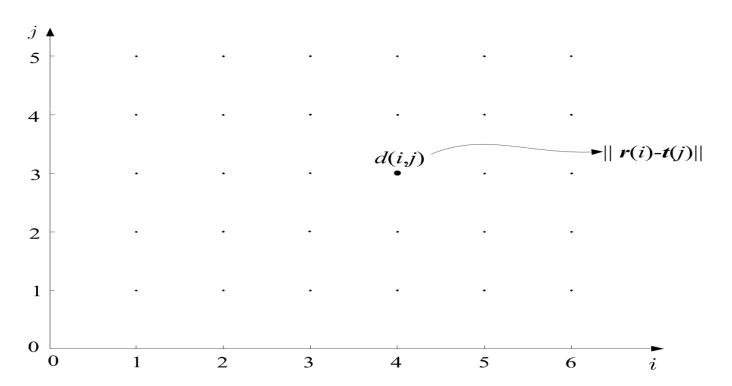




Introdução

- Medidas baseadas em técnicas de busca do caminho ótimo
 - Representação: o template é representado por uma seqüência de valores
 - Template: $\underline{r}(1), \underline{r}(2), ..., \underline{r}(I)$
 - Test pattern: $\underline{t}(1), \underline{t}(2), ..., \underline{t}(J)$

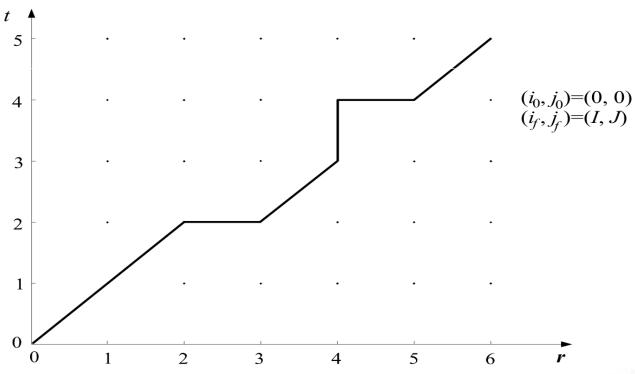
- Geralmente $I \neq J$
- Forma-se uma grade com I pontos (template) na horizontal e
 J pontos (teste) na vertical
- Cada ponto (i,j) da grade mede a distância entre $\underline{r}(i)$ e $\underline{t}(j)$



- Caminho: um caminho na grade, de um nó inicial (i_0, j_0) para um final (i_f, j_f) , é um conjunto ordenado de nós (i_0, j_0) , (i_1, j_1) , (i_2, j_2) ... (i_k, j_k) ... (i_f, j_f)
- Cada caminho está associado a um custo

$$D = \sum_{k=0}^{K-1} d(i_k, j_k)$$

sabendo que K é o número de nós no caminho



- Buscar o caminho com custo ótimo $D_{opt.}$

- O custo entre os padrões de template \underline{r} e de teste \underline{t} é $D_{opt.}$

Bellman's Optimality Principle

Caminho ótimo:

$$(i_0, j_0) \xrightarrow{opt} (i_f, j_f)$$

Seja (i,j) um nó intermediário

$$(i_0, j_0) \rightarrow \dots \rightarrow (i, j) \rightarrow \dots \rightarrow (i_f, j_f)$$

Então, o caminho ótimo passa por (i, j)

$$(i_0, j_0) \stackrel{opt}{\underset{(i,j)}{\longrightarrow}} (i_f, j_f)$$

Bellman's Principle:

$$(i_0, j_0) \xrightarrow{opt} (i_f, j_f) = (i_0, j_0) \xrightarrow{opt} (i, j) \oplus (i, j) \xrightarrow{opt} (i_f, j_f)$$

- Em palavras: o caminho ótimo completo de (i_0j_0) para (i_pj_f) que passa por (i_pj) é a concatenação do caminho ótimo de (i_0j_0) para (i_pj) com o caminho de (i_pj) para (i_pj)
- Seja $D_{opt.}(i,j)$ o caminho ótimo para alcançar (i,j) de (i_0,j_0) , assim o princípio de *Bellman* define que:

$$D_{opt}(i_k, j_k) = opt\{D_{opt}(i_{k-1}, j_{k-1}) + d(i_k, j_k)\}\$$

The Edit distance

- É usada para matching entre palavras escritas. Aplicações:
 - Edição Automática
 - Recuperação de Texto
- A medida dele levar em consideração:
 - Troca de símbolos, "befuty" ao invés de "beauty"
 - Erros de inserção, "bearuty"
 - Erros de remoção, "beuty"

- O custo é baseado na conversão de um padrão em outro
- <u>Edit distance</u>: Número total mínimo de mudanças, C, inserções I e remoções R, necessárias para transformar o padrão A no padrão B,

$$D(A,B) = \min[C(j) + I(j) + R(j)]$$

sabendo que j varre todas as possíveis variação de
símbolos, objetivando converter A B

Cálculo do custo

 $(i-1, j-1) \rightarrow (i, j)$

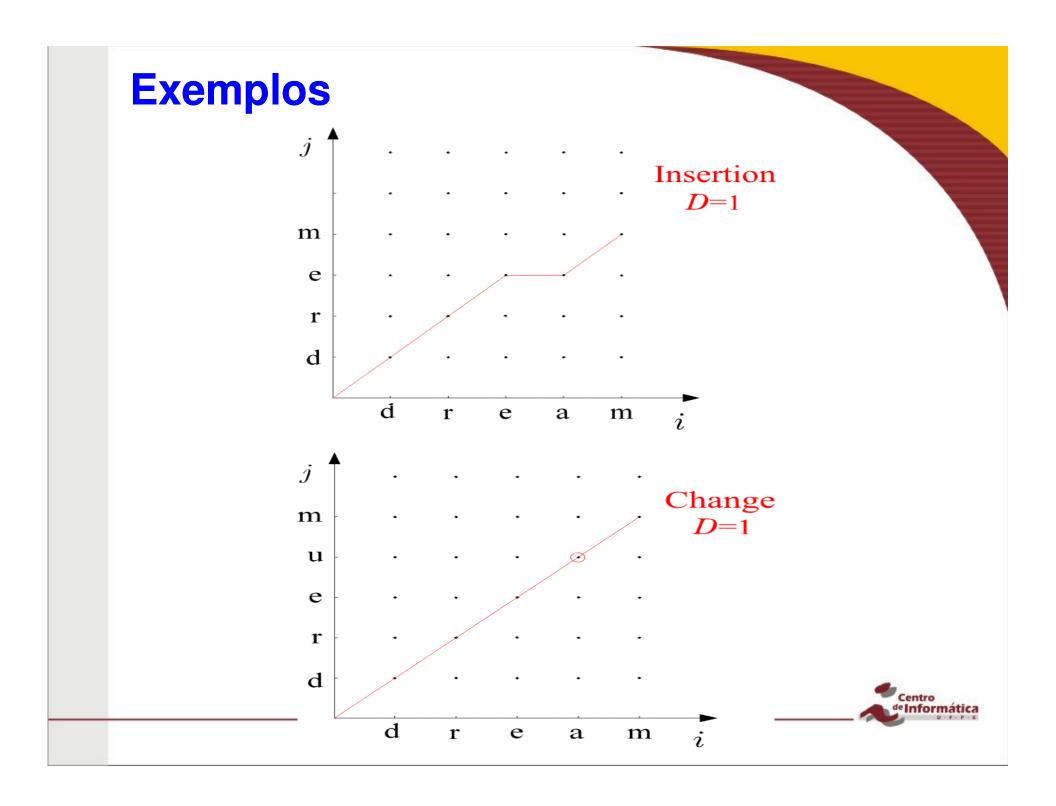
$$d(i, j | i-1, j-1) = \begin{cases} 0, & \text{if } t(i) = r(j) \\ 1, & t(i) \neq r(j) \end{cases}$$

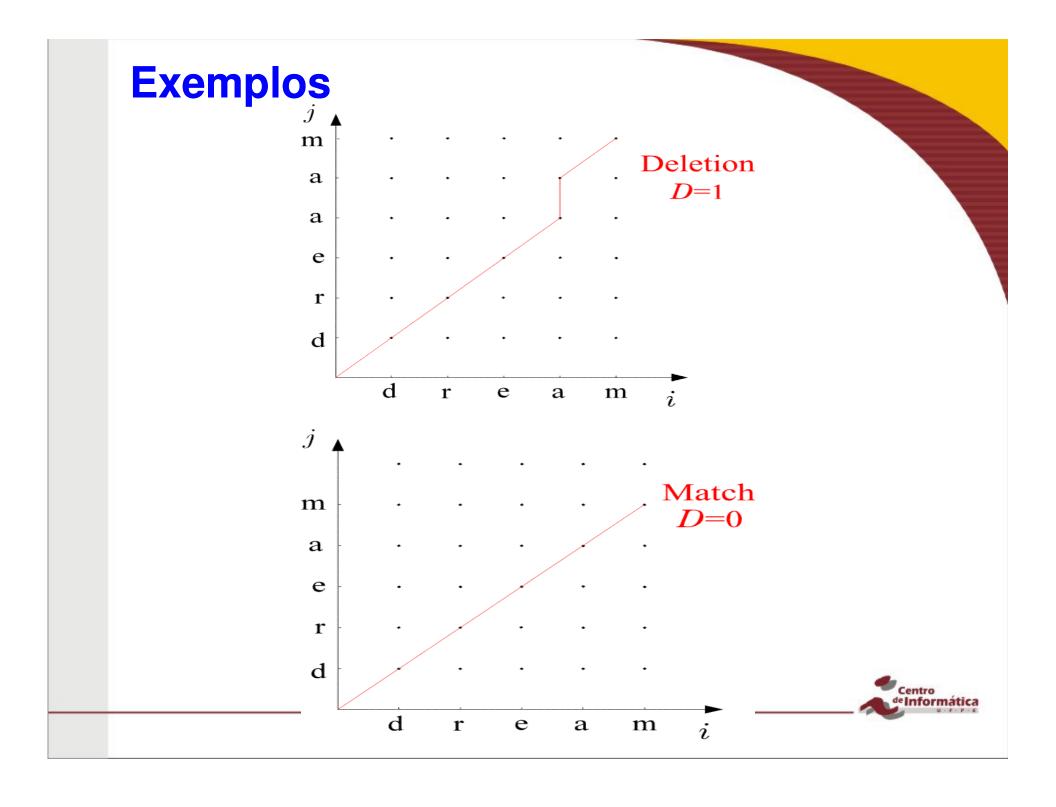
Horizontal

$$d(i, j|i-1, j) = 1$$

Vertical

$$d(i, j|i, j-1) = 1$$





O algoritmo

•
$$D(0,0)=0$$

• For
$$i=1$$
, to I

$$D(i,0)=D(i-1,0)+1$$

- *END* {*FOR*}
- For j=1 to J

$$D(0,j)=D(0,j-1)+1$$

- **■** *END*{*FOR*}
- For i=1 to I

•
$$For j=1$$
, to J

$$- C_1 = D(i-1,j-1) + d(i,j \mid i-1,j-1)$$

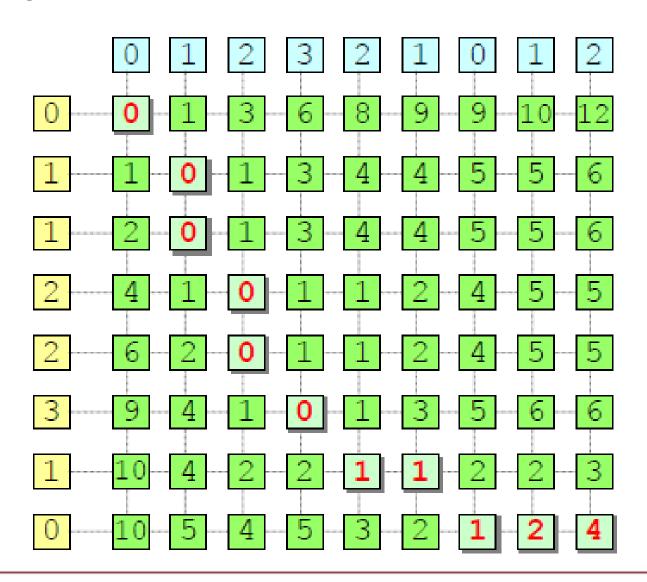
$$- C_2 = D(i-1,j)+1$$

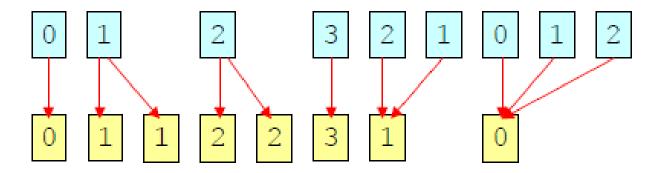
$$- C_3 = D(i,j-1)+1$$

$$- D(i,j) = min(C_1, C_2, C_3)$$

- END {FOR}
- *END* {*FOR*}
- D(A,B)=D(I,J)

$$d(i,j) = |x[i] - y[j]|$$

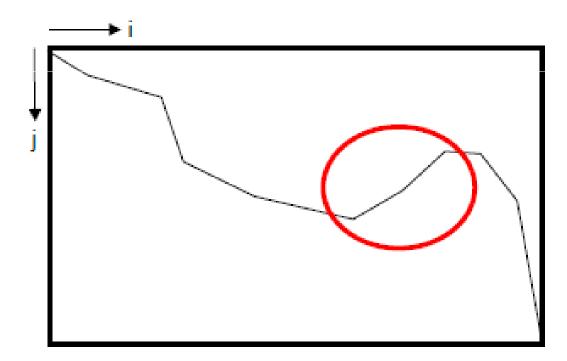




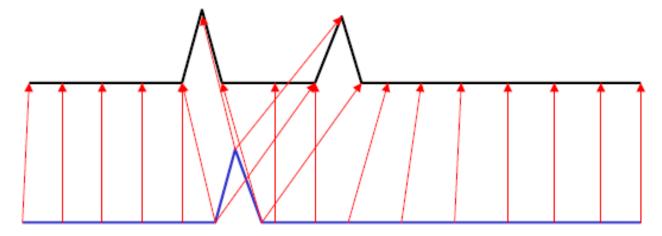
- 0 1 1 2 2 3 2 1 0 1 2
- 0 1 1 2 2 3 1 1 0 0

Monotonicidade

 O caminho percorrido pelo alinhamento não pode voltar no "tempo"

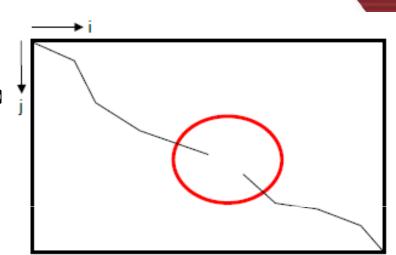


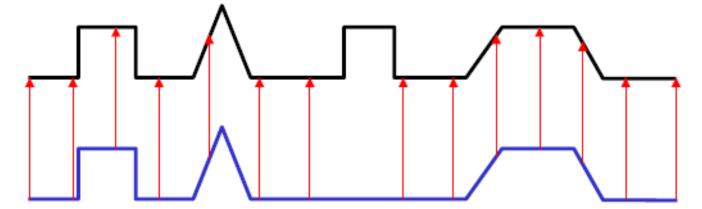
- Pois, se o alinhamento não for monotônico algumas características podem ser repetidas
- Assim, a função de dissimilaridade não teria sentido



Continuidade

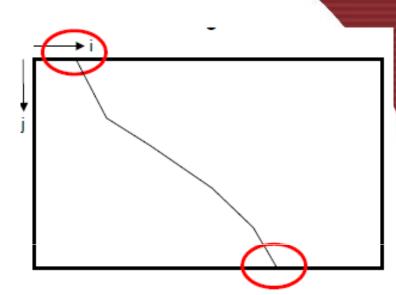
 Caso contrário o alinhamento irá desprezar características importantes

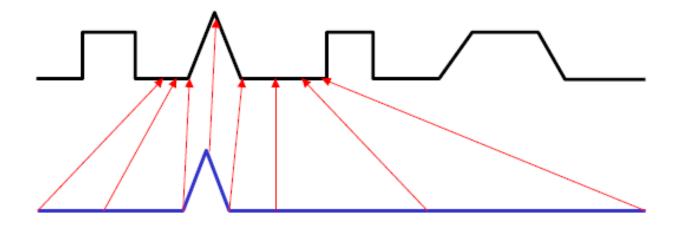




Limites

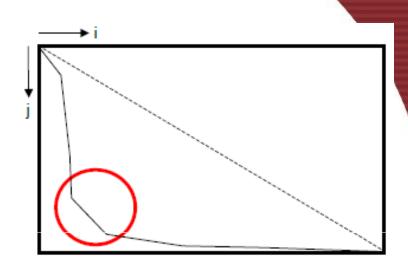
 O alinhamento deve começar e terminar em pontos específicos

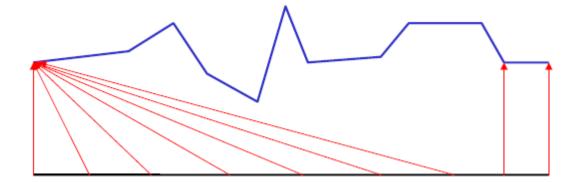




Janela de busca

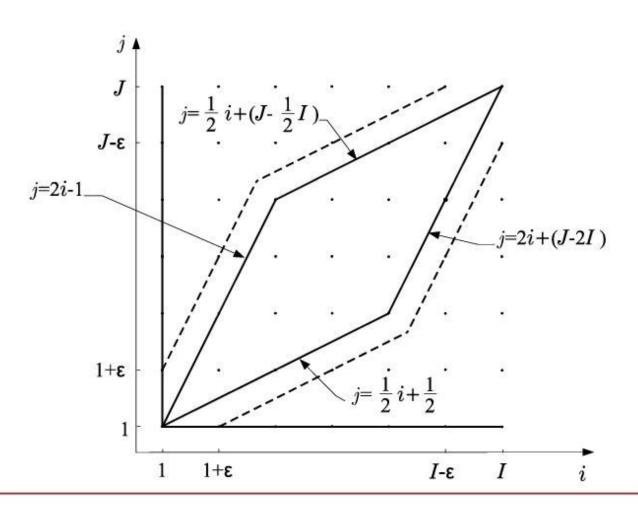
 O alinhamento deve estar relativamente perto do caminho "identidade"



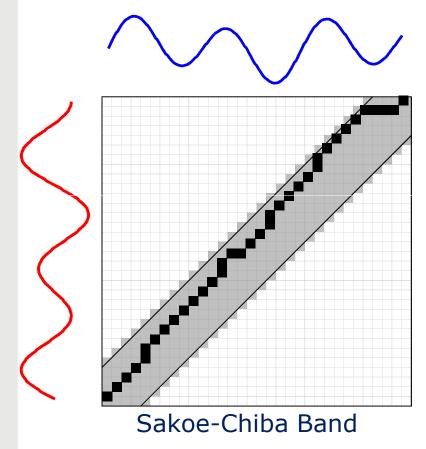


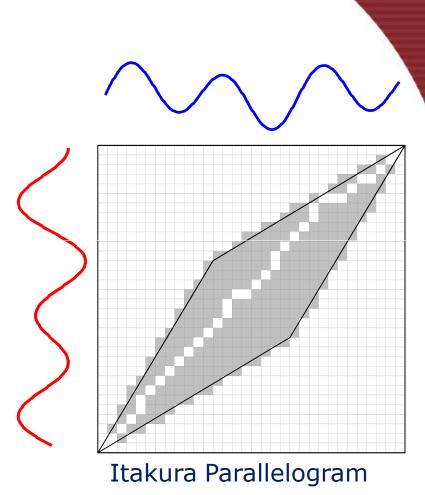
Restrição Global

 Define uma região do espaço a partir da qual a busca do caminho ótimo será realizada



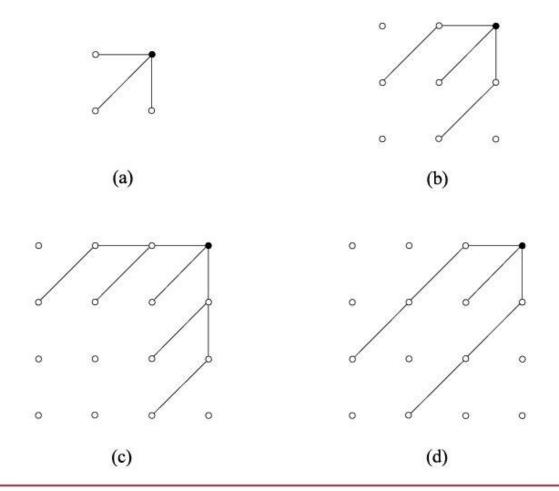
Restrição Global



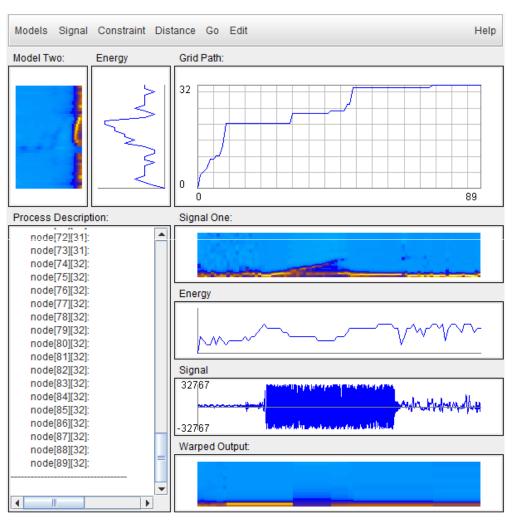


Restrições Locais

Define o tipo de transição permitida

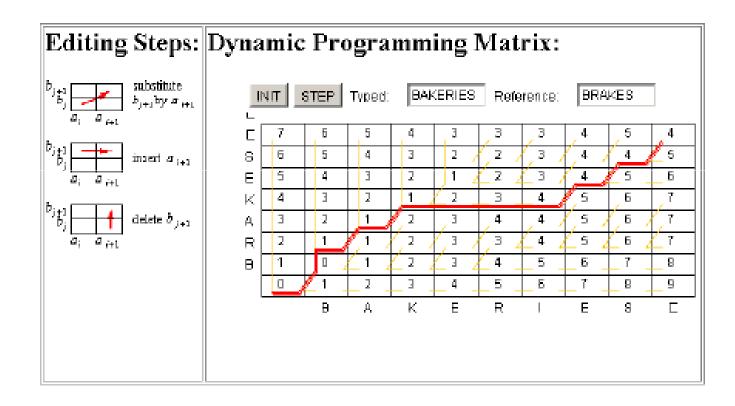


Aplicações – Reconhecimento de Fala



http://www.isip.piconepress.com/projects/speech/software/demonstrations/applets/

Aplicação String Matching – Alinhamento de cadeias de DNA

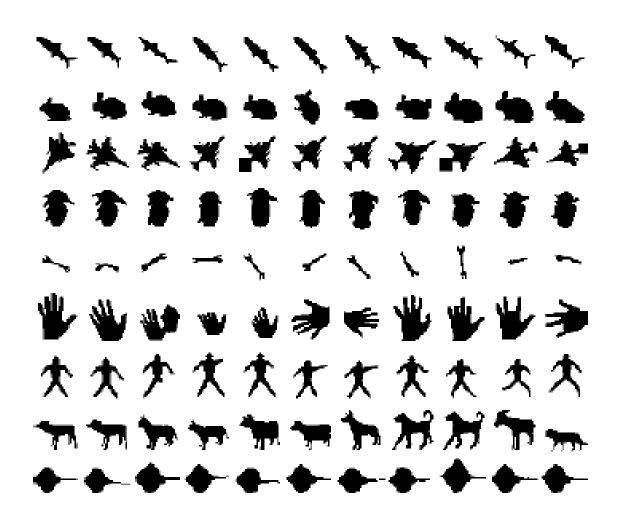


Aplicação – Reconhecimento de Caracteres Manuscritos

0	0	0	U	6	6
	4	7	10	ے 13	14
	4	7)	- (<u> </u>
	2	4	5	6	10
7	2 4 6 2	7) 5 72 11 0 13	6 3 13 14)
	d .	1.1	11	1.3	15
6	6	11 5 10	0	G	0
	2	10	13		15
7	7 2	2 8	5	- 1	Ŋ
	2	В	10	11	13
Ø	8	0	0	6	U
	12.	17	18	20	21
9	9 6	€ 8	18 S 9	5	\overline{C}
	6	В		11	15
6	<u>ر</u> 5	ے 12	0 19	20 5 11 0 19	5
	5	12	19	19	19

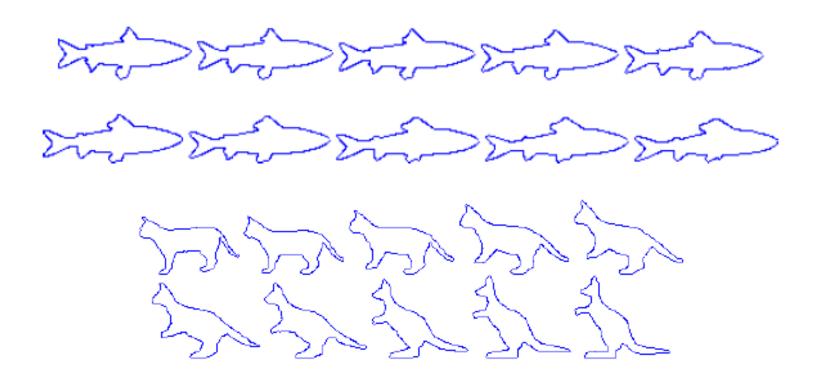
	_	_	_	_	_
	L	1	<u>\</u> 15	- 1	A LB
	4	11	15	L6	LB
M	\sim	N		2	3 22 0
	5	1.5	17	21	22
N	€ 5 2 4 P	15 ^^ 15 V 17	17 - 16 0 18	W	
	4	1.5	16	18	LB
P	P	V	0	0	\wedge
	4	17	18	18	19
S	5 4)	9 11	5 11	- 1
	4	10	11	L1	12
V	√ 5	10 1/ 8	0	0	
	5	8	11	L2	L3
$[\omega]$	W	V	2	€ 29	7
	6	16	17	18	21
7	6 Z 3	16 2 7	17 "] 10)	7 21 3
	3	7	10	L3	L.4

Aplicação – Reconhecimento de Objetos

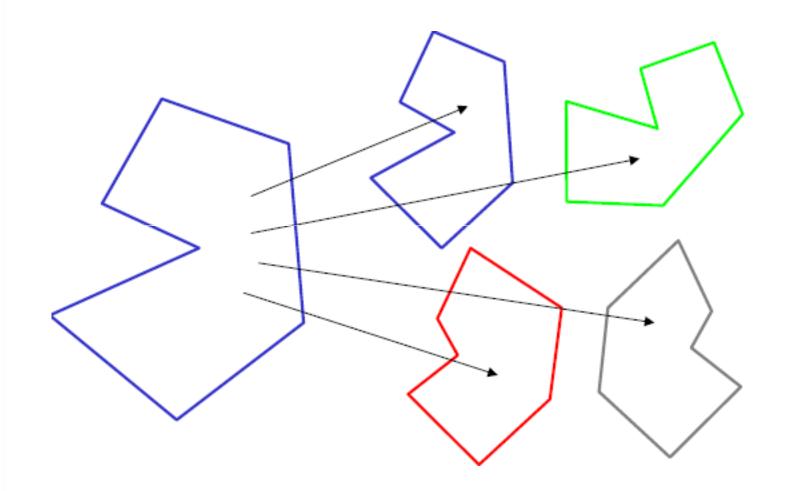


Aplicação – Geração de Protótipos

Aplicação – Morphing



Aplicação – Reconhecimento de Polígonos



Considerações Finais

- Dymanic Time Warping (DTW) é uma técnica robusta para medir similaridade entre séries temporais
- DTW é muito usada em várias áreas
- DTW é bastante custoso, em termos de tempo computacional. Mas abordagens para aumentar a velocidade foram desenvolvidas: restrições globais

Referências

- S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press. 2006.
- E. Keogh and C. A. Ratanamahatana. *Exact indexing of dynamic time warping*. **Journal of Knowledge and Information Systems**. 7(3), pp.358-386, 2005.
- J. Aach and G. Church. Aligning gene expression time series with time warping algorithms. Bioinformatics 17:495–508, 2001.
- H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing. 26(1), pp.43-49, 1978.
- L. Rabiner, A. Rosenberg, S. Levinson. Considerations in dynamic time warping algorithms for discrete word recognition. IEEE Transactions on Acoustics,
 Speech, and Signal Processing, 26:575–582, 1978.
- C. Myers, L. Rabiner, A. Roseneberg. Performance tradeoffs in dynamic time warping algorithms for isolated word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28:623–635, 1980.

