
Working with
Evolutionary Algorithms

Chapter 14

2

Issues considered

 Experiment design

 Algorithm design

 Test problems

 Measurements and statistics

 Some tips and summary

3

Experimentation

 Has a goal or goals

 Involves algorithm design and implementation

 Needs problem(s) to run the algorithm(s) on

 Amounts to running the algorithm(s) on the problem(s)

 Delivers measurement data, the results

 Is concluded with evaluating the results in the light of

the given goal(s)

 Is often documented (see tutorial on paper writing)

4

EA experimentation

 EA objectives determined by problem context:

 Design (engineering) problems – single ‘good’

solution required.

 Control (optimization) problems – requiring

many ‘good’ yet ‘timely’ solutions.

5

Example: Production Perspective

 Optimizing Internet shopping

 delivery routes

– Different destinations each day

– Limited time to run algorithm each day

– Must always be reasonably good route in limited

time

6

Example: Design Perspective

 Optimizing spending on improvements to

national road network

–Total cost: billions of Euro

–Computing costs negligible

–Six months to run algorithm

 on hundreds computers

–Many runs possible

–Must produce very good

 result just once

7

Perspectives of an EA’s goals

Design perspective:

 find a very good solution at least once

Production perspective:

 find a good solution at almost every run

Academic perspective:

 must meet scientific standards

These perspectives have very different implications when

evaluating EA results.

8

Algorithm design

 Design a representation

 Design a way of mapping a genotype to a phenotype

 Design a way of evaluating an individual

 Design suitable mutation operator(s)

 Design suitable recombination operator(s)

 Decide how to select individuals to be parents

 Decide how to select individuals for the next generation
(how to manage the population)

 Decide how to start: initialization method

 Decide how to stop: termination criterion

9

Test problems for experimental
comparisons

 Use problem instances from an academic

repository

 Use randomly generated problem instances

 Use real life problem instances

10

Test problems for experimental
comparisons

 5 DeJong functions

 25 “hard” objective functions

 Frequently encountered or otherwise important
variants of given practical problem

 Selection from recognized benchmark problem
repository (“challenging” by being NP--- ?!)

 Problem instances made by random generator

Choice has severe implications on
– generalizability and

– scope of the results

11

Bad example

 I invented “tricky mutation”

 Showed that it is a good idea by:
– Running standard (?) GA and tricky GA

– On 10 objective functions from the literature

– Finding tricky GA better on 7, equal on 1, worse on 2 cases

 I wrote it down in a paper

 And it got published!

 Q: what did I learned from this experience?

 Q: is this good work?

12

Bad example

 What did I (my readers) did not learn:

– How relevant are these results (test functions)?

– What is the scope of claims about the superiority of

the tricky GA?

– Is there a property distinguishing the 7 good and the

2 bad functions?

– Can the results be generalized ? (Is the tricky GA

applicable for other problems? Which ones?)

13

Getting Problem Instances 1

 Testing on real data

 Advantages:

– Results are application oriented

 Disadvantages

– Can be few available sets of real data

– May be commercial sensitive – difficult to publish and to allow

others to compare

– Results are hard to generalize

14

Getting Problem Instances 2

 Standard data sets in problem repositories, e.g.:
– OR-Library

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

- UCI Machine Learning Repository
http://archive.ics.uci.edu/ml/

- Advantage:
– Tried and tested problems and instances (hopefully)

– Much other work on these  results comparable

 Disadvantage:
– Not real – might miss crucial aspect

– Algorithms get tuned for popular test suites

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://archive.ics.uci.edu/ml/

15

Getting Problem Instances 3

 Problem instance generators produce simulated data

for given parameters

 Advantage:

– Allow systematic investigation of an objective function

parameter range

– Can be shared allowing comparisons with other researchers

 Disadvantage:

– Not real – might miss crucial aspect

– Given generator might have hidden bias

16

Basic rules of experimentation

EAs are stochastic 

 never draw any conclusion from a single run
– perform sufficient number of independent runs

– use statistical measures (averages, standard deviations)

– use statistical tests to assess reliability of conclusions

EA experimentation is about comparison 

 always do a fair competition
– use the same amount of resources for the competitors

– try different competition limits

– use the same performance measures

17

Things to Measure

Many different ways. Examples:

 Average result in given time

 Average time for given result

 Proportion of runs within % of target

 Best result over n runs

 Amount of computing required to reach target
in given time with % confidence

 …

18

What time units do we use?

 Elapsed time?
– Depends on computer, network, etc…

 CPU Time?
– Depends on skill of programmer, implementation, etc…

 Generations?
– Difficult to compare when parameters like population size

change

 Evaluations?
– Evaluation time could depend on algorithm, e.g. direct vs.

indirect representation

19

Measures

 Performance measures (off-line)

– Efficiency (alg. speed)

 CPU time

 No. of steps, i.e., generated points in the search space

– Effectivity (alg. quality)

 Success rate

 Solution quality at termination

 “Working” measures (on-line)

– Population distribution (genotypic)

– Fitness distribution (phenotypic)

– Improvements per time unit or per genetic operator

– …

20

Performance measures

 No. of generated points in the search space

 = no. of fitness evaluations

 (don’t use no. of generations!)

 AES: average no. of evaluations to solution

 SR: success rate = % of runs finding a solution
(individual with acceptabe quality / fitness)

 MBF: mean best fitness at termination, i.e., best per
run, mean over a set of runs

 SR  MBF
– Low SR, high MBF: good approximizer (more time helps?)

– High SR, low MBF: “Murphy” algorithm

21

Fair experiments

 Basic rule: use the same computational limit for
each competitor

 Allow each EA the same no. of evaluations, but
– Beware of hidden labour, e.g. in heuristic mutation

operators

– Beware of possibly fewer evaluations by smart
operators

 EA vs. heuristic: allow the same no. of steps:
– Defining “step” is crucial, might imply bias!

– Scale-up comparisons eliminate this bias

22

Example: off-line performance
measure evaluation

Which algorith

is better?

Why?

When?

-50
51-60

61-70
71-80

81-90
91-100

Alg A

Alg B

0

5

10

15

20

25

30

N
r.

 o
f

ru
n
s
 e

n
d
in

g
 w

it
h
 t

h
is

 f
it
n
e
s
s

Best fitness at termination

23

Example: on-line performance
measure evaluation

Populations mean (best) fitness

Which algorith is better? Why? When?

Algorithm B

Algorithm A

24

Example: averaging on-line
measures

time

Run 2

Run 1

average

Averaging can “choke” interesting onformation

25

Example: overlaying on-line
measures

time

Overlay of curves can lead to very “cloudy” figures

26

Statistical Comparisons and
Significance

 Algorithms are stochastic

 Results have element of “luck”

 Sometimes can get away with less rigour – e.g.
parameter tuning

 For scientific papers where a claim is made:
“Newbie recombination is better ran uniform
crossover”, need to show statistical
significance of comparisons

27

Example

Is the new method better?

Trial Old Method New Method

1 500 657

2 600 543

3 556 654

4 573 565

5 420 654

6 590 712

7 700 456

8 472 564

9 534 675

10 512 643

Average 545.7 612.3

28

Example (cont’d)

• Standard deviations supply additional info

• T-test (and alike) indicate the chance that the values came

from the same underlying distribution (difference is due to

random effetcs) E.g. with 7% chance in this example.

Trial Old Method New Method

1 500 657

2 600 543

3 556 654

4 573 565

5 420 654

6 590 712

7 700 456

8 472 564

9 534 675

10 512 643

Average 545.7 612.3

SD 73.5962635 73.5473317

T-test 0.07080798

29

Statistical tests

 T-test assummes:

– Data taken from continuous interval or close approximation

– Normal distribution

– Similar variances for too few data points

– Similar sized groups of data points

 Other tests:

– Wilcoxon – preferred to t-test where numbers are small or

distribution is not known.

– F-test – tests if two samples have different variances.

– KS-test (Kolmogorov-Smirnov), Kruskal-Wallis

30

Statistical Resources

 http://fonsg3.let.uva.nl/Service/Statistics.html

 http://department.obg.cuhk.edu.hk/ResearchSupport/

 http://faculty.vassar.edu/lowry/webtext.html

 Microsoft Excel

 http://www.octave.org/

http://www.octave.org/
http://www.octave.org/

31

Statistical Resources – cont’ed

 R - http://www.r-project.org/

32

Better example: problem setting

 I invented myEA for problem X

 Looked and found 3 other EAs and a traditional

benchmark heuristic for problem X in the

literature

 Asked myself when and why is myEA better

33

Better example: experiments

 Found/made problem instance generator for problem X
with 2 parameters:

– n (problem size)

– k (some problem specific indicator)

 Selected 5 values for k and 5 values for n

 Generated 100 problem instances for all combinations

 Executed all alg’s on each instance 100 times
(benchmark was also stochastic)

 Recorded AES, SR, MBF values w/ same comp. limit

 (AES for benchmark?)

 Put my program code and the instances on the Web

34

Better example: evaluation

 Arranged results “in 3D” (n,k) + performance

 (with special attention to the effect of n, as for scale-up)

 Assessed statistical significance of results

 Found the niche for my_EA:
– Weak in … cases, strong in - - - cases, comparable otherwise

– Thereby I answered the “when question”

 Analyzed the specific features and the niches of each
algorithm thus answering the “why question”

 Learned a lot about problem X and its solvers

 Achieved generalizable results, or at least claims with
well-identified scope based on solid data

 Facilitated reproducing my results  further research

35

Some tips

 Be organized

 Decide what you want & define appropriate measures

 Choose test problems carefully

 Make an experiment plan (estimate time when possible)

 Perform sufficient number of runs

 Keep all experimental data (never throw away anything)

 Use good statistics (“standard” tools from Web)

 Present results well (figures, graphs, tables, …)

 Watch the scope of your claims

 Aim at generalizable results

 Publish code for reproducibility of results (if applicable)

