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Issues considered 

 Experiment design 

 

 Algorithm design 

 

 Test problems 

 

 Measurements and statistics 

 

 Some tips and summary 
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Experimentation  

 Has a goal or goals  

 Involves algorithm design and implementation  

 Needs problem(s) to run the algorithm(s) on 

 Amounts to running the algorithm(s) on the problem(s) 

 Delivers measurement data, the results 

 Is concluded with evaluating the results in the light of 

the given goal(s) 

 Is often documented (see tutorial on paper writing) 
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EA experimentation  

 EA objectives determined by problem context: 

 

 Design (engineering) problems – single ‘good’ 

solution required. 

 Control (optimization) problems – requiring 

many ‘good’ yet ‘timely’ solutions. 
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Example: Production Perspective 

 Optimizing Internet shopping  

 delivery routes 

 

– Different destinations each day 

– Limited time to run algorithm each day 

– Must always be reasonably good route in limited 

time 
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Example: Design Perspective 

 Optimizing spending on improvements to 

national road network 

–Total cost: billions of Euro 

–Computing costs negligible 

–Six months to run algorithm 

 on hundreds computers 

–Many runs possible 

–Must produce very good 

 result just once 
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Perspectives of an EA’s goals 

Design perspective: 

 find a very good solution at least once 

Production perspective: 

 find a good solution at almost every run 

Academic perspective:  

 must meet scientific standards 

These perspectives have very different implications when 

evaluating EA results. 
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Algorithm design 

 Design a representation 

 Design a way of mapping a genotype to a phenotype 

 Design a way of evaluating an individual 

 Design suitable mutation operator(s) 

 Design suitable recombination operator(s) 

 Decide how to select individuals to be parents 

 Decide how to select individuals for the next generation 
(how to manage the population) 

 Decide how to start: initialization method 

 Decide how to stop: termination criterion 
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Test problems for experimental 
comparisons  

 Use problem instances from an academic 

repository 

 

 Use randomly generated problem instances  

 

 Use real life problem instances 
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Test problems for experimental 
comparisons  

 5 DeJong functions 

 25 “hard” objective functions 

 Frequently encountered or otherwise important 
variants of given practical problem 

 Selection from recognized benchmark problem 
repository (“challenging” by being NP--- ?!)  

 Problem instances made by random generator 

Choice has severe implications on 
– generalizability and  

– scope of the results 



11 

Bad example 

 I invented “tricky mutation” 

 Showed that it is a good idea by: 
– Running standard (?) GA and tricky GA 

– On 10 objective functions from the literature 

– Finding tricky GA better on 7, equal on 1, worse on 2 cases 

 I wrote it down in a paper 

 And it got published! 

 Q: what did I learned from this experience?  

 Q: is this good work? 
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Bad example 

 What did I (my readers) did not learn: 

– How relevant are these results (test functions)? 

– What is the scope of claims about the superiority of 

the tricky GA? 

– Is there a property distinguishing the 7 good and the 

2 bad functions? 

– Can the results be generalized ? (Is the tricky GA 

applicable for other problems? Which ones?) 
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Getting Problem Instances 1 

 Testing on real data 

 Advantages: 

– Results are application oriented 

 Disadvantages 

 

– Can be few available sets of real data 

– May be commercial sensitive – difficult to publish and to allow 

others to compare 

– Results are hard to generalize 
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Getting Problem Instances 2 

 Standard data sets in problem repositories, e.g.: 
– OR-Library 

http://people.brunel.ac.uk/~mastjjb/jeb/info.html 

- UCI Machine Learning Repository  
http://archive.ics.uci.edu/ml/ 

- Advantage:  
– Tried and tested problems and instances (hopefully) 

– Much other work on these  results comparable 

 Disadvantage: 
– Not real – might miss crucial aspect  

– Algorithms get tuned for popular test suites 

  

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://archive.ics.uci.edu/ml/
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Getting Problem Instances 3 

 Problem instance generators produce simulated data 

for given parameters 

 Advantage: 

– Allow systematic investigation of an objective function 

parameter range 

– Can be shared allowing comparisons with other researchers 

 Disadvantage: 

– Not real – might miss crucial aspect 

– Given generator might have hidden bias 
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Basic rules of experimentation 

EAs are stochastic   

 never draw any conclusion from a single run  
– perform sufficient number of independent runs  

– use statistical measures (averages, standard deviations)  

– use statistical tests to assess reliability of conclusions 

EA experimentation is about comparison  

 always do a fair competition 
– use the same amount of resources for the competitors 

– try different competition limits 

– use the same performance measures    
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Things to Measure 

Many different ways. Examples: 

 Average result in given time 

 Average time for given result 

 Proportion of runs within % of target 

 Best result over n runs 

 Amount of computing required to reach target 
in given time with % confidence 

 … 
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What time units do we use? 

 Elapsed time?  
– Depends on computer, network, etc… 

 CPU Time? 
– Depends on skill of programmer, implementation, etc… 

 Generations? 
– Difficult to compare when parameters like population size 

change 

 Evaluations? 
– Evaluation time could depend on algorithm, e.g. direct vs. 

indirect representation 
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Measures 

 Performance measures (off-line) 

– Efficiency (alg. speed) 

 CPU time 

 No. of steps, i.e., generated points in the search space 

– Effectivity (alg. quality) 

 Success rate 

 Solution quality at termination 

 “Working” measures (on-line) 

– Population distribution (genotypic) 

– Fitness distribution (phenotypic) 

– Improvements per time unit or per genetic operator 

– … 
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Performance measures 

 No. of generated points in the search space  

 = no. of fitness evaluations  

 (don’t use no. of generations!) 

 AES: average no. of evaluations to solution 

 SR: success rate = % of runs finding a solution 
(individual with acceptabe quality / fitness) 

 MBF: mean best fitness at termination, i.e., best per 
run, mean over a set of runs 

 SR  MBF 
– Low SR, high MBF: good approximizer (more time helps?) 

– High SR, low MBF: “Murphy” algorithm 
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Fair experiments 

 Basic rule: use the same computational limit for 
each competitor 

 Allow each EA the same no. of evaluations, but  
– Beware of hidden labour, e.g. in heuristic mutation 

operators 

– Beware of possibly fewer evaluations by smart 
operators 

 EA vs. heuristic: allow the same no. of steps: 
– Defining “step” is crucial, might imply bias! 

– Scale-up comparisons eliminate this bias 
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Example: off-line performance 
measure evaluation  

Which algorith  

is better?  

Why?  

When? 
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Example: on-line performance 
measure evaluation 

Populations mean (best) fitness 

Which algorith is better? Why? When? 

Algorithm B 

Algorithm A 
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Example: averaging on-line 
measures  

time 

Run 2 

Run 1 

average 

Averaging can “choke” interesting onformation 
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Example: overlaying on-line 
measures 

time 

Overlay of curves can lead to very “cloudy” figures 
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Statistical Comparisons and 
Significance 

 Algorithms are stochastic 

 Results have element of “luck” 

 Sometimes can get away with less rigour – e.g. 
parameter tuning 

 For scientific papers where a claim is made: 
“Newbie recombination is better ran uniform 
crossover”, need to show statistical 
significance of comparisons 
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Example 

Is the new method better? 

Trial Old Method New Method

1 500 657

2 600 543

3 556 654

4 573 565

5 420 654

6 590 712

7 700 456

8 472 564

9 534 675

10 512 643

Average 545.7 612.3
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Example (cont’d) 

• Standard deviations supply additional info 

• T-test (and alike) indicate the chance that the values came 

from the same underlying distribution (difference is due to 

random effetcs) E.g. with 7% chance in this example. 

Trial Old Method New Method

1 500 657

2 600 543

3 556 654

4 573 565

5 420 654

6 590 712

7 700 456

8 472 564

9 534 675

10 512 643

Average 545.7 612.3

SD 73.5962635 73.5473317

T-test 0.07080798
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Statistical tests 

 T-test assummes: 

– Data taken from continuous interval or close approximation 

– Normal distribution 

– Similar variances for too few data points 

– Similar sized groups of data points 

 Other tests:  

– Wilcoxon – preferred to t-test where numbers are small or 

distribution is not known. 

– F-test – tests if two samples have different variances. 

– KS-test (Kolmogorov-Smirnov), Kruskal-Wallis 
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Statistical Resources 

 http://fonsg3.let.uva.nl/Service/Statistics.html 

 http://department.obg.cuhk.edu.hk/ResearchSupport/ 

 http://faculty.vassar.edu/lowry/webtext.html 

 Microsoft Excel 

 http://www.octave.org/ 

 

 

http://www.octave.org/
http://www.octave.org/
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Statistical Resources – cont’ed 

 R - http://www.r-project.org/  
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Better example: problem setting 

 I invented myEA for problem X 

 Looked and found 3 other EAs and a traditional 

benchmark heuristic for problem X in the 

literature 

 Asked myself when and why is myEA better 
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Better example: experiments 

 Found/made problem instance generator for problem X 
with 2 parameters: 

– n  (problem size) 

– k  (some problem specific indicator)   

 Selected 5 values for k and 5 values for n 

 Generated 100 problem instances for all combinations 

 Executed all alg’s on each instance 100 times 
(benchmark was also stochastic) 

 Recorded AES, SR, MBF values w/ same comp. limit 

 (AES for benchmark?) 

 Put my program code and the instances on the Web 
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Better example: evaluation 

 Arranged results “in 3D” (n,k) + performance  

 (with special attention to the effect of n, as for scale-up) 

 Assessed statistical significance of results  

 Found the niche for my_EA:  
– Weak in … cases, strong in - - - cases, comparable otherwise 

– Thereby I answered the “when question” 

 Analyzed the specific features and the niches of each 
algorithm thus answering the “why question” 

 Learned a lot about problem X and its solvers 

 Achieved generalizable results, or at least claims with 
well-identified scope based on solid data 

 Facilitated reproducing my results  further research 
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Some tips 

 Be organized 

 Decide what you want & define appropriate measures 

 Choose test problems carefully 

 Make an experiment plan (estimate time when possible) 

 Perform sufficient number of runs 

 Keep all experimental data (never throw away anything) 

 Use good statistics (“standard” tools from Web) 

 Present results well (figures, graphs, tables, …) 

 Watch the scope of your claims 

 Aim at generalizable results 

 Publish code for reproducibility of results (if applicable) 


