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Issues considered 

 Experiment design 

 

 Algorithm design 

 

 Test problems 

 

 Measurements and statistics 

 

 Some tips and summary 
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Experimentation  

 Has a goal or goals  

 Involves algorithm design and implementation  

 Needs problem(s) to run the algorithm(s) on 

 Amounts to running the algorithm(s) on the problem(s) 

 Delivers measurement data, the results 

 Is concluded with evaluating the results in the light of 

the given goal(s) 

 Is often documented (see tutorial on paper writing) 
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EA experimentation  

 EA objectives determined by problem context: 

 

 Design (engineering) problems – single ‘good’ 

solution required. 

 Control (optimization) problems – requiring 

many ‘good’ yet ‘timely’ solutions. 
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Example: Production Perspective 

 Optimizing Internet shopping  

 delivery routes 

 

– Different destinations each day 

– Limited time to run algorithm each day 

– Must always be reasonably good route in limited 

time 
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Example: Design Perspective 

 Optimizing spending on improvements to 

national road network 

–Total cost: billions of Euro 

–Computing costs negligible 

–Six months to run algorithm 

 on hundreds computers 

–Many runs possible 

–Must produce very good 

 result just once 
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Perspectives of an EA’s goals 

Design perspective: 

 find a very good solution at least once 

Production perspective: 

 find a good solution at almost every run 

Academic perspective:  

 must meet scientific standards 

These perspectives have very different implications when 

evaluating EA results. 
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Algorithm design 

 Design a representation 

 Design a way of mapping a genotype to a phenotype 

 Design a way of evaluating an individual 

 Design suitable mutation operator(s) 

 Design suitable recombination operator(s) 

 Decide how to select individuals to be parents 

 Decide how to select individuals for the next generation 
(how to manage the population) 

 Decide how to start: initialization method 

 Decide how to stop: termination criterion 
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Test problems for experimental 
comparisons  

 Use problem instances from an academic 

repository 

 

 Use randomly generated problem instances  

 

 Use real life problem instances 
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Test problems for experimental 
comparisons  

 5 DeJong functions 

 25 “hard” objective functions 

 Frequently encountered or otherwise important 
variants of given practical problem 

 Selection from recognized benchmark problem 
repository (“challenging” by being NP--- ?!)  

 Problem instances made by random generator 

Choice has severe implications on 
– generalizability and  

– scope of the results 
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Bad example 

 I invented “tricky mutation” 

 Showed that it is a good idea by: 
– Running standard (?) GA and tricky GA 

– On 10 objective functions from the literature 

– Finding tricky GA better on 7, equal on 1, worse on 2 cases 

 I wrote it down in a paper 

 And it got published! 

 Q: what did I learned from this experience?  

 Q: is this good work? 
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Bad example 

 What did I (my readers) did not learn: 

– How relevant are these results (test functions)? 

– What is the scope of claims about the superiority of 

the tricky GA? 

– Is there a property distinguishing the 7 good and the 

2 bad functions? 

– Can the results be generalized ? (Is the tricky GA 

applicable for other problems? Which ones?) 
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Getting Problem Instances 1 

 Testing on real data 

 Advantages: 

– Results are application oriented 

 Disadvantages 

 

– Can be few available sets of real data 

– May be commercial sensitive – difficult to publish and to allow 

others to compare 

– Results are hard to generalize 
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Getting Problem Instances 2 

 Standard data sets in problem repositories, e.g.: 
– OR-Library 

http://people.brunel.ac.uk/~mastjjb/jeb/info.html 

- UCI Machine Learning Repository  
http://archive.ics.uci.edu/ml/ 

- Advantage:  
– Tried and tested problems and instances (hopefully) 

– Much other work on these  results comparable 

 Disadvantage: 
– Not real – might miss crucial aspect  

– Algorithms get tuned for popular test suites 

  

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://archive.ics.uci.edu/ml/
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Getting Problem Instances 3 

 Problem instance generators produce simulated data 

for given parameters 

 Advantage: 

– Allow systematic investigation of an objective function 

parameter range 

– Can be shared allowing comparisons with other researchers 

 Disadvantage: 

– Not real – might miss crucial aspect 

– Given generator might have hidden bias 
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Basic rules of experimentation 

EAs are stochastic   

 never draw any conclusion from a single run  
– perform sufficient number of independent runs  

– use statistical measures (averages, standard deviations)  

– use statistical tests to assess reliability of conclusions 

EA experimentation is about comparison  

 always do a fair competition 
– use the same amount of resources for the competitors 

– try different competition limits 

– use the same performance measures    
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Things to Measure 

Many different ways. Examples: 

 Average result in given time 

 Average time for given result 

 Proportion of runs within % of target 

 Best result over n runs 

 Amount of computing required to reach target 
in given time with % confidence 

 … 
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What time units do we use? 

 Elapsed time?  
– Depends on computer, network, etc… 

 CPU Time? 
– Depends on skill of programmer, implementation, etc… 

 Generations? 
– Difficult to compare when parameters like population size 

change 

 Evaluations? 
– Evaluation time could depend on algorithm, e.g. direct vs. 

indirect representation 
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Measures 

 Performance measures (off-line) 

– Efficiency (alg. speed) 

 CPU time 

 No. of steps, i.e., generated points in the search space 

– Effectivity (alg. quality) 

 Success rate 

 Solution quality at termination 

 “Working” measures (on-line) 

– Population distribution (genotypic) 

– Fitness distribution (phenotypic) 

– Improvements per time unit or per genetic operator 

– … 
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Performance measures 

 No. of generated points in the search space  

 = no. of fitness evaluations  

 (don’t use no. of generations!) 

 AES: average no. of evaluations to solution 

 SR: success rate = % of runs finding a solution 
(individual with acceptabe quality / fitness) 

 MBF: mean best fitness at termination, i.e., best per 
run, mean over a set of runs 

 SR  MBF 
– Low SR, high MBF: good approximizer (more time helps?) 

– High SR, low MBF: “Murphy” algorithm 
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Fair experiments 

 Basic rule: use the same computational limit for 
each competitor 

 Allow each EA the same no. of evaluations, but  
– Beware of hidden labour, e.g. in heuristic mutation 

operators 

– Beware of possibly fewer evaluations by smart 
operators 

 EA vs. heuristic: allow the same no. of steps: 
– Defining “step” is crucial, might imply bias! 

– Scale-up comparisons eliminate this bias 
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Example: off-line performance 
measure evaluation  

Which algorith  

is better?  

Why?  

When? 
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Example: on-line performance 
measure evaluation 

Populations mean (best) fitness 

Which algorith is better? Why? When? 

Algorithm B 

Algorithm A 
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Example: averaging on-line 
measures  

time 

Run 2 

Run 1 

average 

Averaging can “choke” interesting onformation 
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Example: overlaying on-line 
measures 

time 

Overlay of curves can lead to very “cloudy” figures 
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Statistical Comparisons and 
Significance 

 Algorithms are stochastic 

 Results have element of “luck” 

 Sometimes can get away with less rigour – e.g. 
parameter tuning 

 For scientific papers where a claim is made: 
“Newbie recombination is better ran uniform 
crossover”, need to show statistical 
significance of comparisons 
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Example 

Is the new method better? 

Trial Old Method New Method

1 500 657

2 600 543

3 556 654

4 573 565

5 420 654

6 590 712

7 700 456

8 472 564

9 534 675

10 512 643

Average 545.7 612.3
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Example (cont’d) 

• Standard deviations supply additional info 

• T-test (and alike) indicate the chance that the values came 

from the same underlying distribution (difference is due to 

random effetcs) E.g. with 7% chance in this example. 

Trial Old Method New Method

1 500 657

2 600 543

3 556 654

4 573 565

5 420 654

6 590 712

7 700 456

8 472 564

9 534 675

10 512 643

Average 545.7 612.3

SD 73.5962635 73.5473317

T-test 0.07080798
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Statistical tests 

 T-test assummes: 

– Data taken from continuous interval or close approximation 

– Normal distribution 

– Similar variances for too few data points 

– Similar sized groups of data points 

 Other tests:  

– Wilcoxon – preferred to t-test where numbers are small or 

distribution is not known. 

– F-test – tests if two samples have different variances. 

– KS-test (Kolmogorov-Smirnov), Kruskal-Wallis 
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Statistical Resources 

 http://fonsg3.let.uva.nl/Service/Statistics.html 

 http://department.obg.cuhk.edu.hk/ResearchSupport/ 

 http://faculty.vassar.edu/lowry/webtext.html 

 Microsoft Excel 

 http://www.octave.org/ 

 

 

http://www.octave.org/
http://www.octave.org/
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Statistical Resources – cont’ed 

 R - http://www.r-project.org/  

 

 



32 

Better example: problem setting 

 I invented myEA for problem X 

 Looked and found 3 other EAs and a traditional 

benchmark heuristic for problem X in the 

literature 

 Asked myself when and why is myEA better 
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Better example: experiments 

 Found/made problem instance generator for problem X 
with 2 parameters: 

– n  (problem size) 

– k  (some problem specific indicator)   

 Selected 5 values for k and 5 values for n 

 Generated 100 problem instances for all combinations 

 Executed all alg’s on each instance 100 times 
(benchmark was also stochastic) 

 Recorded AES, SR, MBF values w/ same comp. limit 

 (AES for benchmark?) 

 Put my program code and the instances on the Web 
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Better example: evaluation 

 Arranged results “in 3D” (n,k) + performance  

 (with special attention to the effect of n, as for scale-up) 

 Assessed statistical significance of results  

 Found the niche for my_EA:  
– Weak in … cases, strong in - - - cases, comparable otherwise 

– Thereby I answered the “when question” 

 Analyzed the specific features and the niches of each 
algorithm thus answering the “why question” 

 Learned a lot about problem X and its solvers 

 Achieved generalizable results, or at least claims with 
well-identified scope based on solid data 

 Facilitated reproducing my results  further research 
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Some tips 

 Be organized 

 Decide what you want & define appropriate measures 

 Choose test problems carefully 

 Make an experiment plan (estimate time when possible) 

 Perform sufficient number of runs 

 Keep all experimental data (never throw away anything) 

 Use good statistics (“standard” tools from Web) 

 Present results well (figures, graphs, tables, …) 

 Watch the scope of your claims 

 Aim at generalizable results 

 Publish code for reproducibility of results (if applicable) 


