
Working with
Evolutionary Algorithms

Chapter 14

2

Issues considered

 Experiment design

 Algorithm design

 Test problems

 Measurements and statistics

 Some tips and summary

3

Experimentation

 Has a goal or goals

 Involves algorithm design and implementation

 Needs problem(s) to run the algorithm(s) on

 Amounts to running the algorithm(s) on the problem(s)

 Delivers measurement data, the results

 Is concluded with evaluating the results in the light of

the given goal(s)

 Is often documented (see tutorial on paper writing)

4

EA experimentation

 EA objectives determined by problem context:

 Design (engineering) problems – single ‘good’

solution required.

 Control (optimization) problems – requiring

many ‘good’ yet ‘timely’ solutions.

5

Example: Production Perspective

 Optimizing Internet shopping

 delivery routes

– Different destinations each day

– Limited time to run algorithm each day

– Must always be reasonably good route in limited

time

6

Example: Design Perspective

 Optimizing spending on improvements to

national road network

–Total cost: billions of Euro

–Computing costs negligible

–Six months to run algorithm

 on hundreds computers

–Many runs possible

–Must produce very good

 result just once

7

Perspectives of an EA’s goals

Design perspective:

 find a very good solution at least once

Production perspective:

 find a good solution at almost every run

Academic perspective:

 must meet scientific standards

These perspectives have very different implications when

evaluating EA results.

8

Algorithm design

 Design a representation

 Design a way of mapping a genotype to a phenotype

 Design a way of evaluating an individual

 Design suitable mutation operator(s)

 Design suitable recombination operator(s)

 Decide how to select individuals to be parents

 Decide how to select individuals for the next generation
(how to manage the population)

 Decide how to start: initialization method

 Decide how to stop: termination criterion

9

Test problems for experimental
comparisons

 Use problem instances from an academic

repository

 Use randomly generated problem instances

 Use real life problem instances

10

Test problems for experimental
comparisons

 5 DeJong functions

 25 “hard” objective functions

 Frequently encountered or otherwise important
variants of given practical problem

 Selection from recognized benchmark problem
repository (“challenging” by being NP--- ?!)

 Problem instances made by random generator

Choice has severe implications on
– generalizability and

– scope of the results

11

Bad example

 I invented “tricky mutation”

 Showed that it is a good idea by:
– Running standard (?) GA and tricky GA

– On 10 objective functions from the literature

– Finding tricky GA better on 7, equal on 1, worse on 2 cases

 I wrote it down in a paper

 And it got published!

 Q: what did I learned from this experience?

 Q: is this good work?

12

Bad example

 What did I (my readers) did not learn:

– How relevant are these results (test functions)?

– What is the scope of claims about the superiority of

the tricky GA?

– Is there a property distinguishing the 7 good and the

2 bad functions?

– Can the results be generalized ? (Is the tricky GA

applicable for other problems? Which ones?)

13

Getting Problem Instances 1

 Testing on real data

 Advantages:

– Results are application oriented

 Disadvantages

– Can be few available sets of real data

– May be commercial sensitive – difficult to publish and to allow

others to compare

– Results are hard to generalize

14

Getting Problem Instances 2

 Standard data sets in problem repositories, e.g.:
– OR-Library

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

- UCI Machine Learning Repository
http://archive.ics.uci.edu/ml/

- Advantage:
– Tried and tested problems and instances (hopefully)

– Much other work on these results comparable

 Disadvantage:
– Not real – might miss crucial aspect

– Algorithms get tuned for popular test suites

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://archive.ics.uci.edu/ml/

15

Getting Problem Instances 3

 Problem instance generators produce simulated data

for given parameters

 Advantage:

– Allow systematic investigation of an objective function

parameter range

– Can be shared allowing comparisons with other researchers

 Disadvantage:

– Not real – might miss crucial aspect

– Given generator might have hidden bias

16

Basic rules of experimentation

EAs are stochastic

 never draw any conclusion from a single run
– perform sufficient number of independent runs

– use statistical measures (averages, standard deviations)

– use statistical tests to assess reliability of conclusions

EA experimentation is about comparison

 always do a fair competition
– use the same amount of resources for the competitors

– try different competition limits

– use the same performance measures

17

Things to Measure

Many different ways. Examples:

 Average result in given time

 Average time for given result

 Proportion of runs within % of target

 Best result over n runs

 Amount of computing required to reach target
in given time with % confidence

 …

18

What time units do we use?

 Elapsed time?
– Depends on computer, network, etc…

 CPU Time?
– Depends on skill of programmer, implementation, etc…

 Generations?
– Difficult to compare when parameters like population size

change

 Evaluations?
– Evaluation time could depend on algorithm, e.g. direct vs.

indirect representation

19

Measures

 Performance measures (off-line)

– Efficiency (alg. speed)

 CPU time

 No. of steps, i.e., generated points in the search space

– Effectivity (alg. quality)

 Success rate

 Solution quality at termination

 “Working” measures (on-line)

– Population distribution (genotypic)

– Fitness distribution (phenotypic)

– Improvements per time unit or per genetic operator

– …

20

Performance measures

 No. of generated points in the search space

 = no. of fitness evaluations

 (don’t use no. of generations!)

 AES: average no. of evaluations to solution

 SR: success rate = % of runs finding a solution
(individual with acceptabe quality / fitness)

 MBF: mean best fitness at termination, i.e., best per
run, mean over a set of runs

 SR MBF
– Low SR, high MBF: good approximizer (more time helps?)

– High SR, low MBF: “Murphy” algorithm

21

Fair experiments

 Basic rule: use the same computational limit for
each competitor

 Allow each EA the same no. of evaluations, but
– Beware of hidden labour, e.g. in heuristic mutation

operators

– Beware of possibly fewer evaluations by smart
operators

 EA vs. heuristic: allow the same no. of steps:
– Defining “step” is crucial, might imply bias!

– Scale-up comparisons eliminate this bias

22

Example: off-line performance
measure evaluation

Which algorith

is better?

Why?

When?

-50
51-60

61-70
71-80

81-90
91-100

Alg A

Alg B

0

5

10

15

20

25

30

N
r.

 o
f

ru
n
s
 e

n
d
in

g
 w

it
h
 t

h
is

 f
it
n
e
s
s

Best fitness at termination

23

Example: on-line performance
measure evaluation

Populations mean (best) fitness

Which algorith is better? Why? When?

Algorithm B

Algorithm A

24

Example: averaging on-line
measures

time

Run 2

Run 1

average

Averaging can “choke” interesting onformation

25

Example: overlaying on-line
measures

time

Overlay of curves can lead to very “cloudy” figures

26

Statistical Comparisons and
Significance

 Algorithms are stochastic

 Results have element of “luck”

 Sometimes can get away with less rigour – e.g.
parameter tuning

 For scientific papers where a claim is made:
“Newbie recombination is better ran uniform
crossover”, need to show statistical
significance of comparisons

27

Example

Is the new method better?

Trial Old Method New Method

1 500 657

2 600 543

3 556 654

4 573 565

5 420 654

6 590 712

7 700 456

8 472 564

9 534 675

10 512 643

Average 545.7 612.3

28

Example (cont’d)

• Standard deviations supply additional info

• T-test (and alike) indicate the chance that the values came

from the same underlying distribution (difference is due to

random effetcs) E.g. with 7% chance in this example.

Trial Old Method New Method

1 500 657

2 600 543

3 556 654

4 573 565

5 420 654

6 590 712

7 700 456

8 472 564

9 534 675

10 512 643

Average 545.7 612.3

SD 73.5962635 73.5473317

T-test 0.07080798

29

Statistical tests

 T-test assummes:

– Data taken from continuous interval or close approximation

– Normal distribution

– Similar variances for too few data points

– Similar sized groups of data points

 Other tests:

– Wilcoxon – preferred to t-test where numbers are small or

distribution is not known.

– F-test – tests if two samples have different variances.

– KS-test (Kolmogorov-Smirnov), Kruskal-Wallis

30

Statistical Resources

 http://fonsg3.let.uva.nl/Service/Statistics.html

 http://department.obg.cuhk.edu.hk/ResearchSupport/

 http://faculty.vassar.edu/lowry/webtext.html

 Microsoft Excel

 http://www.octave.org/

http://www.octave.org/
http://www.octave.org/

31

Statistical Resources – cont’ed

 R - http://www.r-project.org/

32

Better example: problem setting

 I invented myEA for problem X

 Looked and found 3 other EAs and a traditional

benchmark heuristic for problem X in the

literature

 Asked myself when and why is myEA better

33

Better example: experiments

 Found/made problem instance generator for problem X
with 2 parameters:

– n (problem size)

– k (some problem specific indicator)

 Selected 5 values for k and 5 values for n

 Generated 100 problem instances for all combinations

 Executed all alg’s on each instance 100 times
(benchmark was also stochastic)

 Recorded AES, SR, MBF values w/ same comp. limit

 (AES for benchmark?)

 Put my program code and the instances on the Web

34

Better example: evaluation

 Arranged results “in 3D” (n,k) + performance

 (with special attention to the effect of n, as for scale-up)

 Assessed statistical significance of results

 Found the niche for my_EA:
– Weak in … cases, strong in - - - cases, comparable otherwise

– Thereby I answered the “when question”

 Analyzed the specific features and the niches of each
algorithm thus answering the “why question”

 Learned a lot about problem X and its solvers

 Achieved generalizable results, or at least claims with
well-identified scope based on solid data

 Facilitated reproducing my results further research

35

Some tips

 Be organized

 Decide what you want & define appropriate measures

 Choose test problems carefully

 Make an experiment plan (estimate time when possible)

 Perform sufficient number of runs

 Keep all experimental data (never throw away anything)

 Use good statistics (“standard” tools from Web)

 Present results well (figures, graphs, tables, …)

 Watch the scope of your claims

 Aim at generalizable results

 Publish code for reproducibility of results (if applicable)

