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Overview

� Why to Hybridise
� Where to hybridise
� Incorporating good solutions
� Local Search and graphs
� Lamarkian vs. Baldwinian adaptation
� Diversity
� Operator choice
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Why Hybridise

� Might want to put in EA as part of larger 
system
� Might be looking to improve on existing 

techniques but not re-invent wheel
� Might be looking to improve EA search 

for good solutions 
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Michalewicz’s  view on EAs in context
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Memetic Algorithms

� The combination of Evolutionary Algorithms 
with Local Search Operators that work within 
the EA loop has been termed “Memetic 
Algorithms”
� Term also applies to EAs that use instance 

specific knowledge in operators
� Memetic Algorithms have been shown to be 

orders of magnitude faster and more accurate 
than EAs on some problems, and are the 
“state of the art” on many problems
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Where to Hybridise
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Heuristics for Initialising Population

� Bramlette ran experiments with limited time 
scale and suggested holding a n-way 
tournament amongst randomly created 
solutions to pick initial population 
(n.b. NOT the same as taking the best popsize of 

n.popsize random points)

� Multi-Start Local Search is another option: pick 
popsize points at random to climb from
� Constructive Heuristics often exist
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Initialisation Issues

� Another common approach would be to initialise 
population with solutions already known, or found by 
another technique 
� Surry & Radcliffe (1994) studied ways of “inoculating” 

population with solutions gained from previous runs 
or other algorithms/heuristics
– found mean performance increased as population 

was biased towards know solutions, 
– but best performance came from more random 

solutions
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“Intelligent” Operators

� It is sometimes possible to incorporate problem 
or instance specific knowledge within 
crossover or mutation operators
– E.g. Merz’s DPX operator for TSP inherits common 

sub tours from parents then connects them using a 
nearesr neighbour heuristic

– Smith (97) evolving microprocessor instruction 
sequences: group instructions (alleles) into classes 
so mutation is more likely to switch gene to value 
having a similar effect

– Many other examples in literature
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Local Search acting on offspring

� Can be viewed as a sort of “lifetime learning”
� Lots of early research done using EAs to 

evolve the structure of Artificial Neural 
Networks and then Back-propagation to learn 
connection weights
� Often used to speed-up the “endgame” of an 

EA by making the search in the vicinity of good 
solutions more systematic than mutation alone
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Local Search

� Defined by combination of neighbourhood and 
pivot rule
� Related to landscape metaphor
� N(x) is defined as the  set of points that can be 

reached from x with one application of a move 
operator

N(d) = {a,c,h}d
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Landscapes & Graphs

� The combination of representation and operator 
defines a graph G(v,E) on the search space

� v, the set of vertices, is the set of all points that can 
be represented (the potential solutions)

� E, the set of edges, is the possible transitions that 
can arise from a single application of the operator
� note that the edges in E can have weights attached to 

them, and that they need not be symmetrical
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Example Graphs

� example : problem as above
– v = {a,b,c,d,e,f,g,h,}
– Search by flipping each bit in turn
� E1 = { ab, ad, ae, bc, bf, cd, cg, dh, fg, fe, gh, eh}
� symmetrical and all values equally likely

– p2{ac,bd,af,be,dg, ch, fh, ge, ah, de, bg, cf} ∪ p3 {ag, bh, 
ce, df}
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Graphs

� The Degree of  a graph is the maximum 
number of edges coming into/out of a single 
point, - the size of the biggest neighbourhood

� Local Search algorithms look at points in the 
neighbourhood of a solution, so complexity is 
related to degree of graph
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Pivot Rules

� Is the neighbourhood searched randomly, 
systematically or exhaustively ?
� does the  search stop as soon as a fitter neighbour is 

found (Greedy Ascent) 
� or is the whole set of neighbours examined and the 

best chosen (Steepest Ascent)
� of course there is no one best answer,  but some are 

quicker than others to run ........



A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Hybridisation with other techniques: Memetic Algorithms

Variations of Local Search

� Does the search happen in representation 
space or Solution Space ?
� How many iterations of the local search are 

done ?
� Is local search applied to the whole 

population?
– or just the best ?
– or just the worst ?
– see work (PhD theses) by Hart 

(www.cs.sandia.gov/~wehart),  and Land
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Information Use in Local Search

� Most Memetic Algorithms use an operator 
acting on a single point, and only use that 
information
� However this is an arbitrary restriction

� Jones (1995), Merz & Friesleben (1996) suggest the use of 
a crossover hillclimber which uses information from two 
points in the search space
� Krasnogor & Smith (2000) - see later - use information from 

whole of current population to govern acceptance of inferior 
moves
� Could use Tabu search with a common list  
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Diversity

� Maintenance of diversity within the population 
can be a problem, and some successful 
algorithms explicitly use mechanisms to 
preserve diversity:
�Merz’s DPX crossover explicitly generates 

individuals at same distance to each parent as 
they are apart
�Krasnogor’s Adaptive Boltzmann Operator uses 

a Simulated-Annealing like acceptance criteria 
where “temperature” is inversely proportional to 
population diversity
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Hybrid Algorithms Summary

� It is common practice to hybridise EA’s when using 
them in a real world context.
� this may involve the use of operators from other 

algorithms which have already been used on the 
problem (e.g. 2-opt for TSP), or the incorporation of 
domain-specific knowledge (e.g PSP operators)
� Memetic algorithms have been shown to be orders of 

magnitude faster and more accurate than GAs on 
some problems, and are the “state of the art” on many 
problems


