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Motivation 1: Multimodality 

Most interesting problems have more than one 

locally optimal solution. 
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Motivation 2: Genetic Drift 

 Finite population with global (panmictic) 
mixing and selection eventually 
convergence around one optimum 

 Often might want to identify several 
possible peaks 

 This can aid global optimisation when 
sub-optima has the largest basin of 
attraction 
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Biological Motivation 1: Speciation 

 In nature different species adapt to occupy 
different environmental niches, which contain 
finite resources, so the individuals are in 
competition with each other 

 Species only reproduce with other members of 
the same species (Mating Restriction) 

 These forces tend to lead to phenotypic 
homogeneity within species, but differences 
between species 
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Biological Motivation 2: Punctuated 
Equilbria 

 Theory that periods of stasis are interrupted by 

rapid growth when main population is “invaded” 

by individuals from previously spatially isolated 

group of individuals from the same species 

 The separated sub-populations (demes) often 

show local adaptations in  response to slight 

changes in their local environments 
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Implications for Evolutionary 
Optimisation 

 Two main approaches to diversity maintenance: 

 Implicit approaches: 
– Impose an equivalent of geographical separation 

– Impose an equivalent of speciation 

 Explicit approaches 
– Make similar individuals compete for resources 

(fitness) 

– Make similar individuals compete with each other for 
survival 
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Periodic migration of individual solutions between populations 

Implicit 1: “Island” Model Parallel 
EAs 

EA 

EA 

EA EA 

EA 
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Island Model EAs contd: 

 Run multiple populations in parallel, in some 
kind of communication structure (usually a ring 
or a torus).  

 After a (usually fixed) number of generations 
(an Epoch), exchange individuals with 
neighbours 

 Repeat until ending criteria met 

 Partially inspired by parallel/clustered systems 
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Island Model Parameters 1 

 Could use different operators in each island 

 How often to exchange individuals ? 

– too quick and all pops converge to same solution 

– too slow and waste time 

– most authors use range~ 25-150 gens 

– can do it adaptively (stop each pop when no 

improvement for (say) 25 generations) 
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Island Model Parameters 2 

 How many, which individuals to exchange ? 

– usually ~2-5, but depends on population size. 

–  more sub populations usually gives better results 

but there can be a “critical mass” i.e. minimum size 

of each sub population needed 

– Martin et al found that better to exchange randomly 

selected individuals than best 

– can select random/worst individuals to replace 
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Implicit 2: Diffusion Model Parallel 
EAs 

 Impose spatial structure (usually grid) in 1 pop 

Current 

individual 

Neighbours 
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Diffusion Model EAs 

 Consider each individual to exist on a point on 

a (usually rectangular toroid) grid 

 Selection (hence recombination) and 

replacement happen using concept of a 

neighbourhood a.k.a. deme 

 Leads to different parts of grid searching 

different parts of space, good solutions diffuse 

across grid over a number of gens 
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Diffusion Model Example 

 Assume rectangular grid so each individual has 

8 immediate neighbours 

 equivalent of 1 generation is: 

– pick point in pop at random 

– pick one of its neighbours using roulette wheel 

– crossover to produce 1 child, mutate 

–  replace individual if fitter 

– circle through population until done 
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Implicit 3: Automatic Speciation 

 Either only mate with genotypically/ 
phenotypically similar members  or  

 Add bits to problem representation  
– that are initially randomly set  

– subject to recombination and mutation 

– when selecting partner for recombination, only pick 
members with a good match 

– can also use tags to perform fitness sharing (see 
later) to try and distribute members amongst niches 
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Explicit 1: Fitness Sharing 

 Restricts the number of individuals within a given niche 
by “sharing” their fitness, so as to allocate individuals 
to niches in proportion to the niche fitness 

 need to set the size of the niche share in either 
genotype or phenotype space 

 run EA as normal but after each gen set 
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Explicit 2: Crowding 

 Attempts to distribute individuals evenly 
amongst niches 

 relies on the assumption that offspring will tend 
to be close to parents 

 uses a distance metric in ph/g enotype space 

 randomly shuffle and pair parents, produce 2 
offspring 

 2 parent/offspring tournaments - pair so that 
d(p1,o1)+d(p2,o2) < d(p1,02) + d(p2,o1) 
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Fitness Sharing vs. Crowding 
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Multi-Objective Problems (MOPs) 

 Wide range of problems can be categorised by 

the presence of a number of n possibly 

conflicting objectives: 

– buying a car: speed vs. price vs. reliability 

– engineering design:  lightness vs strength 

 Two part problem: 

– finding set of good solutions 

– choice of  best for particular application 
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MOPs 1: Conventional approaches  

 rely on using a weighting of objective function 

values to give a single scalar objective function 

which can then be optimised: 

 

 

 to find other solutions have to re-optimise with 

different wi. 
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MOPs 2: Dominance 

 we say x dominates y if it is at least as good on 

all criteria and better on at least one 

 

Dominated by x 

f1 

f2 

Pareto front 
x 
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MOPs 3: Advantages of EC 
approach 

 Population-based nature of search means you 

can simultaneously  search for set of points 

approximating Pareto front 

 Don’t have to make guesses about which 

combinations of weights might be useful 

 Makes no assumptions about shape of Pareto 

front - can be convex / discontinuous etc 
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MOPs 4: Requirements of EC 
approach 

 Way of assigning fitness,  

– usually based on dominance 

 Preservation of diverse set of points 

– similarities to multi-modal problems 

 Remembering all the non-dominated 
points you’ve seen 

– usually using elitism or an archive 
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MOPs 5: Fitness Assignment 

 Could use aggregating approach and change 

weights during evolution 

– no guarantees 

  Different parts of pop use different criteria 

– e.g. VEGA, but no guarantee of diversity 

 Dominance 

– ranking or depth based 

– fitness related to whole population 
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MOPs 6: Diversity Maintenance 

 Usually done by niching techniques such as: 

–  fitness sharing 

– adding amount to fitness based on inverse distance 

to nearest neighbour (minimisation) 

– (adaptively) dividing search space into boxes and 

counting occupancy 

 All rely on some distance metric in genotype / 

phenotype space 
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MOPs 7: Remembering Good 
Points 

 Could just use elitist algorithm  

– e.g. (  +  ) replacement  

 Common to maintain an archive of non-
dominated points 

– some algorithms use this as second 
population that can be in recombination etc 

– others divide archive into regions too e.g. 
PAES 


