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Motivation 1 

An EA has many strategy parameters, e.g. 

 mutation operator and mutation rate 

 crossover operator and crossover rate 

 selection mechanism and selective pressure (e.g. 
tournament size) 

 population size 

 

Good parameter values facilitate good performance 

 

Q1 How to find good parameter values ? 
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Motivation 2 

EA parameters are rigid (constant during a run) 

BUT 

an EA is a dynamic, adaptive process 

THUS 

optimal parameter values may vary during a run 

 

Q2: How to vary parameter values? 
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Parameter tuning 

Parameter tuning: the traditional way of testing and 

comparing different values before the “real” run 

 

Problems: 

 users mistakes in settings can be sources of errors or 
sub-optimal performance 

 costs much time 

 parameters interact: exhaustive search is not 
practicable 

 good values may become bad during the run 
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Parameter control 

Parameter control: setting values on-line, during the 

actual run, e.g. 
 predetermined time-varying schedule p = p(t) 

 using feedback from the search process 

 encoding parameters in chromosomes and rely on natural 
selection 

 

Problems: 
 finding optimal p is hard, finding optimal p(t) is harder 

 still user-defined feedback mechanism, how to ``optimize"? 

 when would natural selection work for strategy parameters? 
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Example 

Task to solve: 

– min  f(x1,…,xn) 

– Li  xi  Ui  for i = 1,…,n  bounds 

– gi (x)  0   for i = 1,…,q  inequality constraints 

– hi (x) = 0   for i = q+1,…,m  equality constraints 

 

Algorithm: 

– EA with real-valued representation (x1,…,xn) 

– arithmetic averaging crossover 

– Gaussian mutation: x’ i = xi + N(0, ) 

 standard deviation  is called mutation step size 
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Replace the constant  by a function (t) 

 

 

0  t  T is the current generation number 

 

T
t0.9  - 1  )(t

Features: 

changes in  are independent from the search progress 

strong user control of  by the above formula 

 is fully predictable 

a given  acts on all individuals of the population 

 

Varying mutation step size: option1  
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Replace the constant  by a function (t) updated after 

every n steps by the 1/5 success rule (cf. ES chapter):  

Features: 

changes in  are based on feedback from the search progress 

some user control of  by the above formula 

 is not predictable 

a given  acts on all individuals of the population 
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Varying mutation step size: option2  
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Assign a personal  to each individual  

Incorporate this  into the chromosome: (x1, …, xn, ) 

Apply variation operators to xi‘s and  

Features: 

changes in  are results of natural selection 

(almost) no user control of  

 is not predictable 

a given  acts on one individual 

),0(  Ne
),0(  Nxx ii

Varying mutation step size: option3  
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Assign a personal  to each variable in each individual  

Incorporate ’s into the chromosomes: (x1, …, xn, 1, …,  n)  

Apply variation operators to xi‘s and i‘s  

Features: 

changes in i are results of natural selection 

(almost) no user control of i 

i is not predictable 

a given i acts on 1 gene of one individual 
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Varying mutation step size: option4  
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Example cont’d 

Constraints 

– gi (x)  0   for i = 1,…,q  inequality constraints 

– hi (x) = 0   for i = q+1,…,m  equality constraints 

are handled by penalties: 

 

  eval(x) = f(x) + W × penalty(x) 

 

where  
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Replace the constant W by a function W(t) 

 

 

0  t  T is the current generation number 

 

α (C  ))( ttW 

Features: 

changes in W are independent from the search progress 

strong user control of W by the above formula 

W is fully predictable 

a given W acts on all individuals of the population 

Varying penalty: option 1  
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Varying penalty: option 2  

Replace the constant W by W(t) updated in each generation 

 

    

 

 
 < 1,  > 1,     1  champion: best of its generation 

 Features: 

changes in W are based on feedback from the search progress 

some user control of W by the above formula 

W is not predictable 

a given W acts on all individuals of the population 
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Varying penalty: option 3  

Assign a personal W to each individual  

Incorporate this W into the chromosome: (x1, …, xn, W) 

Apply variation operators to xi‘s and W 

 

Alert: 

  eval ((x, W)) = f (x) + W × penalty(x) 

while for mutation step sizes we had 

  eval ((x, )) = f (x) 

this option is thus sensitive “cheating”  makes no sense 
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Lessons learned from examples 

Various forms of parameter control can be distinguished by: 

 

 primary features: 

– what component of the EA is changed  

– how the change is made  

 

 secondary features: 

– evidence/data backing up changes 

– level/scope of change 



A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 

Parameter Control in EAs 

16 

What 

Practically any EA component can be parameterized and 

thus controlled on-the-fly: 

 representation 

 evaluation function 

 variation operators 

 selection operator (parent or mating selection) 

 replacement operator (survival or environmental selection) 

 population (size, topology) 
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How 

Three major types of parameter control: 

 

 deterministic: some rule modifies strategy parameter 

without feedback from the search (based on some counter)  

 

 adaptive: feedback rule based on some measure 

monitoring search progress  

 

 self-adaptative: parameter values evolve along with 

solutions; encoded onto chromosomes they undergo 

variation and selection 
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Global taxonomy 

PARAMETER TUNING
(before the run)

DETERMINISTIC
(time dependent)

ADAPTIVE
(feedback from search)

SELF-ADAPTIVE
(coded in chromosomes)

PARAMETER CONTROL
(during the run)

PARAMETER SETTING
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The parameter changes may be based on:  

 time or nr. of evaluations (deterministic control) 

 population statistics (adaptive control) 

– progress made 

– population diversity 

– gene distribution, etc. 

 relative fitness of individuals created with given 

values (adaptive or self-adaptive control) 

Evidence informing the change 
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Evidence informing the change 

 Absolute evidence: predefined event triggers 
change, e.g. increase pm by 10% if population 
diversity falls under threshold x  

 Direction and magnitude of change is fixed 

 Relative evidence: compare values through 
solutions created with them, e.g. increase pm if 
top quality offspring came by high mut. rates 

 Direction and magnitude  of change is not fixed 
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Scope/level 

The parameter may take effect on different levels:  

 environment (fitness function) 

 population  

 individual 

 sub-individual 

 

Note: given component (parameter) determines possibilities 

Thus: scope/level is a derived or secondary feature in the 

 classification scheme 
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Refined taxonomy 

Deterministic Adaptive Self-adaptive 

Absolute + + - 

Relative - + + 

 Combinations of types and evidences 

 Possible: + 

 Impossible: - 
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Evaluation / Summary 

 Parameter control offers the possibility to use 

appropriate values in various stages of the search 

 Adaptive and self-adaptive parameter control  

– offer users “liberation” from parameter tuning 

– delegate parameter setting task to the evolutionary process 

– the latter implies a double task for an EA: problem solving + 

self-calibrating (overhead)  

 Adaptative and self-adaptative parameter control 

– How to repeat past simulations 

– The same results may not be achieved again using a fixed 

random generator seed 


