Genetic Programming

Chapter 6

GP quick overview

- Developed: USA in the 1990's
- Early names: J. Koza
- Typically applied to:
 - machine learning tasks (prediction, classification...)
- Attributed features:
 - competes with neural nets and alike
 - needs huge populations (thousands)
 - slow
- Special:
 - non-linear chromosomes: trees, graphs
 - mutation possible but not necessary (disputed!)

GP technical summary tableau

Representation	Tree structures	
Recombination	Exchange of subtrees	
Mutation	Random change in trees	
Parent selection	Fitness proportional	
Survivor selection	Generational replacement	

Introductory example: credit scoring

- Bank wants to distinguish good from bad loan applicants
- Model needed that matches historical data

ID	No of children	Salary	Marital status	OK?
ID-1	2	45000	Married	0
ID-2	0	30000	Single	1
ID-3	1	40000	Divorced	1

Introductory example: credit scoring

A possible model:

IF (NOC < 2) AND (S >= 30000) THEN good ELSE bad

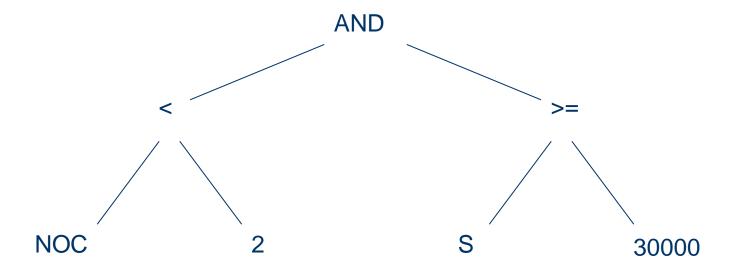
In general:

IF formula THEN good ELSE bad

- Only unknown is the right formula, hence
- Our search space (phenotypes) is the set of formulas
- Natural fitness of a formula: percentage of well classified cases of the model it stands for
- Natural representation of formulas (genotypes) is: parse trees

Introductory example: credit scoring

IF (NOC = 2) AND (S > 30000) THEN good ELSE bad can be represented by the following tree



- Trees are a universal form, e.g. consider
- Arithmetic formula

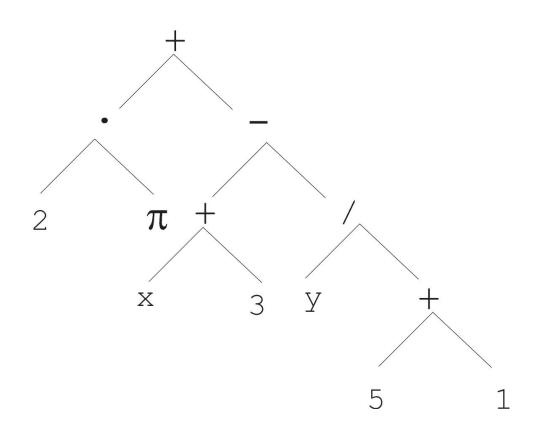
$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$

Logical formula

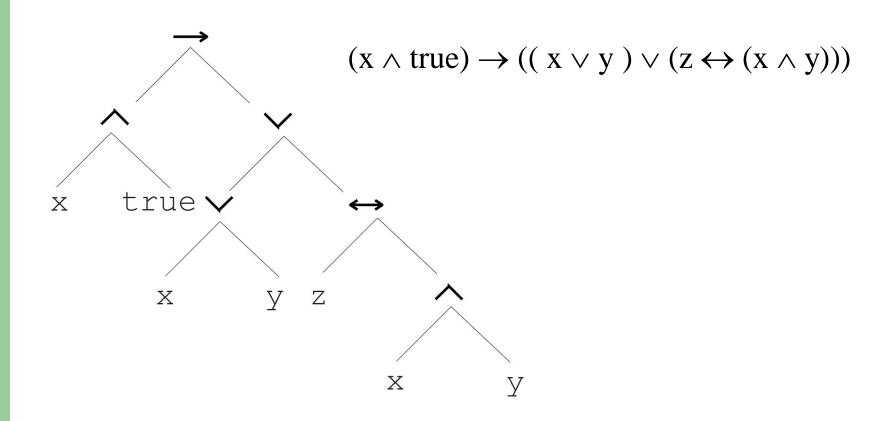
$$(x \land true) \rightarrow ((x \lor y) \lor (z \leftrightarrow (x \land y)))$$

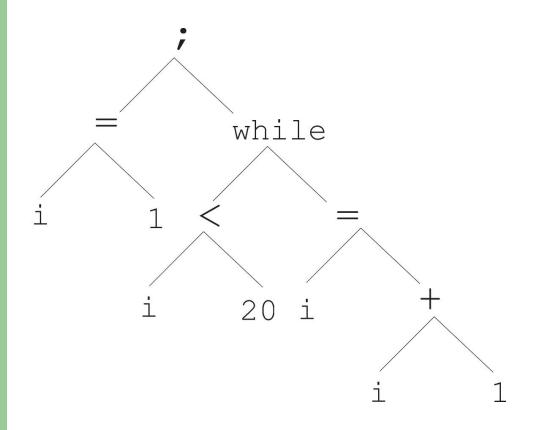
Program

$$i = 1;$$
 while $(i < 20)$ { $i = i + 1$ }



$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$





```
i = 1; while (i < 20) { i = i + 1 }
```

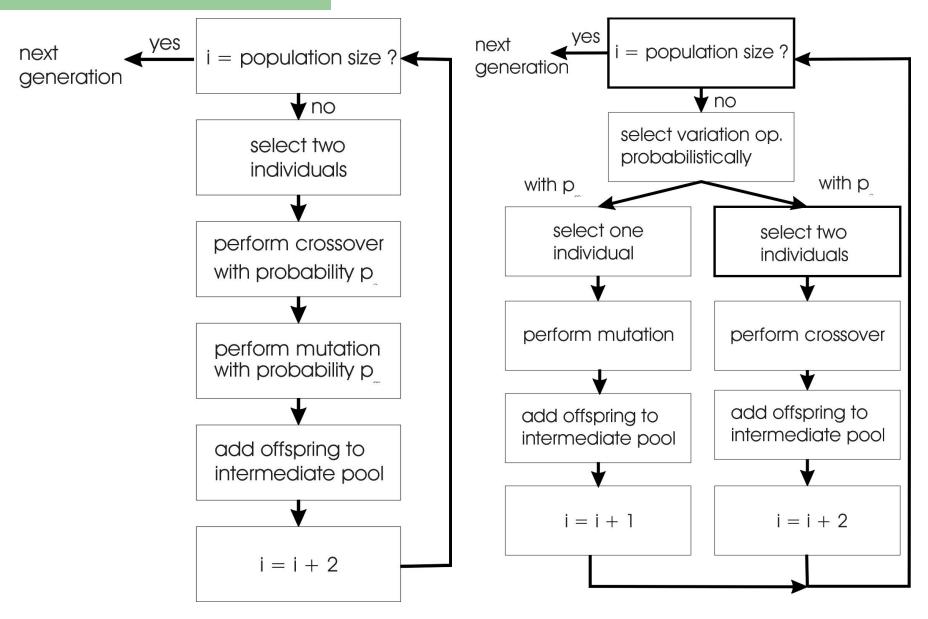
- In GA, ES, EP chromosomes are linear structures (bit strings, integer string, realvalued vectors, permutations)
- Tree shaped chromosomes are non-linear structures
- In GA, ES, EP the size of the chromosomes is fixed
- Trees in GP may vary in depth and width

- Symbolic expressions can be defined by
 - Terminal set T
 - Function set F (with the arities of function symbols)
- Adopting the following general recursive definition:
 - 1. Every $t \in T$ is a correct expression
 - 2. $f(e_1, ..., e_n)$ is a correct expression if $f \in F$, arity(f)=n and e_1 , ..., e_n are correct expressions
 - 3. There are no other forms of correct expressions
- In general, expressions in GP are not typed (closure property: any f ∈ F can take any g ∈ F as argument)

Offspring creation scheme

Compare

- GA scheme using crossover AND mutation sequentially (be it probabilistically)
- GP scheme using crossover OR mutation (chosen probabilistically)

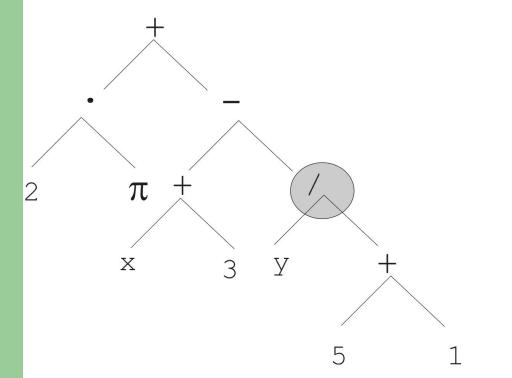


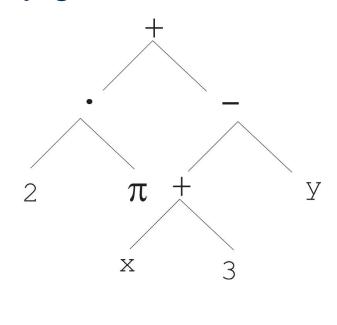
GA flowchart

GP flowchart

Mutation

 Most common mutation: replace randomly chosen subtree by randomly generated tree



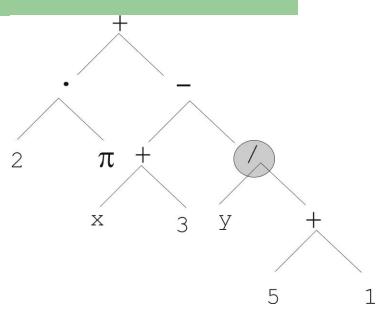


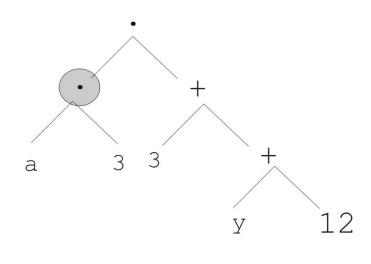
Mutation cont'd

- Mutation has two parameters:
 - Probability p_m to choose mutation vs. recombination
 - Probability to chose an internal point as the root of the subtree to be replaced
- Remarkably p_m is advised to be 0 (Koza'92) or very small, like 0.05 (Banzhaf et al. '98)
- The size of the child can exceed the size of the parent

Recombination

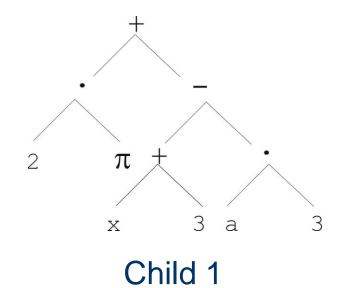
- Most common recombination: exchange two randomly chosen subtrees among the parents
- Recombination has two parameters:
 - Probability p_c to choose recombination vs. mutation
 - Probability to chose an internal point within each parent as crossover point
- The size of offspring can exceed that of the parents

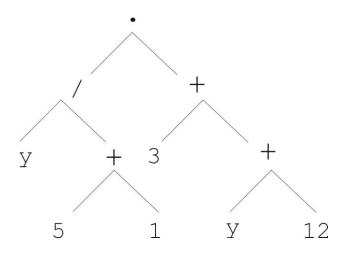




Parent 1

Parent 2





Child 2

Selection

- Parent selection typically fitness proportionate
- Over-selection in very large populations
 - rank population by fitness and divide it into two groups:
 - group 1: best x% of population, group 2 other (100-x)%
 - 80% of selection operations chooses from group 1, 20% from group 2
 - for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%
 - motivation: to increase efficiency, %'s come from rule of thumb
- Survivor selection:
 - Typical: generational scheme (thus none)
 - Recently steady-state is becoming popular for its elitism

Initialisation

- Maximum initial depth of trees D_{max} is set
- Full method (each branch has depth = D_{max}):
 - nodes at depth d < D_{max} randomly chosen from function set F
 - nodes at depth $d = D_{max}$ randomly chosen from terminal set T
- Grow method (each branch has depth ≤ D_{max}):
 - nodes at depth d < D_{max} randomly chosen from F \cup T
 - nodes at depth $d = D_{max}$ randomly chosen from T
- Common GP initialisation: ramped half-and-half, where grow & full method each deliver half of initial population

Bloat

- Bloat = "survival of the fattest", i.e., the tree sizes in the population are increasing over time
- Ongoing research and debate about the reasons
- Needs countermeasures, e.g.
 - Prohibiting variation operators that would deliver "too big" children
 - Parsimony pressure: penalty for being oversized

Problems involving "physical" environments

- Trees for data fitting vs. trees (programs) that are "really" executable
- Execution can change the environment → the calculation of fitness
- Example: robot controller
- Fitness calculations mostly by simulation, ranging from expensive to extremely expensive (in time)
- But evolved controllers are often to very good

Example application: symbolic regression

- Given some points in \mathbb{R}^2 , (x_1, y_1) , ..., (x_n, y_n)
- Find function f(x) s.t. $\forall i = 1, ..., n : f(x_i) = y_i$
- Possible GP solution:
 - Representation by $F = \{+, -, /, sin, cos\}, T = \mathbb{R} \cup \{x\}$
 - Fitness is the error $err(f) = \sum_{i=1}^{\infty} (f(x_i) y_i)^2$
 - All operators standard
 - pop.size = 1000, ramped half-half initialisation
 - Termination: n "hits" or 50000 fitness evaluations reached (where "hit" is if $| f(x_i) y_i | < 0.0001$)

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Genetic Programming

Discussion

Is GP:

The art of evolving computer programs?

Means to automated programming of computers?

GA with another representation?