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EP quick overview 

 Developed: USA in the 1960’s 

 Early names: D. Fogel 

 Typically applied to: 

– traditional EP: machine learning tasks by finite state machines 

– contemporary EP: (numerical) optimization  

 Attributed features: 

– very open framework: any representation and mutation op’s OK 

– crossbred with ES (contemporary EP) 

– consequently: hard to say what “standard” EP is 

 Special: 

– no recombination 

– self-adaptation of parameters standard (contemporary EP) 
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EP technical summary tableau 

Representation Real-valued vectors 

Recombination None 

Mutation Gaussian perturbation 

Parent selection Deterministic  

Survivor selection Probabilistic (+) 

Specialty Self-adaptation of mutation 

step sizes (in meta-EP) 
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Historical EP perspective 

 EP aimed at achieving intelligence 

 Intelligence was viewed as adaptive behaviour 

 Prediction of the environment was considered 

a prerequisite to adaptive behaviour  

 Thus: capability to predict is key to intelligence 
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Prediction by finite state machines 

 Finite state machine (FSM):  

– States S 

– Inputs I 

– Outputs O  

– Transition function  : S x I  S x O 

– Transforms input stream into output stream 

 Can be used for predictions, e.g. to predict 

next input symbol in a sequence 
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FSM example 

 Consider the FSM with:  

– S = {A, B, C} 

– I = {0, 1} 

– O = {a, b, c} 

–  given by a diagram  



A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 

Evolutionary Programming 

FSM as predictor 

 Consider the following FSM 

 Task: predict next input 

 Quality: % of in(i+1) = outi  

 Given initial state C 

 Input sequence 011101 

 Leads to output 110111 

 Quality: 3 out of 5 
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Introductory example: 
evolving FSMs to predict primes 

 P(n) = 1 if n is prime, 0 otherwise 

 I = N = {1,2,3,…, n, …} 

 O = {0,1} 

 Correct prediction: outi= P(in(i+1))  

 Fitness function: 
– 1 point for correct prediction of next input 

– 0 point for incorrect prediction 

– Penalty for “too much” states 
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Introductory example: 
evolving FSMs to predict primes 

 Parent selection: each FSM is mutated once 

 Mutation operators (one selected randomly): 
– Change an output symbol 

– Change a state transition (i.e. redirect edge)  

– Add a state 

– Delete a state 

– Change the initial state  

 Survivor selection: (+) 

 Results: overfitting, after 202 inputs best FSM had one 
state and both outputs were 0, i.e., it always predicted 
“not prime”  
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Modern EP 

 No predefined representation in general 

 Thus: no predefined mutation (must match 

representation) 

 Often applies self-adaptation of mutation 

parameters 

 In the sequel we present one EP variant, not 

the canonical EP  
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Representation   

 For continuous parameter optimisation 

 Chromosomes consist of two parts: 

– Object variables: x1,…,xn 

– Mutation step sizes: 1,…,n 

 Full size:  x1,…,xn, 1,…,n 
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Mutation 

 Chromosomes:  x1,…,xn, 1,…,n 
  

 i’ = i • (1 +  • N(0,1)) 

 x’i = xi + i’ • Ni(0,1) 

   0.2 

 boundary rule: ’ < 0  ’ = 0  

 Other variants proposed & tried: 
– Lognormal scheme as in ES 

– Using variance instead of standard deviation 

– Mutate -last 

– Other distributions, e.g, Cauchy instead of Gaussian 
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Recombination  

 None 

 Rationale: one point in the search space 

stands for a species, not for an individual and 

there can be no crossover between species 

 Much historical debate “mutation vs. crossover” 

 Pragmatic approach seems to prevail today 
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Parent selection 

 Each individual creates one child by mutation 

 Thus:  

– Deterministic 

– Not biased by fitness 
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Survivor selection 

 P(t):  parents, P’(t):  offspring  

 Pairwise competitions in round-robin format: 
– Each solution x from P(t)  P’(t) is evaluated 

against q other randomly chosen solutions  

– For each comparison, a "win" is assigned if x is 
better than its opponent 

– The  solutions with the greatest number of wins are 
retained to be parents of the next generation 

 Parameter q allows tuning selection pressure 

 Typically q = 10 
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Example application:  
the Ackley function (Bäck et al ’93) 

 The Ackley function (here used with n =30): 

 

 

 Representation:  
– -30 < xi < 30 (coincidence of 30’s!) 

– 30 variances as step sizes 

 Mutation with changing object variables first !  

 Population size  = 200, selection with q = 10 

 Termination : after 200000 fitness evaluations 

 Results: average best solution is 1.4 • 10 –2  
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Example application:  
evolving checkers players (Fogel’02) 

 Neural nets for evaluating future values of moves are 
evolved 

 NNs have fixed structure with 5046 weights, these are 
evolved + one weight for “kings” 

 Representation:  
– vector of 5046 real numbers for object variables (weights) 

– vector of 5046 real numbers for ‘s 

 Mutation:  
– Gaussian, lognormal scheme with -first 

– Plus special mechanism for the kings’ weight 

 Population size 15 
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Example application:  
evolving checkers players (Fogel’02) 

 Tournament size q = 5 

 Programs (with NN inside) play against other 
programs, no  human trainer or hard-wired 
intelligence 

 After 840 generation (6 months!) best strategy 
was tested against humans via Internet 

 Program earned “expert class” ranking 
outperforming 99.61% of all rated players  


