
Evolutionary Programming

Chapter 5

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

EP quick overview

 Developed: USA in the 1960’s

 Early names: D. Fogel

 Typically applied to:

– traditional EP: machine learning tasks by finite state machines

– contemporary EP: (numerical) optimization

 Attributed features:

– very open framework: any representation and mutation op’s OK

– crossbred with ES (contemporary EP)

– consequently: hard to say what “standard” EP is

 Special:

– no recombination

– self-adaptation of parameters standard (contemporary EP)

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

EP technical summary tableau

Representation Real-valued vectors

Recombination None

Mutation Gaussian perturbation

Parent selection Deterministic

Survivor selection Probabilistic (+)

Specialty Self-adaptation of mutation

step sizes (in meta-EP)

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Historical EP perspective

 EP aimed at achieving intelligence

 Intelligence was viewed as adaptive behaviour

 Prediction of the environment was considered

a prerequisite to adaptive behaviour

 Thus: capability to predict is key to intelligence

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Prediction by finite state machines

 Finite state machine (FSM):

– States S

– Inputs I

– Outputs O

– Transition function : S x I S x O

– Transforms input stream into output stream

 Can be used for predictions, e.g. to predict

next input symbol in a sequence

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

FSM example

 Consider the FSM with:

– S = {A, B, C}

– I = {0, 1}

– O = {a, b, c}

– given by a diagram

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

FSM as predictor

 Consider the following FSM

 Task: predict next input

 Quality: % of in(i+1) = outi

 Given initial state C

 Input sequence 011101

 Leads to output 110111

 Quality: 3 out of 5

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Introductory example:
evolving FSMs to predict primes

 P(n) = 1 if n is prime, 0 otherwise

 I = N = {1,2,3,…, n, …}

 O = {0,1}

 Correct prediction: outi= P(in(i+1))

 Fitness function:
– 1 point for correct prediction of next input

– 0 point for incorrect prediction

– Penalty for “too much” states

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Introductory example:
evolving FSMs to predict primes

 Parent selection: each FSM is mutated once

 Mutation operators (one selected randomly):
– Change an output symbol

– Change a state transition (i.e. redirect edge)

– Add a state

– Delete a state

– Change the initial state

 Survivor selection: (+)

 Results: overfitting, after 202 inputs best FSM had one
state and both outputs were 0, i.e., it always predicted
“not prime”

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Modern EP

 No predefined representation in general

 Thus: no predefined mutation (must match

representation)

 Often applies self-adaptation of mutation

parameters

 In the sequel we present one EP variant, not

the canonical EP

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Representation

 For continuous parameter optimisation

 Chromosomes consist of two parts:

– Object variables: x1,…,xn

– Mutation step sizes: 1,…,n

 Full size: x1,…,xn, 1,…,n

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Mutation

 Chromosomes: x1,…,xn, 1,…,n

 i’ = i • (1 + • N(0,1))

 x’i = xi + i’ • Ni(0,1)

 0.2

 boundary rule: ’ < 0 ’ = 0

 Other variants proposed & tried:
– Lognormal scheme as in ES

– Using variance instead of standard deviation

– Mutate -last

– Other distributions, e.g, Cauchy instead of Gaussian

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Recombination

 None

 Rationale: one point in the search space

stands for a species, not for an individual and

there can be no crossover between species

 Much historical debate “mutation vs. crossover”

 Pragmatic approach seems to prevail today

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Parent selection

 Each individual creates one child by mutation

 Thus:

– Deterministic

– Not biased by fitness

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Survivor selection

 P(t): parents, P’(t): offspring

 Pairwise competitions in round-robin format:
– Each solution x from P(t) P’(t) is evaluated

against q other randomly chosen solutions

– For each comparison, a "win" is assigned if x is
better than its opponent

– The solutions with the greatest number of wins are
retained to be parents of the next generation

 Parameter q allows tuning selection pressure

 Typically q = 10

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Example application:
the Ackley function (Bäck et al ’93)

 The Ackley function (here used with n =30):

 Representation:
– -30 < xi < 30 (coincidence of 30’s!)

– 30 variances as step sizes

 Mutation with changing object variables first !

 Population size = 200, selection with q = 10

 Termination : after 200000 fitness evaluations

 Results: average best solution is 1.4 • 10 –2

ex
n

x
n

xf
n

i

i

n

i

i

20)2cos(
1

exp
1

2.0exp20)(
11

2

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Example application:
the Ackley function (Bäck et al ’93)

 The Ackley function (here used with n =30):

 Representation:
– -30 < xi < 30 (coincidence of 30’s!)

– 30 variances as step sizes

 Mutation with changing object variables first !

 Population size = 200, selection with q = 10

 Termination : after 200000 fitness evaluations

 Results: average best solution is 1.4 • 10 –2

ex
n

x
n

xf
n

i

i

n

i

i

20)2cos(
1

exp
1

2.0exp20)(
11

2

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Example application:
evolving checkers players (Fogel’02)

 Neural nets for evaluating future values of moves are
evolved

 NNs have fixed structure with 5046 weights, these are
evolved + one weight for “kings”

 Representation:
– vector of 5046 real numbers for object variables (weights)

– vector of 5046 real numbers for ‘s

 Mutation:
– Gaussian, lognormal scheme with -first

– Plus special mechanism for the kings’ weight

 Population size 15

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Evolutionary Programming

Example application:
evolving checkers players (Fogel’02)

 Tournament size q = 5

 Programs (with NN inside) play against other
programs, no human trainer or hard-wired
intelligence

 After 840 generation (6 months!) best strategy
was tested against humans via Internet

 Program earned “expert class” ranking
outperforming 99.61% of all rated players

