Tópicos Avançados em Inteligência Artificial - Computação Evolucionária -

Prof. Dr. Cícero Garrozi – DEINFO - UFRPE PPGIA@UFRPE - PPGEC@UPE cicerog@gmail.com

Site da disciplina: http://cicerog.blogspot.com

Sumário

- Situando a Computação Evolucionária
- Metáfora principal de CE
- Evolução Darwiniana
- Genética Natural
- □ Algoritmos Evolutivos
 - Esquema Geral
 - Representações
 - Função de Aptidão
 - Tipos de AEs
 - ☐ AG, EE, PE, PG
 - População
 - Seleção de Pais
 - Operadores de Variação
 - □ Recombinação e Mutação
 - Seleção de Sobreviventes
 - Inicialização/Término
 - Visões de Goldberg e Michalewicz
 - Inicialização Heurística x Aleatória
 - Execuções Longas x Curtas
 - Demonstração: Quadrado Mágico
- Atividades
- Referências

Situando a Computação Evolutiva (CE)

- CE é parte de ciência da computação
- □CE *não* é parte de ciências médicas/biologia
- A biologia cedeu a inspiração e a terminologia
- CE pode ser aplicada em pesquisas biológicas

Metáfora principal de CE

Evolução

Resolução do Problema

Ambiente ----- Problema

Indivíduo

Solução Candidata

Aptidão ← Qualidade

Aptidão → chance de sobreviver e reproduzir

Qualidade → chance de semear novas soluções

Evolução Darwiniana

The origin of Species (1859)

- □ Seleção natural
 - Todos os ambientes possuem recursos finitos (podem suportar uma quantidade limitada de indivíduos)
 - Formas de vida possuem instintos básicos / ciclos de vida guiados para a reprodução
 - Portanto, algum tipo de seleção é inevitável
 - Aqueles indivíduos que competem pelos recursos mais efetivamente possuem maior chance de reprodução. Estes são os indivíduos que mais se adaptaram ao ambiente.

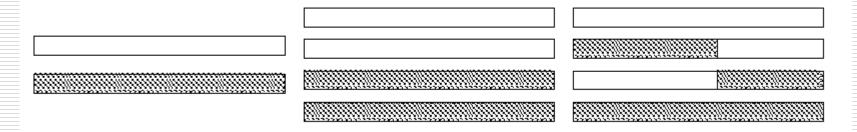
Evolução Darwiniana

- A população consiste de diversos conjuntos de indivíduos
- Combinações de características pessoais que são mais adaptadas tendem a aumentar a sua representação na população
- Indivíduos mais aptos atuam como sementes para a geração dos novos indivíduos através da recombinação e mutação
- A aptidão dos novos indivíduos é avaliada e eles competem pela sobrevivência (possivelmente com os pais também)
- Fenótipo: características de um ser vivo que são expressadas externamente

Genética Natural

- ☐ A informação necessária para criar um organismo é codificada no DNA do organismo
- O genótipo (interior do DNA) determina o fenótipo
- ☐ Genes → traços fenótipos é um mapeamento complexo
 - Um gene pode afetar diversas características
 - Muitos genes podem afetar uma característica
- Pequenas mudanças no genótipo tendem a gerar pequenas mudanças no organismo (altura, cor do cabelo, etc)

Genes e Genoma


- ☐ Genes são codificados em tranças de DNA chamados cromossomos
- Em muitas células, existem duas cópias de cada cromossomo (diplóide)
- O material completo no genótipo de um indivíduo é chamado de Genoma
- ☐ Em uma mesma espécie, grande parte do material genético é idêntica

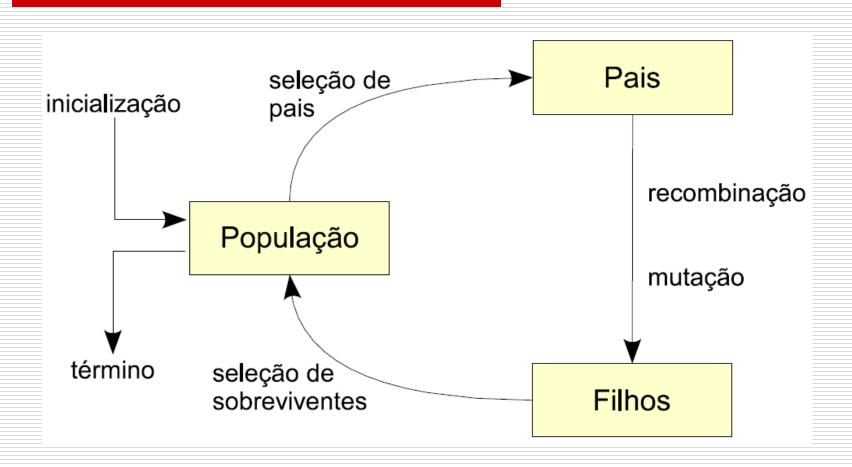
Exemplo: Homo Sapiens

- □ DNA humano é organizado em cromossomos
- ☐ Células do corpo humano contém 23 pares de cromossomos que definem os atributos físicos do indivíduo em conjunto:

Cruzamento durante a meiose

- Pares de cromossomos são alinhados e duplicados
- Pares internos se conectam em um centromero e trocam partes de si

- Resultado: uma cópia de cada cromossomo paternal/maternal e mais duas novas combinações
- Após o cruzamento, os cromossomos formam os gametas


Mutação

- □ Às vezes, uma parte do material genético é levemente modificado durante este processo (erro de cópia)
- □ Isto significa que o filho pode ter informação no material genético que não foi herdado dos pais
- ☐ Isto pode ser
 - catastrófico: filho não é viável (mais comum)
 - neutro: nova característica não influencia na aptidão
 - vantajoso: surge nova característica poderosa

Algoritmos Evolutivos (AE)

- ☐ AEs enquadram-se na categoria dos algoritmos de "gerar e testar"
- □ Eles são algoritmos estocásticos, baseados em população
- Os operadores de variação (recombinação e mutação) criam a diversidade necessária e assim facilitam novas descobertas
- □ Seleção reduz a diversidade e atua como uma força, impulsionando a qualidade

Esquema Geral dos AEs

Representações

- Soluções candidatas (indivíduos) existem no espaço de fenótipos
- Elas são codificadas nos cromossomos, que existem no espaço dos genótipos
 - Codificação: fenótipo=> genótipo (não necessariamente um-para-um)
 - Decodificação: genótipo=> fenótipo (deve ser um-para-um)
- Cromossomos contém genes, que estão nas posições (geralmente fixas) chamadas loci (sing. locus) e possuem um valor (alelo)

Função de Avaliação (Aptidão)

- Representa os requisitos aos quais a população deve se adaptar
- □ Outros nomes: função de qualidade e função objetivo
- □ Atribui um único valor real para cada fenótipo, servindo de base para a seleção
- ☐ Tipicamente, dizemos que a aptidão deve ser maximizada

Tipos de AEs

- Historicamente, tipos distintos de AEs tem sido associados com diferentes representações:
 - Strings Binárias: Algoritmos Genéticos (AG)
 - Vetores de valores Reais: Estratégias Evolutivas (EE)
 - Máquinas de Estados Finitos: Programação Evolutiva (PE)
 - Árvores LISP: Programação Genética (PG)
- Melhor estratégia:
 - Escolher a representação para satisfazer o problema
 - Escolher operadores de variação para satisfazer a representação
- Operadores de seleção utilizam somente a aptidão e, portanto, são independentes da representação

População

- Armazena (representações de) possíveis soluções
- Geralmente possui tamanho fixo
- Operadores de seleção geralmente atuam em toda a população, isto é, probabilidades de reprodução são relativas à geração atual
- □ Diversidade de uma população refere-se ao número de diferentes aptidões / fenótipos / genótipos presentes

Seleção de Pais

- Atribui probabilidades variáveis aos indivíduos (de acordo com sua aptidão) visando selecionar os pais
- □ Geralmente probabilística
 - Soluções de alta qualidade são mais prováveis a serem pais do que as de baixa qualidade
 - Porém não é garantido
 - Mesmo o pior indivíduo da população geralmente possui probabilidade não-zero de ser pai
- Esta natureza estocástica pode auxiliar na fuga de ótimos locais.
- ☐ Roleta, torneio, *rank*

Operadores de Variação

- ☐ Função: gerar novas soluções candidatas
- □ Usualmente divididos em dois tipos de acordo com o número de entradas (aridade):
 - Aridade 1: operadores de mutação
 - Aridade >1: operadores de recombinação
 - Aridade = 2 geralmente chamado de cruzamento
- Existe muito debate a respeito da importância relativa à mutação e recombinação
 - Hoje em dia, muitos AEs usam ambos
 - A escolha de operadores de variação particulares é dependente da representação

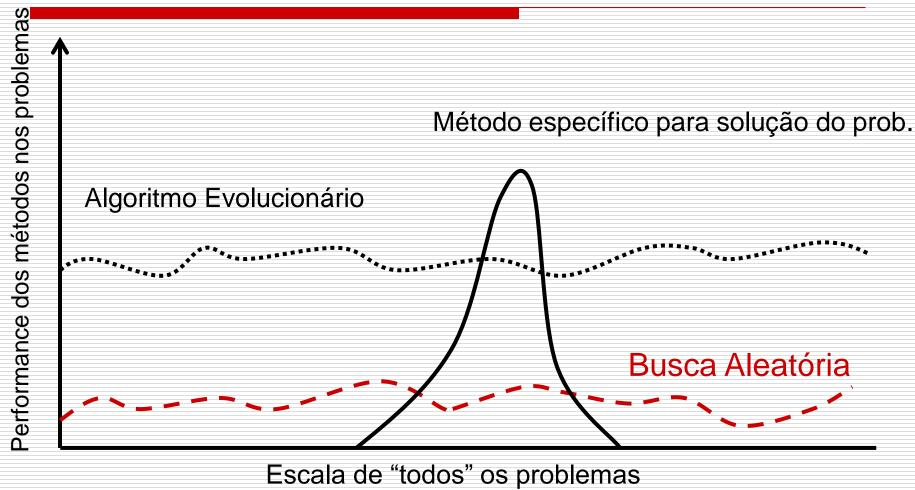
Mutação

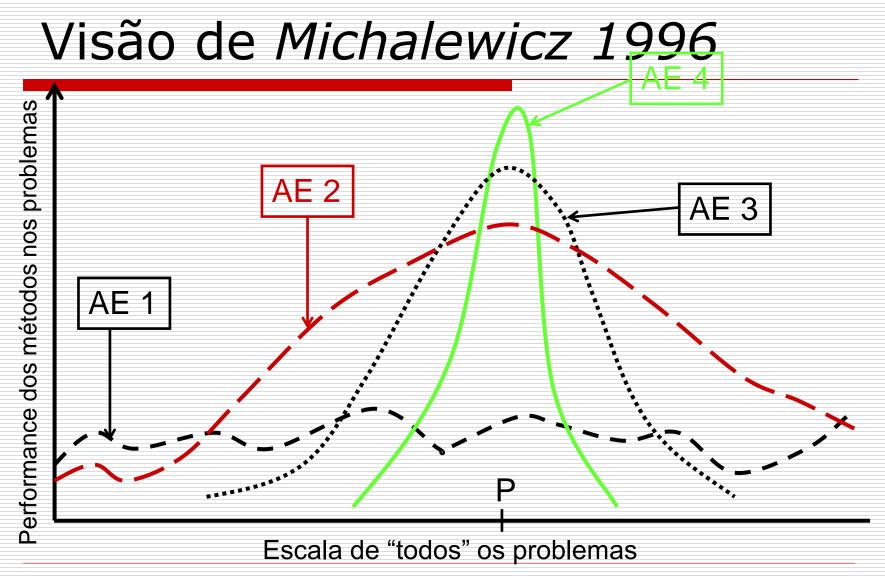
- □ Atua em um genótipo e gera outro
- ☐ Elemento de aleatoriedade é essencial e se distingue de outros operadores heurísticos unários
- A importância relacionada depende da representação e dialeto:
 - AGs binários operador de fundo responsável por preservar e introduzir diversidade
 - PE para FSM's/variáveis contínuas somente operador de busca
 - PG dificilmente utilizada

Recombinação

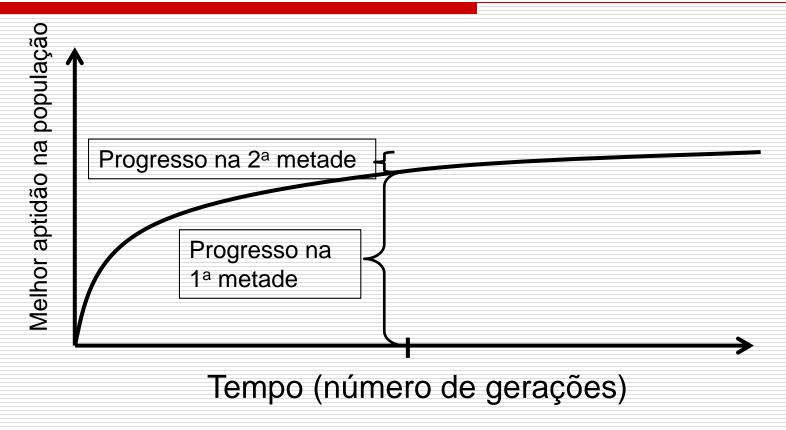
- Mescla informação dos pais nos filhos
- Escolha da informação a ser mesclada é estocástica
- Muitos filhos podem ser piores ou iguais aos pais
- □ Espera-se que alguns sejam melhores através da combinação de elementos do genótipo que conduza a boas características
- Princípio tem sido utilizado por milênios por criadores de plantas e animais

Seleção de Sobreviventes

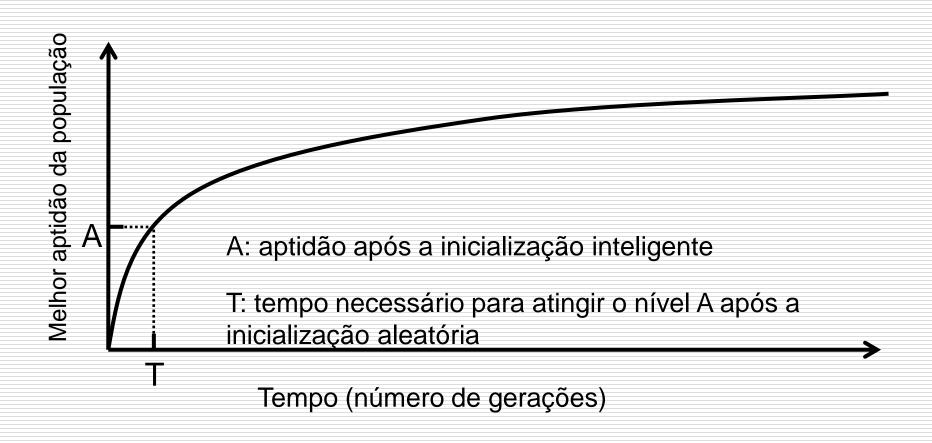

substituição


- Muitos AEs utilizam tamanho de população fixo, necessitando de uma maneira para selecionar indivíduos dentre os (pais + filhos) para a próxima geração
- ☐ Freqüentemente determinístico
 - Baseado na Aptidão: ou seja, classifica pais+filhos e pega os melhores (ranking)
 - Baseado na Idade: cria a mesma quantidade de filhos (=pais) e elimina todos os pais

Inicialização / Término


- □ Inicialização geralmente aleatória,
 - Deve assegurar cobertura e mistura dos possíveis valores dos alelos
 - Pode incluir soluções existentes, ou utilizar heurísticas específicas ao problema, para "semear" a população
- Condição de término verificada a cada geração
 - Alcançar Aptidão conhecida/desejada
 - Alcançar um número máximo de gerações
 - Alcançar algum nível mínimo de diversidade
 - Alcançar um certo número de gerações sem melhoria da aptidão

AEs como solucionador de problemas: visão de *Goldberg 1989*



Execuções longas são benéficas?

- depende de quanto você precisa
- pode ser melhor realizar mais execuções curtas

Vale a pena realizar esforços na inicialização da população?

Demonstração: quadrado mágico

- Dado um quadrado 10x10 contendo um pequeno quadrado 3x3
- □ Problema: organizar os números 1-100 no quadrado de forma que:
 - todas as linhas, colunas e diagonais sejam iguais (soma = 505)
 - um pequeno quadrado 3x3 forme uma solução para 1-9

Demonstração: quadrado mágico

- Abordagem evolucionária para resolver este quebra-cabeça:
- Acomodar os números iniciais aleatoriamente
- Criar N mutantes de determinado arranjo
- Manter o mutante (filho) com o menor erro
- □ Parar quando o erro for zero

Demonstração: quadrado mágico

- Créditos do Software: M. Herdy, TU Berlin
- Parâmetros Interessantes:
 - Step1: pequena mutação, lenta & atinge o ótimo
 - Step10: grande mutação, rápida & erra ("salta" o ótimo)
 - Mstep: passo de mutação modificado online, rápido & atinge o ótimo

Atividades da Semana

Pesquisar: frameworks/simuladores de Computação Evolucionária (em especial, AGs).

Explorar os exemplos fornecidos com os simuladores.

Ler Capítulos 1 a 3 do livro texto (Eiben)

Referências

EIBEN, A. E. & SMITH, J. E. Introduction to Evolutionary Computing. Springer Verlag, 2003.

DE JONG, K. A. Evolutionary Computation. MIT Press, 2002.

GOLDBERG, D. E. **Genetic Algorithms in Search, Optimization, and Machine Learning**. Reading, Ma: Addison-Wesley, 1989.

Periódicos:

Evolutionary Computation –

http://www.mitpressjournals.org/loi/evco

IEEE Transactions on Evolutionary Computation (IEEE TEVC) http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235

Conferências:

IEEE Congress on Evolutionary Computation (IEEE CEC) Genetic and Evolutionary Computation Conference (GECCO)