

Introdução à Programação

Conteúdo

- Algoritmos
 - -Representação
 - Exercícios
- Linguagens de Programação
- Compilador
- Interpretador

Lógica

- O que é lógica?
 - Ciência que estuda as leis do raciocínio.
 - Correção/validação do pensamento.
 - Encadeamento/ordem de idéias.
 - Arte de pensar bem.

Raciocínio Lógico

- Precisamos mais do que fórmulas, precisamos aprender a pensar!
- É preciso aprender a pensar sobre o problema, extraindo o máximo de informações sobre ele.
- Lógica ensina a colocar ordem no pensamento.

Lógica de Programação

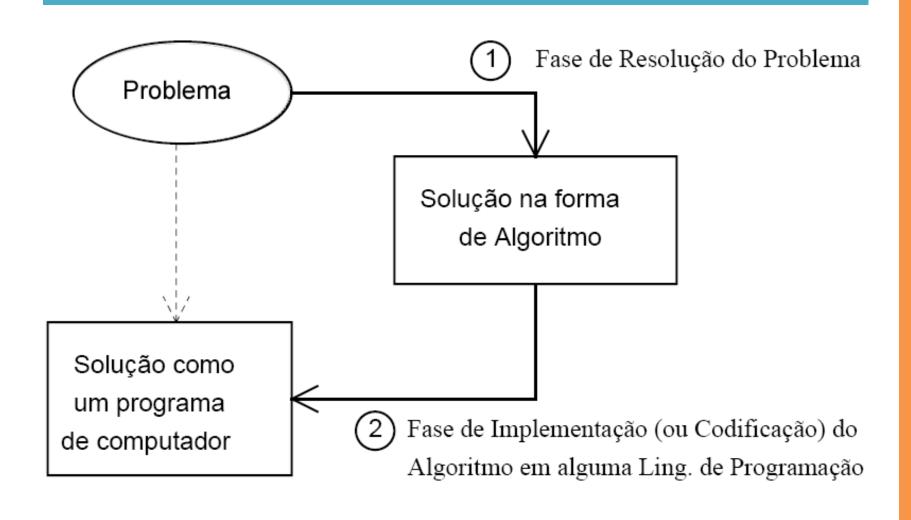
- Permite o aperfeiçoamento de nossa forma de pensar e raciocinar sobre um problema computacional, a fim de obter uma solução eficaz e/ou eficiente
- A lógica de programação é necessária para pessoas que desejam trabalhar com desenvolvimento de sistemas e programas, ela permite definir a sequência lógica para o desenvolvimento.

Sequência Lógica

São passos executados até atingir um objetivo ou solução de um problema.

- Exemplo:
 - "Chupar uma bala"
 - Pegar a bala;
 - Retirar o papel;
 - Chupar a bala;
 - Jogar o papel no lixo;

 É uma sequência finita de passos, descritos em ordem lógica, que visam a atingir um objetivo bem definido


Ao definir uma sequência de passos é necessário pensar ordenadamente, utilizar lógica.

Por que usar algoritmos?

 Abstração – Todo esforço é utilizado na resolução do problema, e não em detalhes computacionais.

 Portabilidade – Uma solução algorítmica pode ser traduzida para qualquer linguagem de programação.

Fases da Programação

Regras para criação do algoritmo

- Usar somente um verbo por frase
- Imaginar que você está desenvolvendo um algoritmo para pessoas que não trabalham com informática
- Usar frases curtas e simples
- Ser objetivo
- Procurar usar palavras que não tenham sentido dúbio.

Regras para criação do algoritmo

Exemplo

- 1.Encher a chaleira com água
- 2. Colocar a chaleira para ferver
- 3. Colocar duas colheres de sopa de pó de café no coador
- 4. Aguarde a água ferver
- 5. Acrescente a água ao pó aos poucos
- 6. Aguarde coar
- 7. Adoce à gosto

- Formas de representação
 - -Narrativa: uso de português
 - -Fluxograma: símbolos gráficos para representar fases e componentes dos algoritmos
 - -Pseudocódigo: Definição de uma pseudo-linguagem de programação, cujos comandos são em português

Formas de representação

-Narrativa

-Fluxograma

-Pseudocódigo

Descrição Narrativa

- Receita de bolo:
 - 1. Misture os ingredientes
 - 2. Bata os ingredientes em uma vasilha
 - 3. Unte a forma com manteiga
 - 4. Despeje a mistura na forma
 - 5. Se houver coco ralado
 - então despeje-o sobre a mistura
 - 6. Leve a forma ao forno
 - 7. Enquanto não corar
 - deixe a forma no forno
 - 8. Retire do forno
 - 9. Deixe esfriar

Descrição Narrativa

- Troca de pneus:
 - 1. Afrouxar ligeiramente as porcas
 - 2. Suspender o carro
 - 3. Retirar as porcas e o pneu
 - 4. Colocar o pneu reserva
 - 5. Apertar as porcas
 - 6. Abaixar o carro
 - Dar o aperto final nas porcas

Algoritmo Descrição Narrativa

- Obter o status de um aluno:
 - 1. Obter as suas 2 notas de provas
 - 2. Calcular a média aritmética
 - 3. Se a média for maior que 7
 - o aluno foi aprovado
 - senão ele foi reprovado

Trocar uma Lâmpada

- Sequenciação
 - 1. pegar uma escada
 - posicionar a escada embaixo da lâmpada
 - buscar uma lâmpada nova
 - 4. subir na escada
 - retirar lâmpada velha
 - 6. colocar lâmpada nova

Trocar uma Lâmpada

- SE estiver queimada = Decisão
 - 1. pegar uma escada
 - posicionar a escada embaixo da lâmpada
 - 3. buscar uma lâmpada nova
 - 4. acionar o interruptor
 - 5. se a lâmpada não acender, então
 - 5.1 subir na escada
 - 5.2 retirar lâmpada queimada
 - 5.3 colocar lâmpada nova

Trocar uma Lâmpada

- SE estiver queimada v2 = (decisão)
- evitar pegar escada e lâmpada
 - acionar o interruptor;
 - 2. se a lâmpada não acender, então
 - 2.1 pegar uma escada
 - 2.2 posicionar a escada embaixo da lâmpada
 - 2.3 buscar uma lâmpada nova
 - 2.4 subir na escada
 - 2.5 retirar lâmpada queimada
 - 2.6 colocar lâmpada nova

Trocar uma Lâmpada...

- SE estiver queimada v3 = (decisão)
- Re-teste após a troca
 - 1. acionar o interruptor
 - 2. se a lâmpada não acender, então
 - 2.1 pegar uma escada
 - 2.2 posicionar a escada embaixo da lâmpada
 - 2.3 buscar uma lâmpada nova
 - 2.4 subir na escada
 - 2.5 retirar lâmpada queimada
 - 2.6 colocar lâmpada nova
 - 2.7 acionar o interruptor
 - 2.8 se a lâmpada não acender, então
 - retirar lâmpada queimada
 - colocar lâmpada nova

Repetir várias vezes!!!

Trocar uma Lâmpada...

- SE estiver queimada v4 = Repetição!!
 - acionar o interruptor
 - 2. se a lâmpada não acender, então
 - 2.1 pegar uma escada
 - 2.2 posicionar a escada embaixo da lâmpada
 - 2.3 buscar uma lâmpada nova
 - 2.4 subir na escada
 - 2.5 retirar lâmpada queimada
 - 2.6 colocar lâmpada nova
 - 2.7 acionar o interruptor

2.8 enquanto a lâmpada não acender, faça:

- retirar lâmpada queimada
- colocar lâmpada nova
- acionar o interruptor

Trocar 10 Lâmpadas...

- SE estiverem queimadas (v1)
 - 1. acionar o interruptor do primeiro soquete
 - 2. se a lâmpada não acender, então
 - 2.1 pegar uma escada
 - 2.2 posicionar a escada embaixo da lâmpada
 - 2.3 buscar uma lâmpada nova
 - 2.4 subir na escada
 - 2.5 retirar lâmpada queimada
 - 2.6 colocar lâmpada nova
 - 2.7 acionar o interruptor
 - 2.8 enquanto a lâmpada não acender, faça:
 - retirar lâmpada queimada
 - colocar lâmpada nova
 - acionar o interruptor
 - 3. acionar o interruptor do segundo soquete
 - **4.**

Trocar 10 Lâmpadas...

- SE estiverem queimadas (v2)
 - 1. acionar o interruptor do primeiro soquete
 - 2. Enquanto número de soquetes for menor ou igual a 10 faça
 - 2.1 se a lâmpada não acender, então
 - 2.1.1 pegar uma escada
 - 2.1.2 posicionar a escada embaixo da lâmpada
 - 2.1.3 buscar uma lâmpada nova
 - 2.1.4 subir na escada
 - 2.1.5 retirar lâmpada queimada
 - 2.1.6 colocar lâmpada nova
 - 2.1.7 acionar o interruptor
 - 2.1.8 enquanto a lâmpada não acender, faça:
 - » retirar lâmpada queimada
 - » colocar lâmpada nova
 - » acionar o interruptor
 - 2.2 acionar o interruptor do segundo soquete

Exercícios

Descrição Narrativa

- Descreva os seguintes algoritmos
 - 1. Passos para chegar a UFRPE e assistir aula de introdução a programação.

Passos para comprar um DVD pela internet

Exercícios Descrição Narrativa

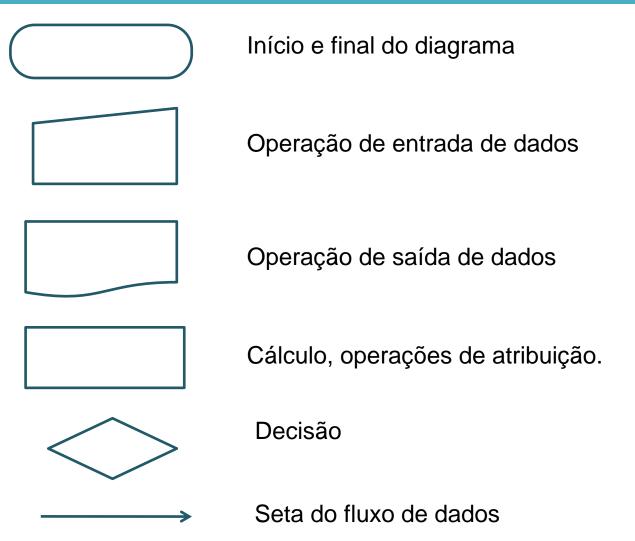
- Tendo como exemplo os algoritmos desenvolvidos para solucionar o problema da troca de lâmpadas, elabore algoritmos com os passos necessários para trocar um pneu furado em cada as seguintes situações:
 - 1. Trocar o pneu traseiro esquerdo
 - 2. Trocar o pneu traseiro esquerdo e, antes, verificar se o pneu reserva está em condições de uso
 - 3. Verificar se existe algum pneu furado; se houver, verificar o pneu reserva e, então, trocar o pneu correto.

Para cada algoritmo faça um refinamento do anterior, introduzindo novas ações e alterando o fluxo de execução de forma compatível com as situações apresentadas

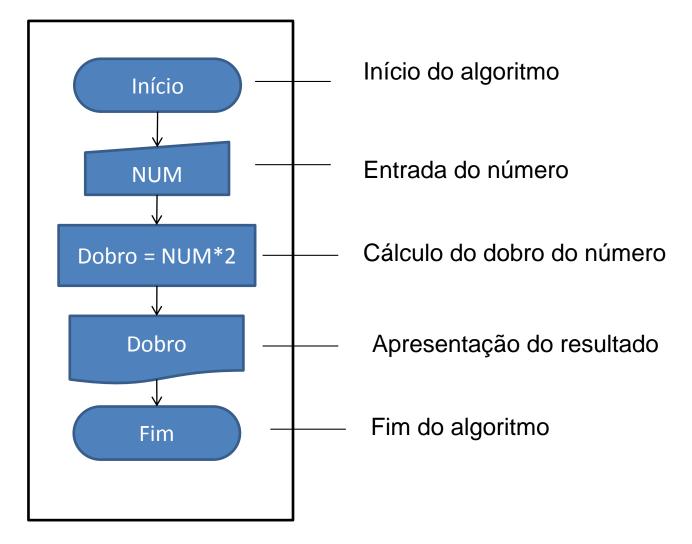
Descrição Narrativa

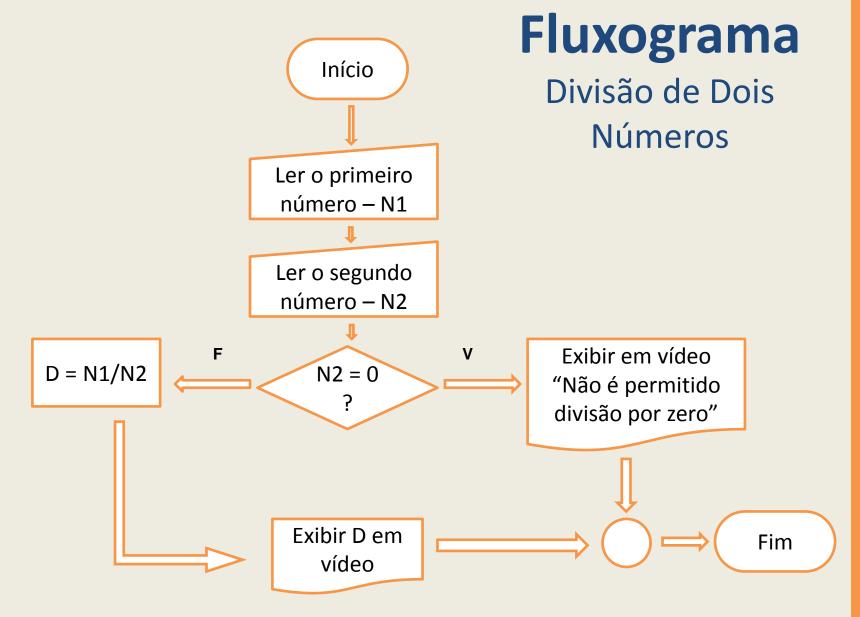
- Vantagens
 - Linguagem Natural
- Desvantagens
 - Ambiguidade
 - Imprecisão
 - Pouca Confiabilidade
 - Extensão

- Formas de representação
 - -Narrativa


-Fluxograma

-Pseudocódigo


Algoritmo Fluxograma

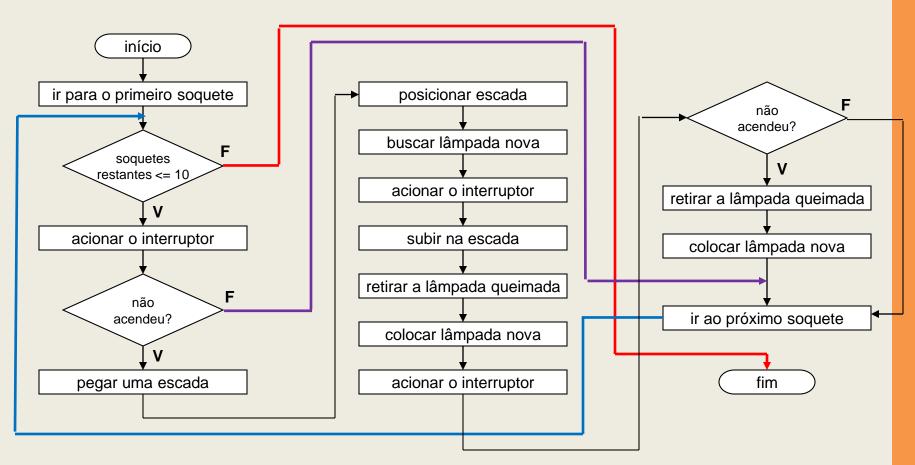

- Fluxograma (Diagrama de Blocos):
 - Representação gráfica de algoritmos onde formas geométricas diferentes implicam ações (instruções, comandos) distintos
 - Fácil visualização

Principais Símbolos Utilizados

Diagrama de Blocos-Exemplo

Diagrama de Blocos - Atividade

- Criar diagrama de bloco de um algoritmo que:
 - Recebe duas notas de um aluno.
 - Calcula Média
 - Diz seu o aluno foi aprovado (média >=7) ou reprovado (média <7).


Exercícios Fluxograma

- Construa fluxogramas para os seguintes algoritmos
 - –Calcular a área de um retângulo (AREA = BASE x ALTURA)

 Verificar se o individuo é maior de idade ou não (maior de 18 anos)

Fluxograma

Troca de 10 lâmpadas

Diagrama de Blocos - Atividade

- Criar diagrama de bloco de um algoritmo que:
 - Recebe duas notas de um aluno.
 - -Calcula Média
 - Diz seu o aluno foi aprovado (média
 >=7) ou reprovado (média <7).

- Formas de representação
 - -Narrativa √
 - -Fluxograma ✓

-Pseudocódigo

Pseudocógido

- pseudolinguagem de programação
 - comandos em português
- Representação suficientemente geral para permitir uma tradução simples de um algoritmo nela representado para uma linguagem de programação específica.

Pseudocódigo - Estrutura

Algoritmo < Nome do Algoritmo >

```
<declaração_de_variáveis>
```

Início

```
<corpo_do_algoritmo>
```

Fim

Pseudocógido - Exemplo

Algoritmo Calcula_Dobro

 Var Num, Dobro: Inteiro;
 Inicio
 Leia Num;
 Dobro <- Num*2;
 Escreva Dobro;
 Fim

Algoritmo Pseudo-código

- Principais Comandos
 - Atribuição (= ou := ou ←) : Utilizado para guardar um valor em uma variável
 - total = 0
 - SOMA ← SOMA + 1
 - mensagem := "Erro de Digitação !"
 - Entrada de Dados : Utilizado para ler dados do usuário, de dispositivos externos
 - leia(Idade)
 - leia('d:\arquivo.txt')
 - Saída de dados : Utilizado para exibir dados
 - escreva(Idade)
 - escreval('d:\arquivo.txt')

Exercício

- Criar um algoritmo em pseudo-código para:
 - Calcular a área de um retângulo (AREA = BASE x ALTURA)

Pseudocódigo

Vantagens

- Usa o português como base.
- Pode-se definir quais e como os dados v\u00e3o estar estruturados.
- Passagem quase imediata de um algoritmo para uma linguagem qualquer.

Desvantagens

- Exige a definição de uma linguagem não natural para trabalho.
- Não é padronizado.

Aplicações - Exemplo

Pseudocógido

```
Var: num1, num2, soma: int;
Inicio

num1 = 2;

num2 = 3;

soma = num1 + num2;

Imprime Soma;

Fim
```

Java

```
public class Algoritmo{
    public static void main(){
        int num1, num2, soma;

        num1=2;
        num2=3;
        soma = num1 + num2;
        system.out.println (soma);
    }
}
```

Aplicações - Exemplo

Pseudocógido

```
Var: num1, num2, soma: int;
Inicio
num1 = 2;
num2 = 3;
soma = num1 + num2;
Imprime Soma;
Fim
```

C

```
int main(){
  int num 1, num2, soma;

num1 =2;
  num2 = 3;
  soma = num1+num2;
  printf("Soma = %d", Soma);
  return 0;
}
```

Aplicações - Exemplo

Pseudocógido

```
Var: num1, num2, soma: int;
Inicio

num1 = 2;
num2 = 3;
soma = num1 + num2;
Imprime Soma;
Fim
```

Python

```
num1 = 2
num2 = 3
soma = num1+num2
print soma
```

Características de um Algoritmo

- Finitude Um algoritmo tem que terminar com um número finito de passos.
- Definitude Cada passo do algoritmo deve ser definido com precisão.
- Entrada Um algoritmo pode ter zero ou mais entradas.
- Saída Um algoritmo tem uma ou mais saídas.

Características de um Algoritmo

- Eficácia Todas as operações feitas por um algoritmos devem ser básicas.
- Não ser ambíguo
- Ser efetivo Todas as etapas devem ser alcançáveis em um tempo finito.

Linguagens de Programação

- Uma linguagem de programação é um vocabulário e um conjunto de regras usadas para escrever programas de computador
- Divididas em três tipos, com relação à similaridade com a linguagem humana:
 - Linguagem de máquina
 - Linguagem Simbólica
 - Linguagem de Alto Nível

Linguagem de Máquina

- É linguagem de mais baixo nível de entendimento pelo ser humano e a única entendida pelo processador (UCP)
- Constituída inteiramente de números (0's e 1's)
- Uma instrução típica em linguagem de máquina seria algo como:
 - -0100 1111 1010

Linguagens de Programação Linguagem Simbólica

Assembly:

- linguagem de nível imediatamente acima da linguagem de máquina.
- Possui a mesma estrutura e conjunto de instruções que a linguagem de máquina, porém permite que o programador utilize nomes (mnemônicos) e símbolos em lugar de números
- A conversão da linguagem simbólica para a linguagem de máquina se chama montagem, e é feita por um programa chamado montador (assembler).

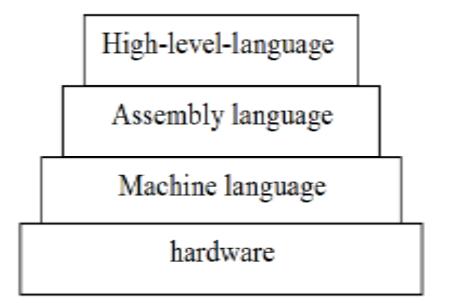
Linguagens de Programação Linguagem Simbólica

Exemplo de instrução:

ADD A, B MOV AX, 6

- Classificada como linguagem de segunda geração
- Assim como a linguagem de máquina, é considerada uma linguagem de baixo nível

Linguagens de Programação Linguagem de Alto Nível


 linguagens de programação que possuem uma estrutura e palavras-chave que são mais próximas da linguagem humana

-C, C++, Java, Python, etc ...

 Programas escritos nessas linguagens são convertidos para a linguagem de baixo nível através de um programa denominado compilador ou de um interpretador

Linguagens de Programação Linguagem de Alto Nível

- Exemplo de instrução de uma linguagem de alto nível:
 - if (A>10) then A=A-7;

Similaridade com a linguagem humana

Compilador

- Compilação: transformação de um programa em código fonte para linguagem de máquina
 - programa em código fonte = programa escrito pelo programador (source language)
 - programa em linguagem de máquina = programa executável (target language)

Interpretador

- Executa instruções em uma determinada linguagem:
 - Traduz o código fonte em uma representação intermediária e o executa imediatamente

Python, Matlab, Java, etc.

Principal desvantagem: Eficiência

Perguntas???